唐續(xù)龍,馬明生
(中國(guó)恩菲工程技術(shù)有限公司,北京 100038)
?
熔渣粘度模型介紹及其預(yù)報(bào)效果比較
唐續(xù)龍,馬明生
(中國(guó)恩菲工程技術(shù)有限公司,北京 100038)
本文介紹了幾種常用的簡(jiǎn)單黏度模型及其計(jì)算參數(shù)(Riboud 模型,Urbain 模型,Iida 模型和NPL模型),結(jié)合文獻(xiàn)中報(bào)道的黏度數(shù)據(jù),考察了各模型對(duì)不同渣系的預(yù)報(bào)效果。結(jié)果表明:Iida模型只適用于SiO2-CaO-K2O和SiO2-CaO-Na2O等少數(shù)渣系,其計(jì)算出的黏度值相比測(cè)量值具有較大的正偏差。NPL模型對(duì)不含F(xiàn)e的渣系能取得一定的預(yù)報(bào)效果,但都有較大的正偏差。Ribound模型對(duì)含K2O、Na2O的渣系預(yù)報(bào)效果要好于其它模型。Urbain模型對(duì)常規(guī)的SiO2-Al2O3-CaO-MgO四元系及其子體系預(yù)報(bào)效果較好,經(jīng)Alex等人修正后的Urbain模型對(duì)SiO2-Al2O3-CaO-FeO四元系及其子體系的預(yù)報(bào)都取得了很理想的效果。
黏度模型; 黏度; 熔渣
黏度是冶金熔渣的基本物理性質(zhì)之一,與冶金過程關(guān)系密切,它涉及冶金過程的反應(yīng)速度、金屬與熔渣的分離、熔渣脫磷脫硫以及冶金操作的順利與否等多方面的問題。在實(shí)際冶煉過程中,爐渣熔點(diǎn)高,成分復(fù)雜多變,使得測(cè)量出來的黏度數(shù)值并不能滿足實(shí)際需求。長(zhǎng)期以來,眾多黏度模型被開發(fā)出來,在一定的成分和溫度范圍內(nèi)有效地預(yù)報(bào)了冶金熔渣的黏度。這些模型主要可以分為兩類:一種是結(jié)構(gòu)模型,通過研究熔渣結(jié)構(gòu)和黏度的相對(duì)應(yīng)關(guān)系開發(fā)出來,如KTH模型[1]、似化學(xué)模型[2-5]等,此類模型適用范圍較廣,但模型參數(shù)較多,計(jì)算過程復(fù)雜,需借助專業(yè)計(jì)算機(jī)程序或者軟件包進(jìn)行計(jì)算;另一種是經(jīng)驗(yàn)和半經(jīng)驗(yàn)?zāi)P停鏤rbain模型[6,7]、Ribound模型[8]、Iida模型[9,10]等,這些模型基于一定的數(shù)學(xué)算式,通過擬合實(shí)驗(yàn)數(shù)據(jù)獲得模型的參數(shù),對(duì)于擬合范圍內(nèi)的成分取得了較好的預(yù)報(bào)效果。本文介紹了幾種常用的黏度模型及其參數(shù),結(jié)合文獻(xiàn)中報(bào)道的黏度數(shù)據(jù),考察各模型對(duì)不同渣系的預(yù)報(bào)效果。
1.1Riboud模型
Riboud模型[8]是一個(gè)純經(jīng)驗(yàn)?zāi)P?,通過擬合大量的實(shí)驗(yàn)數(shù)據(jù)獲得,應(yīng)用范圍較廣。Riboud模型的黏度表達(dá)式基于Weymann-Frenkel (WF方程)液體動(dòng)力學(xué)理論,根據(jù)式(1)來計(jì)算熔體的黏度:
μ=ATexp(B/T)/10
(1)
式中:μ為熔體的黏度(下同),Pa·s;T為絕對(duì)溫度(下同),K;A為指前因子(下同);B為黏滯活化能(下同),J/mol。
Riboud模型將熔體的氧化物分為五大類,利用其摩爾分?jǐn)?shù)計(jì)算A和B的值:
A=exp(-17.51+1.73XCaO+5.82XCaF2+7.02XNa2O-33.76XAl2O3)
(2)
B=31 140-23 896XCaO-46 356XCaF2
-39 159XNa2O+68 833XAl2O3
(3)
其中五類氧化物的摩爾分?jǐn)?shù)計(jì)算方式為:
(1)XSiO2=XSiO2+XPO2.5+XTiO2+XZrO2;
