劉震, 田小波, 朱高華,2, 梁曉峰, 段耀暉, 張洪雙, 滕吉文
1 中國科學院地質(zhì)與地球物理研究所, 北京 100029 2 中國科學院大學, 北京 100049 3 中國地質(zhì)科學院地質(zhì)研究所, 北京 100037
?
SsPmp震相地殼探測方法
劉震1,2, 田小波1, 朱高華1,2, 梁曉峰1, 段耀暉1,2, 張洪雙3, 滕吉文1
1 中國科學院地質(zhì)與地球物理研究所, 北京 100029 2 中國科學院大學, 北京 100049 3 中國地質(zhì)科學院地質(zhì)研究所, 北京 100037
SsPmp波是遠震S波經(jīng)地表反射轉換的P波在莫霍面發(fā)生反射后被地表臺站接收得到的震相.震中距在30°~50°之間的遠震S波震相經(jīng)地表反射轉換的P波射線參數(shù)較大,在莫霍面發(fā)生全反射,使得臺站接收的SsPmp波具有較強的能量,能夠從地震記錄中清楚地識別出來,為探測臺站附近的莫霍面形態(tài)提供新的途徑.本文通過合成理論地震圖分析了SsPmp震相與地殼厚度、射線參數(shù)和Pn波速度之間的關系.結果表明:對于水平界面,地殼厚度只影響SsPmp與Ss波之間的相對到時差;Pn波速度只影響SsPmp的相位;射線參數(shù)既對SsPmp波的相對到時有影響,也會引起SsPmp波的相位變化.對于復雜的界面,SsPmp反映的深度與速度梯度最大的深度接近,而反映的Pn波速度與實際的Pn波速度一致.
虛擬震源地震測深; 全反射; 地殼厚度; 莫霍面; Pn波速度
莫霍面是地球內(nèi)部重要的間斷面之一,其形態(tài)可直接反映地殼的構造變形和構造環(huán)境.穩(wěn)定的克拉通地區(qū)的莫霍面較為平滑,地殼厚度接近全球大陸平均地殼厚度(30~40 km)(Cawood et al., 2013;Zhang et al., 2011b;Teng et al., 2013, 2014;Zeng et al., 1995),例如我國的鄂爾多斯高原(李英康等,2014;徐樹斌等,2013)和四川盆地(李志偉等,2011;樓海等,2008);擠壓造山帶地區(qū)的莫霍面起伏較劇烈,地殼厚度通常較大,例如青藏高原及其周邊地區(qū)受印度-歐亞板塊匯聚的影響,莫霍面深度從周邊盆地的40~50 km(Sinha,1987;Tapponnier et al.,2001;管燁等,2001;李志偉等,2011;樓海等,2008)急劇加深到高原地區(qū)的60~80 km(Zhang et al., 2011a;Gao et al., 2013;Shi et al., 2009;Xu et al., 2010;丁志峰等,1999;孫長青等,2013;趙金仁等,2005;李永華等,2006;盧占武等,2006);相反,拉張環(huán)境地區(qū)的莫霍面相對較淺,例如我國東部地區(qū),地殼厚度只有30~40 km(Li et al., 2013;Zhang et al., 2014a;嘉世旭和張先康,2005;羅艷等,2008;郭震等,2012;葛粲等,2011;葉卓等,2013;危自根和陳凌,2012).因此,通過研究莫霍面形態(tài)和地殼厚度有助于理解研究區(qū)域的構造環(huán)境,并為深部精細探測提供約束.
深地震測深一般使用炸藥作為爆炸源激發(fā)地震波(Zhang et al.,2013;高銳等,2002;徐濤等,2014;白志明和王椿鏞,2006),可以事先知道爆破的準確時間和位置,避免了震源誤差造成的影響,并且可以根據(jù)需要選擇觀測地點,所以可以得到精度很高的走時曲線和地殼結構信息,但是深埋在地下的爆炸不但成本高,而且會對地表造成破壞.Tseng等(2009),Yu等(2012,2013),Chen等(2013)利用震中距在30°~50°之間的天然地震S波震相在地表激發(fā)的下行P波在莫霍面反射的震相(記為SsPmp),得出了青藏高原、華北以及鄂爾多斯地區(qū)的地殼厚度.這些成功的應用實例表明SsPmp震相能量大,且無需炸藥作為爆炸源,避免了對地表生態(tài)環(huán)境的破壞,因此,可以用于探測地殼厚度.
該方法利用S波在地表激發(fā)的P波探測地殼厚度,激發(fā)點類似于人工源炮點,故稱為虛擬震源地震測深(Virtual Deep Seismic Sounding,簡稱VDSS).
利用SsPmp震相探測地殼厚度的原理如圖1所示.
圖1 虛擬震源地震測深方法原理示意圖(a)為Ss、Sp、SsPmp震相路徑示意圖; (b)表示在給定模型下(地殼厚度60 km,地殼內(nèi)P波速度為6.2 km·s-1,Pn波速度為8.1 km·s-1,射線參數(shù)0.13 s·km-1)Ss、Sp、SsPmp震相到時之間的關系.Fig.1 A diagram shows the principle of virtual deep seismic soundingFig. (a) shows the paths of Ss, Sp and SsPmp; (b) A seismogram synthesized through a certain model shows the relationship of the arrival time among the different phases (Model parameter: the crustal thickness of 60 km, the velocity of P wave in the crust is 6.2 km·s-1, the uppermost mantle velocity is 8.1 km·s-1, the ray parameter is 0.13 s·km-1).
