張乃鍵,趙 超(綜述),趙亞萍※(審校)
(1.蚌埠醫(yī)學院研究生部,安徽 蚌埠 233030; 2.解放軍第八二醫(yī)院檢驗科,江蘇 淮安 223001)
?
肥胖相關微RNA的研究進展
張乃鍵1,2△,趙超2(綜述),趙亞萍2※(審校)
(1.蚌埠醫(yī)學院研究生部,安徽 蚌埠 233030; 2.解放軍第八二醫(yī)院檢驗科,江蘇 淮安 223001)
摘要:肥胖與高血壓、高脂血癥、心腦血管疾病、2型糖尿病以及癌癥的發(fā)生、發(fā)展密切相關,嚴重威脅著人類的健康和生命,已成為全世界的公共衛(wèi)生問題。肥胖的確切發(fā)病機制目前尚不清楚。最近越來越多的研究證實,微RNA (miRNA)參與代謝性疾病的多種生物過程。該文總結(jié)分析了脂肪細胞分化過程中miRNA表達譜的變化,miRNA在脂肪細胞分化以及肥胖相關胰島素抵抗中所起的作用及其機制。
關鍵詞:肥胖;脂肪細胞;胰島素抵抗;細胞外miRNA
肥胖是世界上最常見的代謝性疾病之一,由于其與2型糖尿病、心血管疾病和某些癌癥有關而被列為公共健康的一大殺手。人類對肥胖的研究歷時已久,一般認為肥胖是由遺傳和環(huán)境雙重因素決定的,但目前為止,肥胖的確切發(fā)病機制尚不清楚。作為2002年Science雜志十大科技突破第一名的微RNA(microRNA,miRNA),通過與靶基因3′-非翻譯區(qū)(3′-UTR)互補配對結(jié)合,起到降解或抑制靶信使RNA翻譯的作用,進而調(diào)節(jié)生物體生長、發(fā)育、疾病發(fā)生過程相關基因的表達,在生物的發(fā)育時序調(diào)控和疾病的發(fā)生中起非常重要的作用[1]。近年來有報道證實,miRNA是脂肪分化和胰島素敏感性的重要調(diào)控因子,在肥胖機體中表達異常[2]。因此,miRNA在成脂分化、肥胖中的作用越來越引人注目?,F(xiàn)就肥胖相關miRNA的研究進展予以綜述。
1與脂肪分化相關的miRNA
已有研究證實,在動物和人類脂肪細胞分化過程中存在大量miRNA表達的變化,miRNA通過促進和抑制脂肪細胞分化,參與肥胖的發(fā)生過程[3-4]。
1.1脂肪細胞分化過程中miRNA表達的變化2004年,Esau等[5]應用miRNA 芯片技術研究了人前體脂肪細胞和成熟脂肪細胞的miRNA表達譜,從檢測到的254種miRNA中篩選出22種差異表達的miRNA。2006年,Kajimoto等[6]構(gòu)建了3T3-L1前體脂肪細胞及誘導分化后第1日和第9日,3個階段的miRNA文庫,篩選出80種差異表達miRNA,結(jié)合文獻報道的22種miRNA,采用Northern blot技術進行分析驗證,發(fā)現(xiàn)miR-183、miR-224、miR-422b在成熟脂肪細胞中表達明顯上調(diào),而miR-181a、miR-182表達則顯著降低;另外,13種上調(diào)的miRNA(表1)在誘導分化后的第1日即出現(xiàn)表達改變,提示可能僅與3T3-L1誘導分化過程中的接觸抑制有關。Xie等[7]采用miRNA芯片檢測3T3-L1前體脂肪細胞成脂分化過程中miRNA的表達變化,發(fā)現(xiàn)8個miRNA表達顯著上調(diào),4個表達下調(diào)(表1);然后,他們采用反轉(zhuǎn)錄-聚合酶鏈反應技術檢測小鼠體內(nèi)前體脂肪細胞和成熟脂肪細胞上述12個miRNA的表達情況,變化趨勢與體外實驗完全一致;另外,他們還發(fā)現(xiàn)miR-422b、miR-148a、miR-107、miR-103、miR-30c、miR-30a-5p、miR-143這些在成脂過程中表達上調(diào)的miRNA,在肥胖狀態(tài)下的脂肪組織中表現(xiàn)為下調(diào),而在成脂過程中表達下調(diào)的miR-222、miR-221也出現(xiàn)了相反的結(jié)果,分析可能與脂肪組織的局部慢性炎癥環(huán)境有關。