孟躍宇 ,吳 華 ,程嗣怡 ,邵 軍
(1.空軍工程大學(xué)航空航天工程學(xué)院,西安 710038;2.解放軍94865部隊,杭州 310021)
對雷達(dá)導(dǎo)引頭干擾效能多級模糊綜合評估*
孟躍宇1,吳 華1,程嗣怡1,邵 軍2
(1.空軍工程大學(xué)航空航天工程學(xué)院,西安 710038;2.解放軍94865部隊,杭州 310021)
為定量評估對雷達(dá)導(dǎo)引頭干擾效能,以導(dǎo)引頭受干擾后關(guān)鍵性能指標(biāo)變化為依據(jù),建立干擾效能評估的多級模糊綜合評判模型。根據(jù)導(dǎo)引頭工作原理和功能特性選取適用于導(dǎo)引頭的效能評估指標(biāo)體系,運(yùn)用模糊評判方法確定隸屬函數(shù),采用層次分析法確定各指標(biāo)權(quán)重。并以一種壓制性干擾為例,給出評估模型的應(yīng)用過程。實(shí)例計算結(jié)果驗(yàn)證了評估模型驗(yàn)證的簡單性和有效性。
模糊綜合評判,導(dǎo)引頭,干擾效能,層次分析法
對導(dǎo)彈進(jìn)行有效的電子干擾是空戰(zhàn)中載機(jī)應(yīng)對主動雷達(dá)制導(dǎo)導(dǎo)彈威脅,提高戰(zhàn)場生存能力的關(guān)鍵。干擾效能評估就是對實(shí)施干擾后所產(chǎn)生的效果定性或定量的評價,如何客觀、準(zhǔn)確評價電子干擾對雷達(dá)導(dǎo)引頭的干擾效果,是導(dǎo)引頭設(shè)計研制,干擾技術(shù)、策略選取和改進(jìn)中的重要環(huán)節(jié)[1]。
現(xiàn)有成果對雷達(dá)干擾抗干擾效能評估的研究較多,主要從效能評估準(zhǔn)則和指標(biāo)選?。?-4],效能評估方法[5-6]的角度進(jìn)行研究,更多針對通用性雷達(dá),對被干擾雷達(dá)的目標(biāo)探測、發(fā)現(xiàn)能力被破壞、削弱的程度進(jìn)行度量。但對于更加注重目標(biāo)跟蹤能力的導(dǎo)引頭雷達(dá),上述成果中采用的評估指標(biāo)體系并不能很好地反映導(dǎo)引頭在干擾下的工作性能,不太適用于對導(dǎo)引頭干擾效能評估。
由于影響干擾效能的因素繁多,各因素起到的作用以及因素之間的關(guān)系具有不確定性和模糊性。傳統(tǒng)的單因素評判已不能滿足需要,所以本文選用模糊綜合評判的方法,對各因素建立相應(yīng)的模糊評估模型,通過模糊綜合評判,就可以得到對最終干擾效果的模糊評估結(jié)果。
在對導(dǎo)引頭干擾效能評估中,涉及多個因素或多個評判指標(biāo),所以考慮采用多級模糊綜合評判模型。多級模糊綜合評判按照模糊數(shù)學(xué)的方法對因素集合中的元素按某些屬性分成幾個下屬層次,然后按層逐級進(jìn)行單級模糊綜合評判,最后得到多級模糊評判結(jié)果[7]。
通常,單級模糊綜合評判包含以下步驟:
①建立因素集
因素集U就是影響評判結(jié)果的各個因素組成的集合,表示為:U={u1,u2,…,un}。元素 ui是各影響因素。在干擾效能評估中因素集就是評估指標(biāo)體系。
②確定評價集
評價集由所有的評判結(jié)果組成,表示為:V={v1,v2,…,vn}。其中,vi是待選擇的評判結(jié)果。模糊綜合評判就是要從評價集中選出最佳評判結(jié)果。
③建立權(quán)重集
各元素ui在評判中具有不同的重要性,從而分配不同的權(quán)重 wi,得權(quán)重集為:W={w1,w2,…,wn}。一般權(quán)重值滿足歸一性條件。實(shí)際中確定權(quán)重的方法有統(tǒng)計法、專家打分法、層次分析法等。
④計算模糊矩陣
根據(jù)因素對干擾效果產(chǎn)生影響的原理,依據(jù)其數(shù)學(xué)表達(dá)形式,并結(jié)合實(shí)際情況,選取適當(dāng)?shù)碾`屬函數(shù),建立因素集到評價集的模糊映射f,確定第i種因素ui對第j等級vj的隸屬度rij,同時保證0≤rij≤1,即:rij=f(ui,vj)。
從而組成模糊矩陣R
⑤模糊綜合算法根據(jù)上述結(jié)果,可得模糊綜合評判集:B=W?R。其中,?為模糊算子,常用的算子有極大極小型、乘積取大型、加權(quán)平均型等。其中極大極小算子最常用,但是該算子會導(dǎo)致某些因素的信息損失。