為了研究上述參數(shù)對SsPmp震相到時和振幅的影響,通過合成不同地殼結構參數(shù)下的理論地震圖(HerrmannandWang, 1985)研究不同參數(shù)變化對SsPmp震相的影響.
3.1 SsPmp震相與射線參數(shù)的關系
如圖2所示,圖2a給出了合成理論地震圖用到的速度模型,地殼厚度為60 km,地殼內(nèi)P波速度為6.2 km·s-1,Pn波速度為8.1 km·s-1.圖2b是根據(jù)圖2a中的速度模型在不同射線參數(shù)情況下S波從下向上穿過莫霍面正演得到的地震波垂向分量與Ss子波反褶積后(Ammon et al., 1990;Ammon, 1991)的波形.圖2c給出了SsPmp在不同射線參數(shù)下波峰波谷與S波到時差的關系.圖2d是SsPmp震相波峰、波谷振幅以及峰谷差與射線參數(shù)的關系.射線參數(shù)在0.124 s·km-1時下行P波在莫霍面發(fā)生全反射,可以看出,隨著射線參數(shù)的增大,SsPmp震相與直達Ss波震相之間的到時差不斷減小;射線參數(shù)較大時波峰的到時更接近理論到時,而射線參數(shù)較小時,波谷的到時和理論到時比較接近;在達到全反射之前,波谷振幅隨著射線參數(shù)增大而增大,沒有出現(xiàn)波峰,當射線參數(shù)增大到全反射后,波形會出現(xiàn)波峰,并且波峰逐漸增大,波谷有所減小.可見,超臨界角反射產(chǎn)生的相位差是導致波形出現(xiàn)變化的原因(Zhang et al.,2012).
相位變化引起波形變化的原理如圖3所示:圖3a為一系列單一頻率的余弦函數(shù),在零相位時合成圖3b所示的波形信號.圖3c是波形發(fā)生不同的相移之后疊加產(chǎn)生的波形,可以看出,在信號發(fā)生超前和滯后半個周期的變化會導致波形翻轉;在測試的射線參數(shù)范圍內(nèi),地震波信號大約有半個周期的相移.
3.2 SsPmp震相與地殼厚度的關系
圖4給出了SsPmp震相與地殼厚度的關系:分別對三個不同的射線參數(shù)(0.11 s·km-1,藍線;0.13 s·km-1,黑線;0.15 s·km-1,紅線)進行理論合成地震圖.地殼厚度(圖4a)從60 km增厚到85 km,地殼P波速度為6.2 km·s-1,Pn速度為8.1 km·s-1.隨著地殼厚度的不斷增厚,SsPmp與Ss的到時差不斷增大,但是波形不會發(fā)生明顯的變化.圖4b給出了射線參數(shù)為0.13 s·km-1情況下,不同地殼厚度引起的波形變化.圖4c給出了三個射線參數(shù)下波峰波谷到時與理論到時隨地殼厚度變化的關系.圖4d給出了三個射線參數(shù)下波峰波谷的振幅以及峰谷差隨地殼厚度變化的關系.由此可見,SsPmp與Ss震相之間的到時差隨著地殼增厚而增大,但地殼厚度的變化基本不會引起SsPmp的波形變化.
3.3 SsPmp震相與Pn波速度的關系
圖5所示為Pn波速度對SsPmp的影響.本測試中使用的速度模型如圖5a所示,地殼厚度為60 km,地殼內(nèi)P波速度為6.2 km·s-1,Pn波速度從7.5 km·s-1增加到9.0 km·s-1.同樣進行了同圖4中測試相同的三種射線參數(shù)情況的理論合成.
圖2 SsPmp隨射線參數(shù)變化特點(a)表示合成理論地震圖用到的速度模型:地殼厚度60 km,地殼內(nèi)P波速度為6.2 km·s-1,Pn波速度為8.1 km·s-1; (b) 根據(jù)圖(a)中的速度模型在不同射線參數(shù)情況下S波從下向上穿過莫霍面正演得到的地震波垂向分量與子波反褶積后的波形; (c) 給出了SsPmp在不同射線參數(shù)下波峰波谷與S波到時差的關系.實線為理論模型計算的結果,點線為SsPmp波谷到時,虛線為波峰到時; (d) SsPmp震相波峰、波谷振幅以及峰谷差與射線參數(shù)的關系,虛線表示波峰,點線表示波谷,實線為峰谷差.Fig.2 The relationship between the ray parameter and SsPmp(a) shows the velocity model used to synthesize seismogram. The crustal thickness is 60 km, the velocity of P wave in the crust is 6.2 km·s-1, the uppermost mantle velocity is 8.1 km·s-1; (b) The waveform shows in is synthesized from the model showed in figure (a), and the ray parameter is increased from 0.11 s·km-1 to 0.15 s·km-1; (c) shows the variation of the arrival time of the peak and trough with the ray parameter, the dashed line denote the arrival time of peak, the dotted line denote the arrival time of trough, the solid line denote the arrival of the SsPmp phase; (d) shows the variation of the amplitude of the peak, trough and peak-trough difference with the ray parameter, the dashed line denote the amplitude of peak, the dotted line denote the amplitude of trough, the solid line denote the peak-trough difference.