2010年,Qin等[8]采用miRNA基因芯片檢測發(fā)現(xiàn)在3T3-L1前體脂肪細胞和成熟脂肪細胞中差異表達的26個miRNA中17個呈現(xiàn)上調(diào)結(jié)果,9個下調(diào)。綜合分析上述結(jié)果顯示,在Kajimoto等[6]篩選的21種3T3-L1前體脂肪細胞和Esau等[5]所檢測出的22種人前體脂肪細胞誘導分化過程中差異表達的miRNA,只有miR-143在兩種細胞系中同時出現(xiàn)變化(表1),提示與脂肪細胞分化相關的miRNA可能存在細胞系和種間差異。Xie等[7]和Qin等[8]雖同樣采用miRNA基因芯片測定3T3-L1前脂肪細胞成脂分化過程miRNA的表達變化情況,但結(jié)果亦不完全一致,分析除了與不同時期的miRNA芯片容量不同有關外,細胞培養(yǎng)過程中培養(yǎng)條件的差異也可能會對miRNA的表達產(chǎn)生影響。盡管如此,miRNA芯片技術為細胞中檢測多種miRNA 提供了理想的手段,在脂肪細胞分化相關的miRNA研究中發(fā)揮重要作用,為進一步探討在脂肪分化過程中具有重要調(diào)控作用的miRNA提供了線索。
表1 前體脂肪細胞誘導分化過程中差異表達的miRNA
1.2miRNA參與調(diào)控脂肪細胞分化過程在脂肪細胞分化過程中,多種miRNA在分化的早期或后期通過調(diào)控其靶基因發(fā)揮促進分化或抑制分化的作用。Wang等[9]研究發(fā)現(xiàn),在脂肪細胞誘導分化的第4小時和第1日,miR-17-92出現(xiàn)2個表達高峰,通過作用于Rb2/p130,在脂肪細胞分化早期的克隆增殖過程中發(fā)揮重要的調(diào)控作用。Kajimoto等[6]研究表明,在前體脂肪細胞中過表達miR-143后可以顯著促進三酰甘油的蓄積,抑制miR-143表達后,脂肪細胞分化受到抑制。其機制可能與影響成脂分化關鍵基因過氧化物酶體增殖物激活受體γ和aP24的表達有關[10]。細胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)5作為miR-143的直接靶標在miR-143調(diào)控脂肪細胞分化過程中可能也發(fā)揮了重要作用[5]。此外,miR-375、miR-200c/141、miR-200b/a/429、miR-642a-3p、miR-30a、miR-30d、miR-30c等,亦被證實具有促進脂肪細胞分化的作用(表2)。另有研究表明,let-7、miR-27、miR-130等miRNA具有負向調(diào)控成脂分化的作用,過表達let-7通過與靶標HMGA2基因作用延長細胞周期,抑制克隆增殖和終末分化;同時,尚可使PPARγ等基因表達下降,抑制3T3-L1前體脂肪細胞的分化[11]。miR-27a、miR-27b亦可通過作用于靶標基因PPARγ抑制脂肪細胞分化過程中的脂質(zhì)積聚[12-13]。文獻報道,具有抑制脂肪細胞分化作用的miRNA還有miR-130、miR-138、miR-369-5p等(表2)。
2miRNA與胰島素抵抗
肥胖可降低胰島素主要靶器官(肝臟)對胰島素的敏感性,胰島素抵抗(insulin resistance, IR)是多種肥胖相關并發(fā)癥的共同病理基礎。目前,已發(fā)現(xiàn)一些miRNAs參與肥胖相關IR發(fā)生的分子機制。