(2)XCaO=XCaO+XMgO+XFeO1.5+XMnO+XBO1.5
(3)XAl2O3=XAl2O3
(4)XCaF2=XCaF2
(5)XNa2O=XNa2O+XK2O
1.2Urbain模型
Urbain模型也是基于WF方程形式,其黏度-溫度關(guān)系可表示為:
μ=ATexp(1 000B/T)/10
(4)
-lnA=mB/1 000+n
(5)
Urbain通過擬合大量SiO2-MxO二元系的A、B,獲得m和n的值分別為0.29和11.57。Urbain模型將組成熔體的氧化物分為三大類,利用其摩爾分?jǐn)?shù)(三類氧化物歸一化后的摩爾分?jǐn)?shù))計(jì)算B的值,三類氧化物分別表示為:
(1) 酸性氧化物:XG=XSiO2+XP2O5
(2) 堿性氧化物:XM=∑XMxO
(3) 兩性氧化物:XA=XAl2O3+XB2O3
黏滯活化能B通過式(6)、式(7)和式(8)來計(jì)算:
BM=B0+B1XG+B2(XG)2+B3(XG)3
(6)
(7)
(8)
利用式6、7和8計(jì)算不同堿性氧化物的BM,利用式9計(jì)算體系的總活化能B:
(9)
Urbain提供的二元系(SiO2-MxO)和三元系(SiO2-Al2O3-MxO)的參數(shù)如表1和表2所示。
表1 二元體系參數(shù)
表2 三元體系參數(shù)
Alex等人[11]將Urbain模型中的m表示為純氧化物mi的疊加,并將修正后的Urbain模型應(yīng)用于SiO2-Al2O3-CaO-FeO四元系的黏度預(yù)報(bào),取得很好的預(yù)報(bào)效果。修正后的模型參數(shù)如表3所示,修正后的m值表式為:
m=∑miXi
(10)
式中mi為純氧化物的m值,Xi為純氧化物在熔體中的摩爾分?jǐn)?shù)。
表3 Alex修正的Urbain模型參數(shù)
1.3Iida模型
Iida等人[9,10]將熔體的堿度指數(shù)與其結(jié)構(gòu)關(guān)聯(lián)起來,通過式11-式17計(jì)算熔體黏度,模型的相關(guān)參數(shù)如表4所示。
(11)
A=1.745-1.962×10-3T+7.000×10-7T2
(12)
E=11.11-3.65×10-3T
(13)
(14)
(15)
(16)
(17)
表4 Iida模型參數(shù)
(18)
a=1.20×10-5T2-4.355 2×10-2T+41.16
(19)
b= 1.40×10-7T2-3.494 4×10-4T+0.206 2
(20)
c=-8.00×10-6T2+ 2.556 8×10-2T-22.16
(21)
1.4NPL模型
Mills[12]認(rèn)為熔體的光學(xué)堿度跟其結(jié)構(gòu)有所關(guān)聯(lián),可以用于計(jì)算熔體的黏度。在硅鋁酸鹽熔體中,考慮到部分陽離子需參與[AlO4]5--四面體電荷平衡而形成[1/2MxAlO4]4-結(jié)構(gòu),且具有較大陽離子半徑的氧化物擁有優(yōu)先權(quán),需要對(duì)光學(xué)堿度的計(jì)算進(jìn)行修正:
(22)
式中:Xi為第i組元修正后的摩爾分?jǐn)?shù);ni為第i組元的氧數(shù)目;Λi為第i組元的光學(xué)堿度,如表5所示。
NPL模型的黏度計(jì)算式為:
(23)
參數(shù)A和B與溫度T無關(guān),都是修正后的光學(xué)堿度Λ的函數(shù):
(24)
A=-232.69(Λ)2+357.32Λ-144.17
(25)
表5 部分氧化物的光學(xué)堿度
眾多的黏度模型中,準(zhǔn)化學(xué)模型和KTH模型的計(jì)算過于復(fù)雜,且未給出相應(yīng)的模型參數(shù);CSIRO模型和Tanaka模型需借助專業(yè)的計(jì)算機(jī)軟件包計(jì)算三種氧的摩爾分?jǐn)?shù)?;谏鲜鲈?,本文選擇以Riboud模型、Urbain模型、Alex等人修正的Urbain模型、NPL模型和簡(jiǎn)化的Tanaka模型[13]作為比較對(duì)象,比較數(shù)據(jù)來自已報(bào)道的黏度數(shù)據(jù),包括二元系、三元系及多元系。