圖3 地震波形出現(xiàn)相位差之后波形的改變(a) 表示一系列單一頻率的余弦信號; (b) 所示波形為(a)中的單一頻率的波形零相移疊加而成;(c) 表示當(a)中的單一頻率的余弦信號發(fā)生了一定周期的相位變化疊加后波形發(fā)生變化的結果.Fig.3 The phase shift will cause the waveform transform(a) shows a list of single frequency waveform, which can form the waveform showed; (b) The phase shift of each frequency increase from -180° to 180° ; (c) The transformation of the waveform was show.
圖4 SsPmp震相與地殼厚度的關系(a)表示合成理論地震圖用到的速度模型:地殼厚度從60 km增厚到85 km,地殼P波速度為6.2 km·s-1,Pn速度為8.1 km·s-1; (b) 根據(jù)圖(a)中的速度模型在射線參數(shù)為0.13 s·km-1的情況下,不同地殼厚度情況下S波從下向上穿過莫霍面正演得到的地震波垂向分量與子波反褶積后的波形; (c) SsPmp在不同地殼厚度下波峰波谷與S波到時差的關系.實線為理論模型計算的結果,點線為SsPmp波谷到時,虛線為波峰到時; (d) SsPmp震相波峰、波谷振幅以及峰谷差與地殼厚度的關系,虛線表示波峰,點線表示波谷,實線為峰谷差.藍線,0.11 s·km-1;黑線,0.13 s·km-1;紅線,0.15 s·km-1.Fig.4 The relationship between the crustal thickness and SsPmp(a) shows the velocity model used to synthesize seismogram. The crustal thickness is from 60 km to 85 km, the velocity of P wave in the crust is 6.2 km·s-1, the uppermost mantle velocity is 8.1 km·s-1; (b) The waveform shows is synthesized from the model showed in figure (a), and the crustal thickness is increased from 60 km to 85 km, the ray parameter is 0.13 s·km-1; (c) shows the change of the arrival time of the peak and trough with the crustal thickness, the dashed line denote the arrival time of peak, the dotted line denote the arrival time of trough, the solid line denote the arrival of the SsPmp phase; (d) shows the variation of the amplitude of the peak, trough and peak-trough difference with the crustal thickness, the dashed line denote the amplitude of peak, the dotted line denote the amplitude of trough, the solid line denote the peak-trough difference. The red line denote the ray parameter is fixed at 0.15 s·km-1, the black line denote the ray parameter is fixed at 0.13 s·km-1, the blue line denote the ray parameter is fixed at 0.11 s·km-1.
圖5 SsPmp震相與Pn波速度的關系(a)表示合成理論地震圖用到的速度模型:Pn波速度從7.5 km·s-1增大到9.0 km·s-1,地殼P波速度為6.2 km·s-1; (b) 根據(jù)圖(a)中的速度模型在射線參數(shù)為0.13 s·km-1,地殼厚度為60 km時,不同Pn波速度情況下S波從下向上穿過莫霍面正演得到的地震波垂向分量與子波反褶積后的波形; (c) SsPmp在不同Pn波速度下波峰波谷與S波到時差的關系.實線為理論模型計算的結果,點線為SsPmp波谷到時,虛線為波峰到時; (d) SsPmp震相波峰、波谷振幅以及峰谷差與Pn波速度的關系,虛線表示波峰,點線表示波谷,實線為峰谷差.藍線,0.11 s·km-1;黑線,0.13 s·km-1;紅線,0.15 s·km-1.Fig.5 The relationship between the P wave velocity at the uppermost mantle and SsPmp(a) shows the velocity model used to synthesize seismogram. The crustal thickness is from 60 km, the velocity of P wave in the crust is 6.2 km·s-1, the uppermost mantle velocity is increased from 7.5 km·s-1 to 9.0 km·s-1; (b) The waveform shows is synthesized from the model showed in figure (a), and the uppermost mantle velocity is increased from 7.5 km·s-1 to 9.0 km·s-1, the ray parameter is 0.13 s·km-1; (c) shows the change of the arrival time of the peak and trough with the uppermost mantle velocity, the dashed line denote the arrival time of peak, the dotted line denote the arrival time of trough, the solid line denote the arrival of the SsPmp phase; (d) shows the variation of the amplitude of the peak, trough and peak-trough difference with the upper mantle velocity, the dashed line denote the amplitude of peak, the dotted line denote the amplitude of trough, the solid line denote the peak-trough difference. The red line denote the ray parameter is fixed at 0.15 s·km-1, the black line denote the ray parameter is fixed at 0.13 s·km-1, the blue line denote the ray parameter is fixed at 0.11 s·km-1.
圖6 IASP91模型下的S波走時曲線Fig.6 S wave travel time curve calculate by IASP91 model
圖7 震源深度10 km根據(jù)IASP91模型合成理論地震圖(a) 截取垂向分量與S子波信號反褶積的結果; (b) 徑向分量; (c) 垂向分量.Fig.7 A seismogram synthesized by IASP91 model, and the source depth is 10 km(a) The waveform shown is the result which is deconvolution of the vertical component and S wavelet; (b) The waveform shown is radial component; (c) The waveform shown is vertical component.