2.1miRNA與脂肪組織IR脂肪細胞是胰島素作用的主要效應細胞,脂肪組織在肥胖相關IR的發(fā)病機制中發(fā)揮重要作用。Ling等[27]采用基因芯片技術檢測發(fā)現(xiàn),在發(fā)生IR的3T3-L1 脂肪細胞模型中有50個miRNA表達上調(diào),29個表達下調(diào),其中miR-320的表達水平是正常脂肪細胞的50倍之多;
表2 脂肪分化過程中功能相關的miRNA
3T3-L1:小鼠胚胎成纖維細胞(前脂肪);hMSC:人骨髓間充質(zhì)干細胞;ST2:小鼠間充質(zhì)干細胞;C3H10T1/2:鼠胚胎間充質(zhì)干細胞;hASCs:人體脂肪組織來源干細胞;OP9:小鼠骨髓來源的基質(zhì)細胞系;“-”:文獻中未顯示
采用反義核苷酸技術抑制miR-320后,發(fā)現(xiàn)P85表達水平、蛋白激酶B(protein kinase B,AKT)絲氨酸磷酸化水平及葡萄糖轉(zhuǎn)運4(glucose transporter type 4,GLUT4)蛋白水平均提高,使胰島素誘導的葡萄糖攝取增強,表明miR-320表達沉默可顯著提高IR脂肪細胞對胰島素的敏感性,其機制可能是通過抑制脂肪細胞中胰島素磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)-AKT信號通路起作用的。Trajkovski等[28]研究發(fā)現(xiàn),ob/ob和DIO肥胖小鼠體內(nèi)miR-103/107表達上調(diào),并證實胰島素受體重要的調(diào)控元件陷窩蛋白1是miR-103/107的直接靶基因;在脂肪細胞中沉默miR-103/107后,可誘導陷窩蛋白1的表達,促進胰島素受體的穩(wěn)定,進而激活胰島素信號通路,使脂肪細胞體積變小,促進胰島素誘導下葡萄糖的攝取。另外,miR-143和miR-29家族均可能通過影響AKT激活參與肥胖狀態(tài)下脂肪細胞胰島素敏感性的調(diào)節(jié)[7,29]。
2.2miRNA與肝臟IRSekine等[30]研究表明,條件性剔除新生小鼠肝臟中miRNA剪切酶Dicer,可導致肝臟特異的miRNA,miR-148a、miR-194、miR-192和miR-122的表達水平下調(diào),小鼠肝糖原儲存會受損,出現(xiàn)嚴重空腹高糖血癥,提示這些miRNA與肝臟糖代謝有關。miR-122是肝臟內(nèi)表達最豐富的miRNA,Esau等[31]發(fā)現(xiàn),小鼠肝臟細胞中的miR-122表達抑制后,脂肪酸氧化能力顯著增強,肝內(nèi)脂肪酸和膽固醇的合成明顯減少,血漿中膽固醇水平顯著降低;miR-122抑制還可活化DIO小鼠肝臟中腺苷酸活化蛋白激酶,改善肝臟的脂肪變,提示miR-122可能參與了肥胖狀態(tài)下肝臟IR的發(fā)生。已證實miR-33a、miR-33b通過與固醇調(diào)節(jié)元件結(jié)合蛋白相互作用調(diào)節(jié)膽固醇的穩(wěn)態(tài)[32]。Davalos等[33]報道,在肝細胞中,miR-33a/b首先會抑制胰島素受體底物2的表達,隨后抑制胰島素信號通路下游蛋白AKT、ERK等的活化;沉默miR-33a/b的表達,可提高肝臟脂肪酸的氧化作用及胰島素敏感性。此外,也有研究顯示,miR-126通過作用于其靶點胰島素受體底物1,降低胰島素受體底物1蛋白的表達,引起肝細胞線粒體功能障礙,進而誘導肝臟IR的發(fā)生[34]。
2.3miRNA與骨骼肌IRHe等[29]發(fā)現(xiàn),糖尿病GK大鼠骨骼肌中miR-29a/b/c表達上調(diào),miR-24和miR-126表達下調(diào)。Huang等[35]也發(fā)現(xiàn),miR-24在GK大鼠骨骼肌中是顯著下調(diào)的,并證實p38絲裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)是miR-24的直接靶標,而在GK大鼠骨骼肌中,p38 MAPK呈高表達,提示miR-24可能通過影響p38MAPK表達參與調(diào)控骨骼肌胰島素敏感性。綜合分析文獻可以發(fā)現(xiàn),miRNAs調(diào)控肥胖相關IR的機制非常復雜,不僅存在組織特異性,亦存在單個miRNAs在不同組織發(fā)揮作用;另外,多個miRNAs可以同時作用于一條信號通路中的某個分子或多個節(jié)點的分子。