⑥評判指標(biāo)處理
確定最終評判結(jié)果,通常有如下幾種方法[8]:
a.最大隸屬度法:取與最大的評判指標(biāo)相對應(yīng)的評價集元素為評判的結(jié)果;b.加權(quán)平均法:如果評判對象是非線性量,仍然使用加權(quán)平均法,必須用適當(dāng)?shù)臄?shù)值來表示;c.模糊分布法:直接把評判指標(biāo)作為評判結(jié)果,或?qū)⒃u判指標(biāo)歸一化,用歸一化的評判指標(biāo)作為評判結(jié)果。
將復(fù)雜因素分解為較簡單的下一級諸因素,單因素評價便可由下一級諸因素的綜合評判獲得,可視具體情況將模糊綜合評估擴(kuò)展到多級,然后從下往上逐級進(jìn)行單級模糊綜合評判,最終得到多級模糊綜合評判的結(jié)果[8]。圖1為對導(dǎo)引頭干擾效能評估的二級模糊評判指標(biāo)體系。
圖1 對導(dǎo)引頭干擾效能評估二級指標(biāo)體系
干擾效果是指干擾作用對被干擾對象產(chǎn)生的破壞、損傷效應(yīng),而不是干擾設(shè)備本身的性能。因此,應(yīng)該以干擾作用前后導(dǎo)引頭與干擾效應(yīng)相關(guān)的關(guān)鍵性能的變化為依據(jù)評估干擾效果。這是在評估干擾效果時遵循的基本原則。
基于導(dǎo)引頭的在末制導(dǎo)跟蹤目標(biāo)階段的工作特性,本文將干擾效能分為對截獲過程和跟蹤過程干擾效能兩個二級指標(biāo)u1和u2,而截獲性能包括自衛(wèi)距離u11、有效截獲時間u12、干擾作用因子u13;跟蹤性能包括有效跟蹤概率u21、距離跟蹤誤差u22、速度跟蹤誤差u23、角度跟蹤誤差u24等一級指標(biāo)。
自衛(wèi)距離是干擾對導(dǎo)引頭作用有效的最小干擾距離,計算公式如下[9]
式中Pj為干擾機(jī)功率,Gj干擾機(jī)天線增益,Br為雷達(dá)接收機(jī)帶寬,Pt為雷達(dá)發(fā)射機(jī)功率,Gt為雷達(dá)天線增益,σ為目標(biāo)雷達(dá)散射截面積,Bj為干擾接收機(jī)帶寬,γj為干擾與雷達(dá)信號的極化失配系數(shù),Kj為產(chǎn)生有效干擾所需的最小壓制系數(shù),對導(dǎo)引頭干擾有效一般要求Kj≥10。用導(dǎo)引頭最大探測距離Rmax的損失狀況來衡量干擾效能,定義最大探測距離損失度Er,作為自衛(wèi)距離的歸一化指標(biāo)。
顯然Er介于0~1之間,取值越大,干擾效果越好。
干擾作用因子Fp主要從功率層面來考慮干擾效果,其定義為:雷達(dá)受到干擾后和未受到干擾時其輸出端干信比的比值,即
這里取 Fp≥2Kj時對應(yīng)評價結(jié)果為“很好”,F(xiàn)p≤Kj/2時對應(yīng)評價結(jié)果為“很差”,對其進(jìn)行歸一化處理。
上式表明歸一化因子Ep越大,干擾后的干信比越大,則干擾效果越好。
有效截獲時間是指從導(dǎo)引頭開始工作到真實(shí)目標(biāo)被雷達(dá)系統(tǒng)發(fā)現(xiàn)的時間間隔Tc。比較干擾前后截獲時間的變化,可定義截獲時間的歸一化指標(biāo)Et為
式中Tc'是被干擾后導(dǎo)引頭截獲時間。同樣Et在0~1之間變化,取值越大,干擾效果越好。
在某種典型戰(zhàn)情對抗下進(jìn)行N次仿真,如果導(dǎo)引頭只有M次建立了有效跟蹤,則得到干擾下導(dǎo)引頭的有效跟蹤概率為
此時P越小,干擾效果越好。為使該指標(biāo)與上述評估方式統(tǒng)一,定義有效跟蹤概率的歸一化指標(biāo)為
導(dǎo)引頭作為制導(dǎo)雷達(dá),其跟蹤測量誤差是十分重要的參數(shù)指標(biāo)。對于壓制性干擾而言,由熱噪聲引起的某一跟蹤誤差σj與信噪比具有如下關(guān)系[10]:
式中,μ為干擾信號損失因子。
以誤差增大倍數(shù)來衡量干擾效果,得到跟蹤誤差的歸一化評估指標(biāo)為
其中σ為無干擾條件下的跟蹤誤差。
為了對干擾效果作出更加明確的評估,本文把干擾效果劃分為5個等級。評判集為V={很好,好,一般,差,很差};同時對應(yīng)每一級評價等級設(shè)對應(yīng)分?jǐn)?shù)集為 C={100,80,60,40,20},其中,[100,80]為“很好”,[80,60] 為“好”,[60,40] 為“一般”,[40,20]為“差”,[20,0]為“很差”,具體劃分結(jié)果如表1所示:
表1 分?jǐn)?shù)集劃分
為避免定性概念不易把握,采用層次分析法,對兩部分一級評判指標(biāo)分別設(shè)置權(quán)重,綜合各專家評估意見,對 u1={u11、u12、u13}建立判斷矩陣如下
求得最大特征值λmax=3.018 3,對應(yīng)歸一化后的權(quán)重向量 W1={0.625 0,0.136 5,0.238 5},一致性指標(biāo) C.I=(λmax-n)/(n-1)=0.009 1,查表得一致性指標(biāo)R.I=0.52,一致性比例C.R=C.I/R.I=0.017 6<0.1符合一致性要求,權(quán)重分配合理。
同理,對 u2={u21、u22、u23、u24}建立判斷矩陣如下
求得最大特征值λmax=4.185 5,對應(yīng)歸一化后的權(quán)重向量 W2={0.223 0,0.092 0,0.263 9,0.421 2},一致性指標(biāo) C.I=(λmax-n)/(n-1)=0.0618,查表得R.I=0.89,一致性比例C.R=C.I/R.I=0.0695<0.1,符合一致性要求。對兩個二級指標(biāo)權(quán)重綜合多位專家的評分意見,賦予u={u1,u2}的權(quán)重為W={0.4,0.6}。
隸屬度的確定一般依靠隸屬度函數(shù)。然而在很多的情況下,隸屬度函數(shù)的確定帶有較為濃厚的主觀色彩,隸屬函數(shù)的確定,一般有二元對比排序法、逐級估量法、模糊統(tǒng)計試驗(yàn)法和與模糊分布擬合法。為研究規(guī)則的完備性、相容性,本文的隸屬函數(shù)選擇為正態(tài)分布型[11],即
μj、σj為第j個評價等級對應(yīng)的分布參數(shù)。同時對兩端處的隸屬函數(shù)用常數(shù)1作出修正,得到最終的隸屬函數(shù)如圖2所示。
圖2 隸屬函數(shù)圖
根據(jù)多次試驗(yàn)值確定μj、σj取值,得到參數(shù)設(shè)置如表2所示。
表 2 參數(shù)[μj,σj]取值
以噪聲干擾為例,假設(shè)一種主動雷達(dá)導(dǎo)引頭雷達(dá)天線發(fā)射功率50 kW,增益30 dB,中頻帶寬4MHz,工作比d=0.01,對RCS為5m2的目標(biāo)作用距離為20 km;機(jī)載自衛(wèi)干擾機(jī)功率5W,天線增益10 dB,噪聲干擾帶寬40MHz,極化失配系數(shù)3 dB。根據(jù)上述計算得自衛(wèi)距離1 100m,在彈目距離為10 km時,噪聲進(jìn)入接收端的干信比約為9.8 dB。
根據(jù)上述模糊綜合評估方法中隸屬函數(shù)、評價指標(biāo)得到對雷達(dá)導(dǎo)引頭干擾效能評估的一級模糊矩陣為:
其中R1是對截獲過程干擾效能模糊矩陣,R2是對跟蹤過程干擾效能模糊矩陣。
為考慮多種因素影響的綜合體現(xiàn),對所有因素以權(quán)重大小均衡兼顧,本文采用加權(quán)平均型算子M(·,+)進(jìn)行評估計算。由綜合評判模型 Bi=Wi?Ri,得出一級評判結(jié)果為:
對評判結(jié)果的處理采用兩種方式:
①按照最大隸屬度方法,由一級評判結(jié)果可知,對導(dǎo)引頭截獲性能干擾效果“很好”,對跟蹤性能干擾效果為“好”;由二級評判結(jié)果可知,對導(dǎo)引頭整體干擾效能為“好”;②按照加權(quán)平均法,能更直觀反映評判結(jié)果。根據(jù)上述分?jǐn)?shù)集C設(shè)定的定量化分值,由D=B CT得一級評判結(jié)果D1=84.09對應(yīng)評價為“很好”,D2=61.26對應(yīng)評價為“好”;二級評判結(jié)果D=70.39對應(yīng)評價為“好”。兩種結(jié)果處理方法得出的結(jié)果相一致。
本文提出了適用于對導(dǎo)引頭干擾效能評估的模糊綜合評估體系,有效處理了干擾效能評估指標(biāo)與評估等級之間的不確定性關(guān)系,為干擾策略選取和干擾技術(shù)改進(jìn)提供了依據(jù)。最后以壓制性干擾為例計算得到評估結(jié)果,證實(shí)了模型簡單有效。對于其他類型的對導(dǎo)引頭干擾技術(shù),該模型同樣適用。