圖5b給出了射線參數(shù)為0.13 s·km-1情況下,使用不同Pn波速度時的波形變化.可以看出,Pn波速度的變化不會影響SsPmp與Ss之間的到時差(圖5c),而對波形影響較大(圖5b、圖5d),推測可能是反射導致的相位差對Pn波速度改變比較敏感.當射線參數(shù)為0.11 s·km-1時,下行P波在莫霍面的入射角小于臨界角,沒有發(fā)生全反射,所以,從波形上看,SsPmp幾乎沒有出現(xiàn)波峰,而波谷振幅隨著射線參數(shù)增大而不斷增大.射線參數(shù)為0.13 s·km-1時,Pn波速度從小到大的變化會使下行P波臨界角減小,從而發(fā)生全反射,出現(xiàn)波峰,并且不斷增大;而波谷在經(jīng)過臨界角以后逐漸減小.當射線參數(shù)為0.15 s·km-1時,入射角遠大于臨界角,波形不再有明顯的變化.
本文根據(jù)IASP91模型計算了S波的走時曲線(震源深度10 km)(Crotwell et al., 1999;Winchester and Crotwell, 1999),如圖6所示:S波在15°~30°之間因為受地幔過渡帶的影響出現(xiàn)了S波三岔震相.這一震中距范圍內(nèi)的S波震相識別容易發(fā)生相互混淆,所以應用VDSS方法只能選取震中距大于30°的地震事件.而震中距越大,射線入射角越小,所以太大的震中距會導致SsPmp無法在莫霍面達到全反射,這一最大震中距大約在50°,如圖7所示.
我們利用IASP91模型(Kennett and Engdahl, 1991)合成理論地震圖(參考了Wang(1999)提供的程序),以震源深度10 km為例,如圖7所示.圖7a、7b、7c依次為截取垂向分量與S子波信號反褶積的結果(Yu et al., 2013)、徑向分量和垂向分量.因為P波的振動方向與傳播方向一致,所以垂向分量在理論到時附近發(fā)現(xiàn)一個明顯的波峰,而徑向分量沒有.反褶積之后的結果同樣顯示在理論到時之后出現(xiàn)一個波峰.震中距在50°以外,到時差延遲隨著震中距的變化明顯變快,經(jīng)過分析,由于這時的射線參數(shù)不足以使轉換P波在莫霍面發(fā)生全反射,這是震中距較小的位置發(fā)生全反射后產(chǎn)生Pn波的震相,即SsPnp(圖7中黑線為理論計算震相到時差,55°以外根據(jù)SsPnp路徑計算的到時差).
綜上所述,可以通過對震中距在30°~50°之間的遠震S波波形中Ss和SsPmp震相的識別探測地殼厚度.
接收函數(shù)利用界面產(chǎn)生的Ps轉換波與直達P波進行反褶積計算可以得到界面信息(劉啟元和邵學鐘,1985;吳慶舉等,2007;徐強和趙俊猛,2008).接收函數(shù)對速度界面反應敏感,是探測深部速度界面的有效方法.但是通常莫霍面不是一個簡單的速度躍變(Meissner, 1973),而是緩慢變化的一個具有一定厚度的層,因此,接收函數(shù)中多出現(xiàn)復雜的莫霍面轉換震相(Tian et al., 2011;Xu et al., 2014;Zheng et al., 2006;吳慶舉和曾融生,1998;司少坤等,2012).針對復雜的莫霍面結構,本文做了如下方面的研究,并與接收函數(shù)的結果作了比較.
圖8展示了同時存在速度界面和速度漸變層模型SsPmp震相與簡單速度界面合成地震圖的擬合情況.地殼內(nèi)速度為6.2 km·s-1,Pn波速度為8.2 km·s-1,射線參數(shù)為0.125 s·km-1.存在速度變化的層厚度分別為5 km,10 km,15 km.模型1速度從6.2 km·s-1連續(xù)變化到8.2 km·s-1,模型2在速度漸變層的上面存在一個1 km·s-1的速度突變,模型3在速度漸變層下存在一個1 km·s-1的速度突變.與單一速度躍變模型合成波形的擬合結果表明,所獲得的深度更接近模型速度出現(xiàn)躍變的深度,約等于速度變化量對深度的加權平均,而波形對應的Pn波速度更接近上地幔頂部的Pn波速度.
如圖9所示:地殼速度為6.2 km·s-1,Pn速度為8.2 km·s-1,合成入射S波射線參數(shù)為0.125 s·km-1和入射P波射線參數(shù)為0.06 s·km-1.模型1為50 km深以下有10 km連續(xù)變化的速度漸變層,速度從6.2 km·s-1逐漸增大到8.2 km·s-1,模型2在50~60 km深度之間給定均勻速度7.2 km·s-1.
圖9中每個速度模型的右側給出了理論合成的接收函數(shù)(紅線)和虛擬震源地震測深(藍線)的波形,黑色虛線是利用單層地殼模型進行波形擬合的結果.可以看出,對于接收函數(shù)來說,速度界面緩慢變化會使波形變寬,振幅減小,分辨率被降低,如圖9a所示.在實踐中,當接收函數(shù)中出現(xiàn)兩個到時比較接近的波峰時,很難判斷哪一個指示的是莫霍面,如圖9b會出現(xiàn)兩個Ps轉換波震相.接收函數(shù)得到的界面深度分別為:模型1:56 km;模型2:51 km和60 km.而虛擬震源地震測深在兩種形式的模型下都只出現(xiàn)一個震相,且振幅較大,容易識別,波形擬合的結果顯示,與模型1擬合較好的簡單模型為地殼厚度55 km,波形對應的Pn速度均為8.2 km·s-1.與模型2擬合較好的簡單模型為地殼厚度59 km,波形對應的Pn波速度為8.2 km·s-1.由此可見,接收函數(shù)對莫霍面以外的界面同樣有響應,并且受到莫霍面形態(tài)的影響;而虛擬震源地震測深方法基本不受殼內(nèi)結構和莫霍面形態(tài)的影響,能簡單清楚地識別莫霍面震相.