為了考察預(yù)報(bào)效果,利用式26和27來計(jì)算預(yù)報(bào)誤差:
相對(duì)誤差
(26)
平均誤差為
(27)
各黏度模型對(duì)熔渣黏度的預(yù)報(bào)效果如表6和圖1所示。
由圖1和表6可以看出,Iida模型只對(duì)SiO2-CaO-K2O和SiO2-CaO-Na2O等少數(shù)體系的預(yù)報(bào)誤差低于25%,對(duì)大部分體系的預(yù)報(bào)誤差都在50%以上,個(gè)別體系的預(yù)報(bào)誤差甚至超過1 000%,這說明Iida模型計(jì)算出的黏度值相比測(cè)量值具有較大的正偏差。NPL模型對(duì)SiO2-MnO和SiO2-CaO-MgO體系的預(yù)報(bào)誤差小于25%,大部分體系的預(yù)報(bào)誤差都位于25%~100%之間,對(duì)SiO2-FeO、SiO2-CaO-FeO和SiO2-MgO-FeO少數(shù)體系的預(yù)報(bào)誤差超過100%而呈現(xiàn)明顯的正偏差。Ribound模型對(duì)大部分體系的預(yù)報(bào)效果都較差,但對(duì)含K2O、Na2O的體系預(yù)報(bào)效果要明顯好于其它模型。Urbain模型對(duì)常規(guī)的SiO2-Al2O3-CaO-MgO四元系預(yù)報(bào)效果較好,對(duì)該四元系及其子體系的預(yù)報(bào)誤差均在25%以內(nèi),但對(duì)于其它體系的預(yù)報(bào)效果則很一般,尤其是對(duì)含K2O、Na2O的體系預(yù)報(bào)誤差甚至超過100%。Alex等人對(duì)Urbain模型進(jìn)行適當(dāng)修正后給出了SiO2-Al2O3-CaO-FeO四元系的參數(shù),修正后的Urbain模型對(duì)SiO2-Al2O3-CaO-FeO四元系及其子體系的預(yù)報(bào)效果很理想,在25%以內(nèi),對(duì)SiO2-CaO-FeO三元系的預(yù)報(bào)誤差甚至小于10%。
表6 各黏度模型的預(yù)報(bào)效果
注:1.“空白”表示無法計(jì)算;2.“—”表示誤差超過1 000%;3.處理FetO時(shí)將Fe2O3當(dāng)FeO處理,即1 mol Fe2O3折合成1.5 mol FeO;4.Si-SiO2;Al-Al2O3;Ca-CaO;Mg-MgO;Fe-FeO;Fet-Fe2O3與FeO共存;Mn-MnO;K-K2O;Na-Na2O;Li-Li2O;Sr-SrO;Ba-BaO。
圖1 各黏度模型預(yù)報(bào)效果
本文介紹了常用的黏度模型計(jì)算方法及參數(shù),根據(jù)文獻(xiàn)報(bào)道的黏度數(shù)據(jù)對(duì)各模型的預(yù)報(bào)效果進(jìn)行了比較,計(jì)算結(jié)果表明:
(1) Iida模型和NPL模型的預(yù)報(bào)較測(cè)量值具有較大的正偏差,應(yīng)用范圍較窄,僅限于少量簡(jiǎn)單體系。
(2) Ribound模型對(duì)大部分體系的預(yù)報(bào)效果都較差,但對(duì)含K2O、Na2O的體系預(yù)報(bào)效果要明顯好于其它模型。
(3) Urbain模型對(duì)常規(guī)的SiO2-Al2O3-CaO-MgO及其子體系都能取得較好的預(yù)報(bào)效果,應(yīng)用范圍較廣。
(4) Alex等人修正后的Urbain模型對(duì)SiO2-Al2O3-CaO-FeO四元系及其子體系的預(yù)報(bào)效果都在25%以內(nèi),對(duì)SiO2-CaO-FeO三元系的預(yù)報(bào)誤差甚至小于10%,取得了非常好的效果。
[1] Sichen D,Bygden J,Seetharaman S.Model for estimation of viscosities of complex metallic and ionic melts[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1994,25(4):519-525.