3細胞外miRNA與肥胖
研究顯示,在血漿、血清、尿液、唾液中也存在miRNA,這些細胞外miRNA被包裹于外核體、脂類、蛋白復合體或微囊泡,可以免受核糖核酸酶的降解,從而具有高度的穩(wěn)定性[36]。細胞外miRNA由正常細胞、異常增生的組織細胞以及壞死凋亡的細胞產(chǎn)生,釋放到體液后被識別、吸收及利用,參與細胞與細胞間的信息交流[37]。研究表明,細胞外miRNA的表達水平與疾病和有害的環(huán)境密切相關,可能成為疾病診斷的標志物[38]。迄今發(fā)現(xiàn)的脂肪細胞來源的細胞外miRNA已逾140種,大部分是脂肪細胞特異的,在脂肪細胞供體中大量表達[39]。Muller等[40]研究發(fā)現(xiàn),在SD大鼠脂肪細胞分化期間,脂肪細胞供體中l(wèi)et-7b、miR-103、miR-146b和miR-148a表達上調(diào),并在細胞來源的外來體中檢測到上調(diào)一致的miRNA; miR-221是已報道過的在脂肪細胞分化期間表達下調(diào)的miRNA, 然而在脂肪細胞分泌的外來體中卻沒有發(fā)現(xiàn)miR-221 的異常表達。提示,外來體中含有的miRNA可能具有特異調(diào)節(jié)作用。另外,Heneghan等[41]發(fā)現(xiàn),肥胖患者血清中miR-17-5p和miR-132水平和脂肪組織表達量均顯著低于正常對照者。Zampetaki等[42]檢測到性別、年齡相當?shù)?型糖尿病患者和健康對照者血漿樣本中的差異表達miRNA共13個, 其中miR-24、miR-21、miR-20b、miR-15a、miR-126、miR-191、 miR-197、miR-223、miR-320、miR-486、miR-150、miR-29b 在糖尿病患者血漿中表達下調(diào),而miR-28-3P表達上調(diào);并選擇差異表達最顯著的miR-15a、miR-28-3p、miR-126、miR-223、miR-320作為監(jiān)測指標,對19例血糖正常的受試者進行了為期10年的隨訪研究,發(fā)現(xiàn)這些miRNA對預測2型糖尿病的發(fā)生和最后的診斷均具有重要價值。雖然,對于細胞外miRNA與肥胖以及相關疾病關系的研究尚處于起步階段,但已有的研究結(jié)果足以提示,細胞外miRNA有可能成為肥胖及其相關疾病診斷的新的標志物。
4小結(jié)
miRNA通過上調(diào)和下調(diào)基因的表達,形成復雜的調(diào)控網(wǎng)絡,參與脂肪細胞的分化過程,并在肥胖及其相關疾病中發(fā)揮重要作用。然而,miRNA作為診斷和治療靶標應用于臨床還有諸多問題需要解決。例如,不同檢測方法之間的結(jié)果比對;操作過程的規(guī)范化;影響因素控制;作為治療靶標在體內(nèi)如何操縱特定靶向組織,避免脫靶風險等。盡管如此,隨著miRNA 研究技術的快速發(fā)展,其應用前景必將更為廣闊。
參考文獻
[1]Pillai RS,Bhattacharyya SN,Filipowicz W.Repression of protein synthesis by miRNAs:How many mechanisms?[J].Trends Cell Biol,2007,17(3):118-126.