我們對比了接收函數(shù)和虛擬震源地震測深兩種方法在實際應用中探測的地殼厚度結果.假設地殼厚度大約為40 km左右,SsPmp波(射線參數(shù)0.125~0.14 s·km-1)在莫霍面的反射點分布在距離臺站50~80 km范圍內(nèi),而接收函數(shù)P-S波(射線參數(shù)0.04~0.08 s·km-1)轉換點位于臺站正下方15 km以內(nèi).延安臺(YAAN)周圍地勢平坦,降低了莫霍面橫向變化對兩種方法探測結果的影響.所以我們利用延安臺2007—2009兩年的寬頻帶天然地震數(shù)據(jù),分別用兩種方法探測該地區(qū)地殼厚度,如圖10所示.圖10a展示了篩選得到的82條質(zhì)量較好的接收函數(shù),通過深度-速度比(H-K)掃描方法(地殼P波平均速度6.3 km·s-1)得到該臺站附近地殼厚度為44±1.17 km(速度比為1.74±0.031),圖10a紅線給出Pms、PpPms以及PsPms+PpSms理論到時.圖10c為篩選得到13條SsPmp震相清晰的地震事件波形,黑線為實際數(shù)據(jù)波形,射線參數(shù)(RP)范圍從0.1292~0.14 s·km-1,反方位角(BAZ)分布在150°~281°,莫霍面反射點的Pn波速度VPn約為8.1 km·s-1(Pei et al., 2007);灰線為理論合成波形(地殼P波平均速度6.3 km·s-1),地殼厚度(H)在43~45 km.兩種方法結果比較接近,證明了虛擬震源地震測深方法的可行性.
綜上所述,可以利用震中距在30°~50°之間的遠震S波轉換的SsPmp震相探測地殼厚度.該震相的到時差及波形主要受到射線參數(shù)、地殼厚度、地殼平均P波速度以及Pn波速度等因素的影響.經(jīng)過分析合成理論地震圖可以得出以下幾點結論:
(1) 地殼厚度的改變只影響SsPmp與Ss震相之間的到時差,與SsPmp的相位差無關,地殼厚度增厚,SsPmp延遲Ss到達的時間越長,SsPmp震相波形不會發(fā)生改變;
(2) Pn波速度的變化只影響SsPmp的相位,與SsPmp和Ss震相之間的到時差無關,Pn波速度增大,SsPmp在莫霍面的臨界角減小,導致SsPmp震相在莫霍面發(fā)生全反射,波形發(fā)生改變,波形從只有一個波谷逐漸出現(xiàn)波峰;
(3) 射線參數(shù)既影響SsPmp與Ss之間的到時差還會影響SsPmp的相位,射線參數(shù)增大,SsPmp延遲Ss到達的時間越短,SsPmp相位在超過臨界角后發(fā)生相移,SsPmp震相的波形隨之改變,波形從只有一個波谷逐漸出現(xiàn)波峰;
(4) 對于復雜的地殼模型,虛擬震源地震測深方法擬合得到的Pn波速度接近真實的Pn波速度,深度與速度梯度最大的深度相近,并且基本不受殼內(nèi)界面的影響.
Ammon C J, Randall G E, Zandt G.1990. On the nonuniqueness of receiver function inversions.JournalofGeophysicalResearch,95(B10): 15303-15318.
Ammon C J.1991. The isolation of receiver effects from teleseismic P waveforms.BulletinoftheSeismologicalSocietyofAmerica,81(6): 2504-2510.
Cawood P A, Hawkesworth C J, Dhuime B.2013. The continental record and the generation of continental crust.GSABulletin,125(1-2): 14-32.
Chen W P, Yu C Q, Tseng T L, et al. 2013. Moho, seismogenesis, and rheology of the lithosphere.Tectonophysics,609: 491-503.
Crotwell H P, Owens T J, Ritsema J.1999. The TauP toolkit: flexible seismic travel-time and ray-path utilities.SeismologicalResearchLetters,70(2): 154-160.
Ding Z F, He Z Q, Sun W G, et al. 1999. 3-D crust and upper
圖8 復雜的速度漸變界面對SsPmp的影響Fig.8 The influence of complex velocity gradient discontinuityon SsPmp
圖9 SsPmp對不同界面的反應與P波接收函數(shù)的比較Fig.9 Different responses to various discontinuities between SsPmp and P wave receiver function
圖10 (a) YAAN臺篩選得到的質(zhì)量較好的接收函數(shù),Pms、PpPms以及PsPms+PpSmS理論到時如紅線所示; (b) H-K掃描所得到的結果,地殼厚度為44±1.17 km(速度比為1.74±0.031); (c) 篩選得到的SsPmp震相清晰的事件,射線后分別給出了射線參數(shù)(RP)、地殼厚度(H)、Pn波速度(VPn)和反方位角的結果(BAZ)Fig.10 Receiver functions of YAAN station are shown in figure (a). The red lines denote the arrival time of Pms, PpPms and PsPms+PpSmS. (b) The H-K scan result shows that the crustal thickness is about 44±1.17 km (VP/VS is 1.74±0.031). The ray parameter, crustal thickness, velocity of upper most mantle and back azimuth are followed the waveform of SsPmp we select in figure (c).
mantle velocity structure in eastern Tibetan plateau and its surrounding areas.ChineseJournalofGeophysics(in Chinese), 42(2): 197-205. Gao R, Chen C, Lu Z W, et al. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling.Tectonophysics,606: 160-170.