[2] Kondratiev A,Hayes P C,Jak E.Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-′FeO′-MgO-SiO2system[J].Part 1.Description of the model and its application to the MgO,MgO-SiO2,Al2O3-MgO and CaO-MgO sub-systems.ISIJ International,2006,46(3):359-367.
[3] Kondratiev A,Hayes P C,Jak E.Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-′FeO′-MgO-SiO2system[J].Part 3.summary of the model predictions for the Al2O3-CaO-MgO-SiO2system and its sub-systems.ISIJ International,2006,46(3):375-384.
[4] Kondratiev A,Hayes P C,Jak E.Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-′FeO′-MgO-SiO2system[J].Part 2.A review of the experimental data and the model predictions for the Al2O3-CaO-MgO,CaO-MgO-SiO2and Al2O3-MgO-SiO2systems.ISIJ International,2006,46(3):368-374.
[5] Kondratiev A,Hayes P C,Jak E.Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-′FeO′-MgO-SiO2system[J].The experimental data for the ′FeO′-MgO-SiO2,CaO-′FeO′-MgO-SiO2and Al2O3-CaO-′FeO′-MgO-SiO2systems at iron saturation.ISIJ International,2008,48(1):7-16.
[6] Urbain G.Viscosity of liquid silica-alumina-Na and K oxides.Measurements and estimations[J].Revue Internationale des Hautes Temperatures et des Refractaires,1985,22(1):39-45.
[7] Urbain G,Millon F,Cariset S.Viscosities of some silica rich liquids in the system SiO2-B2O3[J].Comptes Rendus Hebdomadaires des Seances de l′Academie de Sciences,Serie C (Sciences Chimiques),1980,290(8):137-140.
[8] Riboud P V,Roux Y,Lucas L D,et al.A experimental study on the binary silicate systems[J].Fachber.Huttenprax.Metallweiterverarbei,1981,19:859-869.
[9] Iida T,Sakai H,Kita Y,et al.Equation for estimating viscosities of industrial mold fluxes[J].High Temperature Materials and Processes,2000,19(3):153-164.
[10] Iida T,Sakai H,Kita Y,et al.An equation for accurate prediction of the viscosities of blast furnace type slags from chemicalcomposion[J].ISIJ International,2000,40(Supplement):S110-114.
[11] Kondratiev A,Jak E.Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-′FeO′-SiO2system[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2001,32(6):1015-1025.
[12] Mills K C.Influence of structure on the physico-chemical properties of slags[J].ISIJ International,1993,33(1):148-155.
[13] Nakamoto M,Miyabayashi Y,Holappa L,et al.A model for estimating viscosities of aluminosilicate melts containing alkali oxides[J].ISIJ International,2007,47(10):1409-1415.
[14] Mills K C,Chapman L,Fox a B,et al.′Round robin′ project on the estimation of slag viscosities[J].Scandinavian Journal of Metallurgy,2001,30(6):396-403.
[15] Yasukouchi T,Nakashima K,Mori K.Viscosity of ternary CaO-SiO2-Mx(F,O)yand CaO-Al2O3-Fe2O3melts[J].Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,1999,85(8):571-577.
[16] Kucharski M,Stubina N M,Toguri J M.Viscosity measurements of molten Fe-O-SiO2,Fe-O-CaO-SiO2,and Fe-O-MgO-SiO2slags[J].Canadian Metallurgical Quarterly,1989,28(1):7-11.
[17] Ji F Z,Sichen D,Seetharaman S.Experimental studies of the viscosities in the CaO-FenO-SiO2slags[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1997,28(5):827-834.
[18] Machin J S,Yee T B.Viscosity Studies of System CaO-MgO-Al2O3-SiO2:IV,60 and 65% SiO2[J].Journal of the American Ceramic Society,1954,37(4):177-186.