另外,干擾效能評估涉及因素多,在評價指標(biāo)體系和隸屬函數(shù)等方面仍可在此基礎(chǔ)上作進(jìn)一步改進(jìn),從而給出更加科學(xué)合理的評估結(jié)果。
[1]高衛(wèi).電子干擾效果一般評估準(zhǔn)則探討[J].電子信息對抗技術(shù),2006,21(6):39-42.
[2]王凱,王建路,鞠照群,等.基于效用準(zhǔn)則的雷達(dá)干擾效果評估研究[J].現(xiàn)代雷達(dá),2012,34(11):22-25.
[3]徐躍,丁亞非,閆中原.基于雷達(dá)探測距離的干擾效能評估[J].雷達(dá)科學(xué)與技術(shù),2011,9(2):104-108.
[4]林連雷,姜守達(dá).一種末制導(dǎo)雷達(dá)有源干擾效果評估方法[J].哈爾工業(yè)大學(xué)學(xué)報,2011,43(7):116-112.
[5]盧盈齊,王穎龍,祝長英.基于神經(jīng)網(wǎng)絡(luò)的雷達(dá)抗干擾效果評估[J].火力與指揮控制,2006,31(1):77-80.
[6]宋道軍,張安.空襲突防作戰(zhàn)中雷達(dá)對抗作戰(zhàn)效能評估研究[J].彈箭與制導(dǎo)學(xué)報,2005,25(4):991-993.
[7]畢文豪,張安,王安麗.基于模糊綜合評價的光電對抗裝備效能評估[J].火力與指揮控制,2013,38(4):60-63.
[8]王國玉,汪連棟.雷達(dá)電子戰(zhàn)系統(tǒng)數(shù)學(xué)仿真與評估[M].北京:國防工業(yè)出版社,2002.
[9]王星.航空電子對抗原理[M].北京:國防工業(yè)出版社,2008.
[10]潘超.雷達(dá)抗干擾效能評估準(zhǔn)則與方法研究[D].成都:電子科技大學(xué),2003.
[11]周穎,王雪松,王國玉.基于戰(zhàn)區(qū)彈道導(dǎo)彈突防的雷達(dá)干擾效果模糊評估[J].系統(tǒng)工程與電子技術(shù),2003,25(7):807-809.
M ulti-level Fuzzy Synthetic Evaluation of Jamm ing Effectivenesson Radar Seeker
MENGYue-yu1,WUHua1,CHENGSi-yi1,SHAO Jun2
(1.School of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China;2.Unit 94865 of PLA,Hangzhou 310021,China)
In order to give evaluation of Jamming effectiveness on radar seeker,according to pivotal index changing on jamming,multi-level fuzzy synthetic evaluation model is established.Evaluation index system that fit radar seeker is selected based on seeker’s operation characteristic,membership functions and weight of index set are selected using fuzzy evaluation integrated with AHPmethod.The model's application process is demonstrated through an example of a blanket jamming.The results show that this jamming effect evaluationmethod is feasible and practical.
fuzzy synthetic evaluation,jammingeffectiveness,radarseeker,analytic hierarchy process
TN97
A
1002-0640(2015)11-0058-04
2014-10-05
2014-11-15
陜西省自然科學(xué)基金資助項(xiàng)目(2012JQ 8019)
孟躍宇(1990- ),男,陜西長安人,碩士研究生。研究方向:電子對抗理論與技術(shù)。