Gao R, Xiao X C, Kao H, et al. 2002. Summary of deep seismic probing of the lithospheric structure across the West Kunlun-Tarim-Tianshan.GeologicalBulletinofChina(in Chinese), 21(1): 11-18.
Ge C, Zheng Y, Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton.ChineseJournalofGeophysics(in Chinese), 54(10): 2538-2548. Guan Y, Kao H, Gao R, et al. 2001. Broadband seismic observational experiments from Tarim Basin to Kunlun Mountains.ActaGeoscientiaSinica(in Chinese),22(6): 559-562.
Guo Z, Tang Y C, Chen J, et al. 2012. A study on crustal and upper mantle structures in east part of North China Craton using receiver functions.ChineseJournalofGeophysics(in Chinese), 55(11): 3591-3600, doi: 10.6038/j.issn.0001-5733.2012.11.008.
Herrmann R B, Wang C Y.1985. A comparison of synthetic seismograms.BulletinoftheSeismologicalSocietyofAmerica,75(1): 41-56. Jia S X, Zhang X K. 2005. Crustal structure and comparison of different tectonic blocks in North China.ChineseJournalofGeophysics(in Chinese), 48(3): 611-620.
Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification.GeophysicalJournalInternational,105(2): 429-465.
Li Q S, Gao R, Wu F T, et al. 2013. Seismic structure in the southeastern China using teleseismic receiver functions.Tectonophysics,606: 24-35.
Li Y H, Tian X B, Wu Q J, et al. 2006. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH-III teleseismic waveforms: Geological and geophysical implications.ChineseJournalofGeophysics(in Chinese), 49(4): 1037-1044.Li Y K, Gao R, Mi S X, et al. 2014. The characteristics of crustal velocity structure for Liupan Mountain-Ordos Basin in the Northeastern Margin of Qinghai-Xizang(Tibet) Plateau.GeologicalReview(in Chinese), 60(5): 1147-1157.
Li Z W, Xu Y, Huang R Q, et al. 2011. Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications for 2008 Wenchuan earthquake.ScienceChina:EarthScience(in Chinese), 41(3): 283-290.
Liu Q Y, Shao X Z.1985. Study on the dynamic characteristics of PS converted waves.ChineseJournalofGeophysics(ActaGeophysicaSinica) (in Chinese), 28(3): 291-302.
Lu Z W, Gao R, Li Q S, et al. 2006. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau(1958—2004).ChineseJournalofGeophysics(in Chinese), 49(3): 753-770. Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in Capital region.ChineseJournalofGeophysics(in Chinese), 51(4): 1135-1145.
Meissner R.1973. The ‘Moho’ as a transition zone.GeophysicalSurveys,1(2): 195-216.
Pei S P, Zhao J M, Sun Y S, et al. 2007. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography.JournalofGeophysicalResearch,112(B5): B05312.
Shi D N, Shen Y, Zhao W J, et al. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau.EarthandPlanetaryScienceLetters,288(1-2): 329-334.
Si S K, Tian X B, Zhang H S, et al. 2012. Prevalent thickening and local thinning of the mantle transition zone beneath the Baikal rift zone and its dynamic implications.ScienceChina:EarthSciences(in Chinese),42(11): 1647-1659.
Si X, Teng J W, Ma X Y, et al. 2014. Detection of crust and mantle structures and distinguish of the anomaly body with artificial source deep seismic profiling.ProgressinGeophysics(in Chinese), 29(2): 560-572, doi: 10.6038/pg20140212.
Sinha A K.1987. Tectonic zonation of the Central Himalaya and the crustal evolution of collision and compressional belts.Tectonophysics,134(1-3): 59-74.Sun C Q, Lei J S, Li C, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications.ChineseJournalofGeophysics(in Chinese), 56(12): 4095-4105, doi: 10.6038/cjg20131214.
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau.Science,294(5547): 1671-1677.
Teng J W, Deng Y F, Badal J, et al. 2014. Moho depth, seismicity and seismogenic structure in China mainland.Tectonophysics,627: 108-121.
Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles.Tectonophysics,609: 202-216.
Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis.PhysicsoftheEarthandPlanetaryInteriors,184(3-4): 186-193.
Tseng T L, Chen W P, Nowack R L, et al. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles.GeophysicalResearchLetters,36(24): L24304.
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green′s functions.BulletinoftheSeismologicalSocietyofAmerica,89(3): 733-741.
Wei Z G, Chen L.2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton: constraints from crustal thickness andVP/VSratio.ChineseJournalofGeophysics(in Chinese), 55(11): 3601-3614, doi: 10.6038/j.issn.0001-5733.2012.11.009.
Winchester J, Crotwell P. 1999. WebWEED and TauP: Java and Seismology.SeismologicalResearchLetters,70(1): 80-84.
Wu Q J, Li Y H, Zhang R Q, et al. 2007. Receiver function estimated by multi-channel deconvolution.ChineseJournalofGeophysics(in Chinese), 50(3): 791-796.
Wu Q J, Zeng R S.1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform.ChineseJournalofGeophysics(ActaGeophysicaSinica)(in Chinese), 41(5): 669-679.