[19] Scarfe C M,Cronin D J.Viscosity-temperature relationships of melts at 1 atm in the system diopside-albite[J].American Mineralogist,1986,71(5-6):767-771.
[20] Scarfe C M,Cronin D J,Wenzel J T,et al.Viscosity-temperature relationships at 1 atm in the system diopside-anorthite[J].American Mineralogist,1983,68(11-12):1083-1088.
[21] Sykes D,Dickinson J,James E,et al.Viscosity-temperature relationships at 1 atm in the system nepheline-diopside[J].Geochimica et Cosmochimica Acta,1993,57(6):1291-1295.
[22] Kawahara M,Mizoguchi K,Suginohara Y.The viscosity and the infrared spectra of CaO-SiO2-MnO and MnO-SiO2-Al2O3melts[J].Bulletin of the Kyushu Institute of Technology (Science and Technology),1981(43):53-59.
[23] Segers L,Fontana A,Winand R.Viscosities of melts of silicates of the ternary system CaO-SiO2-MnO[J].Electrochimica Acta,1979,24(2):213-218.
[24] Ji F Z,Sichen D,Seetharaman S.Experimental studies of viscosities in FenO-MgO-SiO2and FenO-MnO-SiO2slags[J].Ironmaking and Steelmaking,1998,25(4):309-316.
[25] Urbain G,Bottinga Y,Richet P.Viscosity of liquid silica,silicates and alumino-silicates[J].Geochimica et Cosmochimica Acta,1982,46(6):1061-1072.
[26] Williams P,Sunderland M,Briggs G.Viscosities of synthetic slags in the system CaO-′FeO′-SiO2-MgO[J].Transactions of the Institution of Mining and Metallurgy,Section C:Mineral Processing and Extractive Metallurgy,1983,92:c105-c109.
[27] Johannsen F,Brunion H.Untersuchungen zur Viskosit?t von Rennschlaken[J].Zeitschr.Erzbergbau und Metallhuttenwesen,1959,12(6):272-279.
[28] Kim J R,Lee Y S,Min D J,et al.Influence of MgO and Al2O3contents on viscosity of blast furnace type slags containing FeO[J].ISIJ International,2004,44(8):1291-1297.
[29] Machin J S,Yee T B.Viscosity studies of system CaO-MgO-Al2O3-SiO2:II,CaO-Al2O3-SiO2[J].Journal of the American Ceramic Society,1948,31(7):200-204.
[30] Machin J S,Yee T B,Hanna D L.Viscosity Studies of System CaO-MgO-Al2O3-SiO2:Ⅲ,35,45,and 50% SiO2[J].Journal of the American Ceramic Society,1952,35(12):322-326.
[31] Bills P M.Viscosities in silicate slag systems[J].Journal of the Iron and Steel Institute,1963,201(2):133-140.
[32] Higgins R,Jones T J B.Viscosity characteristics of rhodesian copper smelting slags[J].Bulletin of the Institution of Mining and Metallurgy,1963,682:825-864.
A description of slag viscosity model and the prediction capability
TANG Xu-long,MA Ming-sheng
The present paper described several commonly used viscosity model and the model parameters (Riboud model,Urbain model,Iida model and the IPL model).Combined with the viscosity data reported in the literatures,the capability of each viscosity model to different slags was assessed.The results showed that:Iida model is only suitable for a small amount of slag systems,such as SiO2-CaO-K2O and SiO2-CaO-Na2O,with large positive deviations compared with measured values.NPL model can predict a good result for slags without iron oxide,but has a larger positive deviation.Riboud model has a better forecast results for slag containing K2O,Na2O than other models.Urbain model has a better forcast results for conventional SiO2-Al2O3-CaO-MgO quaternary system and its sub-systems than other models.After being modified by Alex,very satisfactory forecast results can be obtained for the SiO2-Al2O3-CaO-FeO quaternary system and its sub-systems.
viscosity model; viscosity; slag
唐續(xù)龍(1984—),男,博士研究生,工程師,從事有色冶金設(shè)計(jì)、咨詢類工作。
2014-03-19
TF02
A
1672-6103(2015)01-0018-06