Xu Q, Zhao J M.2008. A review of the receiver function method.ProgressinGeophysics(in Chinese), 23(6): 1709-1716.
Xu Q, Zhao J M, Cui Z X, et al. 2010. Moho offset beneath the central Bangong-Nujiang suture of Tibetan Plateau.ChineseScienceBulletin,55(7): 607-613.
Xu S B, Mi N, Xu M J, et al. 2014. Crustal structures of the Weihe graben and its surroundings from receiver functions.ScienceChina:EarthSciences,57(2): 372-378.
Xu T, Wu Z B, Zhang Z J, et al. 2014. Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet.Tectonophysics,627: 98-107.
Xu T, Zhang Z J, Tian X B, et al. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China.ActaPetrologicaSinica(in Chinese),30(4): 918-930.
Ye Z, Li Q S, Gao R, et al. 2013. Seismic receiver functions revealing crust and upper mantle structure beneath the continental margin of southeastern China.ChineseJournalofGeophysics(in Chinese), 56(9): 2947-2958, doi: 10.6038/cjg20130909.
Yu C Q, Chen W P, van der Hilst R D. 2013. Removing source-side scattering for virtual deep seismic sounding(VDSS).GeophysicalJournalInternational,195(3): 1932-1941.Yu C Q, Chen W P, Ning J Y, et al. 2012. Thick crust beneath the Ordos plateau: Implications for instability of the North China craton.EarthandPlanetaryScienceLetters,357-358: 366-375. Zeng R S, Sun W G, Mao T E, et al. 1995. The depth of Moho in the mainland of China.ActaSeismologicaSinica,8(3): 399-404. Zhang R Q, Wu Q J, Sun L, et al. 2014a. Crustal and lithospheric structure of Northeast China from S-wave receiver functions.EarthandPlanetaryScienceLetters,401: 196-205. Zhang X Y, Zhang Z J, Xu T, et al. 2012. Phase shift approximation for the post-critical seismic wave.JournalofGeophysicsandEngineering,9(5): 482-493.
Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation.Tectonophysics,606: 140-159. Zhang Z J, Deng Y F, Teng J W, et al. 2011a. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings.JournalofAsianEarthSciences,40(4): 977-989.
Zhang Z J, Yang L Q, Teng J W, et al. 2011b. An overview of the earth crust under China.Earth-ScienceReviews,104(1-3): 143-166.
Zhang Z J, Wang Y H, Houseman G A, et al. 2014b. The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust.EarthandPlanetaryScienceLetters,408: 370-377.
Zhao J R, Li S L, Zhang X K, et al. 2005. Three dimensional Moho geometry at northeast edge of Qinghai-Tibet Plateau.ChineseJournalofGeophysics(in Chinese), 48(1): 78-85.
Zheng T Y, Chen L, Zhao L, et al. 2006. Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust.PhysicsoftheEarthandPlanetaryInteriors,159(1-2): 43-58.
附中文參考文獻
白志明, 王椿鏞. 2006. 下?lián)P子地殼P波速度結構: 符離集—奉賢地震測深剖面再解釋. 科學通報, 51(21): 2534-2541.
丁志峰, 何正勤, 孫為國等.1999. 青藏高原東部及其邊緣地區(qū)的地殼上地幔三維速度結構.地球物理學報, 42(2): 197-205.
高銳, 肖序常, 高弘等.2002. 西昆侖—塔里木—天山巖石圈深地震探測綜述. 地質(zhì)通報,21(1): 11-18.
葛粲, 鄭勇, 熊熊.2011. 華北地區(qū)地殼厚度與泊松比研究. 地球物理學報,54(10): 2538-2548.
管燁, 高弘, 高銳等.2001. 新疆塔里木—西昆侖寬頻地震觀測實驗研究. 地球學報,22(6): 559-562.
郭震, 唐有彩, 陳永順等.2012. 華北克拉通東部地殼和上地幔結構的接收函數(shù)研究. 地球物理學報,55(11): 3591-3600, doi: 10.6038/j.issn.0001-5733.2012.11.008.
嘉世旭, 張先康.2005. 華北不同構造塊體地殼結構及其對比研究. 地球物理學報,48(3): 611-620.
李永華, 田小波, 吳慶舉等.2006. 青藏高原INDEPTH-III剖面地殼厚度與泊松比: 地質(zhì)與地球物理含義. 地球物理學報,49(4): 1037-1044.
李英康, 高銳, 米勝信等. 2014. 青藏高原東北緣六盤山—鄂爾多斯盆地的地殼速度結構特征. 地質(zhì)評論,60(5): 1147-1157.
李志偉, 胥頤, 黃潤秋等.2011. 龍門山地區(qū)的P波速度結構與汶川地震的深部構造特征. 中國科學: 地球科學,41(3): 283-290.
劉啟元, 邵學鐘.1985. 天然地震PS轉換波動力學特征的初步研究. 地球物理學報,28(3): 291-302.
樓海, 王椿鏞, 呂智勇等. 2008. 2008年汶川Ms8.0級地震的深部構造環(huán)境——遠震P波接收函數(shù)和布格重力異常的聯(lián)合解釋. 中國科學: 地球科學, 38(10): 1207-1220.
盧占武, 高銳, 李秋生等.2006. 中國青藏高原深部地球物理探測與地球動力學研究(1958—2004). 地球物理學報,49(3): 753-770.
羅艷, 崇加軍, 倪四道等.2008. 首都圈地區(qū)莫霍面起伏及沉積層厚度. 地球物理學報,51(4): 1135-1145.
司少坤, 田小波, 張洪雙等.2012. 貝加爾裂谷區(qū)地幔過渡帶大范圍增厚與局部減薄現(xiàn)象及其動力學意義. 中國科學: 地球科學,42(11): 1647-1659.
孫長青, 雷建設, 李聰?shù)?2013. 云南地區(qū)地殼各向異性及其動力學意義. 地球物理學報,56(12): 4095-4105, doi: 10.6038/cjg20131214.
危自根, 陳凌.2012. 東北地區(qū)至華北北緣地殼結構的區(qū)域差異: 地殼厚度與波速比的聯(lián)合約束. 地球物理學報,55(11): 3601-3614, doi: 10.6038/j.issn.0001-5733.2012.11.009.
吳慶舉, 李永華, 張瑞青等.2007. 用多道反褶積方法測定臺站接收函數(shù). 地球物理學報,50(3): 791-796.
吳慶舉, 曾融生.1998. 用寬頻帶遠震接收函數(shù)研究青藏高原的地殼結構. 地球物理學報,41(5): 669-679.
徐強, 趙俊猛.2008. 接收函數(shù)方法的研究綜述. 地球物理學進展,23(6): 1709-1716.
徐樹斌, 米寧, 徐鳴潔等.2013. 利用接收函數(shù)研究渭河地塹及其周邊地殼結構. 中國科學: 地球科學,43(10): 1651-1658.
徐濤, 張忠杰, 田小波等.2014. 長江中下游成礦帶及鄰區(qū)地殼速度結構: 來自利辛—宜興寬角地震資料的約束. 巖石學報,30(4): 918-930.
葉卓, 李秋生, 高銳等.2013. 中國大陸東南緣地震接收函數(shù)與地殼和上地幔結構. 地球物理學報,56(9): 2947-2958, doi: 10.6038/cjg20130909.
趙金仁, 李松林, 張先康等.2005. 青藏高原東北緣莫霍界面的三維空間構造特征. 地球物理學報,48(1): 78-85.
(本文編輯 何燕)
Probing the Moho interface using SsPmp waves
LIU Zhen1,2, TIAN Xiao-Bo1, ZHU Gao-Hua1,2, LIANG Xiao-Feng1, DUAN Yao-Hui1,2, ZHANG Hong-Shuang3, TENG Ji-Wen1
1InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2UniversityofChineseAcademyofSciences,Beijing100049,China3InstituteofGeology,ChineseAcademyofGeologicalSciences,Beijing100037,China
The Moho is one of the most important discontinuities in the earth. Its shape is associated with tectonic deformation and evolution of the crust. In orogenic belts, such as the Tibetan plateau, the crustal thickness is about 60~80 km, however, in extensional regions, it is only 30~40 km even less than the average global value.Detecting the depth of the Moho is helpful to understand tectonic environments. The virtual deep seismic sounding (VDSS), a new method to measure the crustal thickness, can detect the Moho robustly. A systematic study of VDSS, however is absent now. In this paper, we use synthetic theoretical seismograms to analyze the seismic phase SsPmp in VDSS and its application in estimation of crustal thickness.Teleseismic S waves convert into P waves at the ground, and these down-going P waves will be reflected by the Moho, so SsPmp waves can be received after Ss phases. The most suitable epicentral distance for this observation is between 30°~50°, in which the waveforms of VDSS is protected from interfering with other seismic phases and the SsPmp becomes a prominent phase. As the ray parameters increase, the down-going P waves can be fully reflected and the energy of SsPmp will become very strong. We analyze the relationship between the delay time and the phase shift of SsPmp and the ray parameter, uppermost mantle velocity and the thickness of the crust by synthetic seismograms. Our study suggests that the crustal thickness can be measured robustly by waveform fitting with a single model even if the Moho is a complex transition layer.The relation between SsPmp phases and the crustal thickness, ray parameter and uppermost mantle velocity (Pn velocity) was analyzed by synthetic waveforms. Differences of crustal thickness only cause the variation in the delay time of the SsPmp phases relative to Ss phases. Different Pn velocities only result in the phase shift of SsPmp variation. As the Pn velocity become faster, the phase shift becomes larger. With the ray parameter increasing, the delay time between SsPmp and Ss decreases, and the phase shift becomes larger.In general, SsPmp can be used to detect the thickness of the crust. This phase is powerful than the Ps used in receiver function. SsPmp, as a full-reflection phase, is strong enough to neglect these reflections and multiples from shallow crustal structure.
Virtual deep seismic sounding; Full reflection; Crustal thickness; Moho; Pn velocity
10.6038/cjg20151012.
Liu Z, Tian X B, Zhu G H,et al. 2015. Probing the Moho interface using SsPmp waves.ChineseJ.Geophys. (in Chinese),58(10):3571-3582,doi:10.6038/cjg20151012.
國家自然科學基金項目(41274066,41340040,41104034)與深部探測技術與實驗研究專項SinoProbe-02-02(201311155)共同資助.
劉震,男,1985年生,博士研究生,主要從事地球殼幔結構方面的研究. E-mail: liuzhen@mail.iggcas.ac.cn
10.6038/cjg20151012
P315
2014-12-25,2015-09-16收修定稿
劉震, 田小波, 朱高華等. 2015. SsPmp震相地殼探測方法.地球物理學報,58(10):3571-3582,