[2]Martinelli R,Nardelli C,Pilone V,etal.miR-519d overexpression is associated with human obesity[J].Obesity (Silver Spring),2010,18(11):2170-2176.
[3]Alvarez-Garcia I,Miska EA.MicroRNA functions in animal development and human disease[J].Development,2005,132(21):4653-4662.
[4]Xu P,Vernooy SY,Guo M,etal.The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism[J].Curr Biol,2003,13(9):790-795.
[5]Esau C,Kang X,Peralta E,etal.MicroRNA-143 regulates adipocyte differentiation[J].J Biol Chem,2004,279(50):52361-
52365.
[6]Kajimoto K,Naraba H,Iwai N.MicroRNA and 3T3-L1 pre-adipocyte differentiation[J].RNA,2006,12(9):1626-1632.
[7]Xie H,Lim B,Lodish HF.MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J].Diabetes,2009,58(5):1050-1057.
[8]Qin L,Chen Y,Niu Y,etal.A deep investigation into the adipogenesis mechanism:profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway[J].BMC Genomics,2010,11:320
[9]Wang Q,Li YC,Wang J,etal.miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J].Proc Natl Acad Sci U S A,2008,105(8):2889-2894.
[10]Takanabe R,Ono K,Abe Y,etal.Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J].Biochem Biophys Res Commun,2008,376(4):728-732.
[11]Sun T,Fu M,Bookout AL,etal.MicroRNA let-7 regulates 3T3-L1 adipogenesis[J].Mol Endocrinol,2009,23(6):925-931.
[12]Kim SY,Kim AY,Lee HW,etal.miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expres-sion[J].Biochem Biophys Res Commun,2010,392(3):323-328.
[13]Karbiener M,Fischer C,Nowitsch S,etal.microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma[J].Biochem Biophys Res Commun,2009,390(2):247-251.
[14]Kim YJ,Hwang SJ,Bae YC,etal.MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue[J]. Stem Cells,2009,27(12):3093-3102.
[15]Kim YJ,Hwang SH,Cho HH,etal.MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues[J].J Cell Physiol,2012,227(1):183-193.
[16]Sun F,Wang J,Pan Q,etal.Characterization of function and regulation of miR-24-1 and miR-31[J]. Biochem Biophys Res Commun,2009,380(3):660-665.
[17]Ahn J,Lee H,Jung CH,etal.MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade[J]. EMBO Mol Med,2013,5(10):1602-1612.
[18]Zaragosi LE,Wdziekonski B,Brigand KL,etal.Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis[J].Genome Biol,2011,12(7):R64.
[19]Karbiener M,Neuhold C,Opriessnig P,etal.MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2[J].RNA Biol,2011,8(5):850-860.
[20]Ling HY,Wen GB,Feng SD,etal.MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J].Clin Exp Pharmacol Physiol,2011,38(4):239-246.
[21]Kennell JA,Gerin I,MacDougald OA,etal.The microRNA miR-8 is a conserved negative regulator of Wnt signaling[J].Proc Natl Acad Sci U S A,2008,105(40):15417-15422.
[22]Lin Q,Gao Z,Alarcon RM,etal.A role of miR-27 in the regulation of adipogenesis[J].FEBS J,2009,276(8):2348-2358.
[23]Bork S,Horn P,Castoldi M,etal.Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371[J].J Cell Physiol,2011,226(9):2226-2234.
[24]Lee EK,Lee MJ,Abdelmohsen K,etal.miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression[J].Mol Cell Biol,2011,31(4):626-638.
[25]Yang Z,Bian C,Zhou H,etal.MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1[J].Stem Cells Dev,2011,20(2):259-267.
[26]Tang YF,Zhang Y,Li XY,etal.Expression of miR-31,miR-125b-5p,and miR-326 in the adipogenic differentiation process of adipose-derived stem cells[J].OMICS,2009,13(4):331-336.
[27]Ling HY,Ou HS,Feng SD,etal.CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes[J].Clin Exp Pharmacol Physiol,2009,36(9):32-39.
[28]Trajkovski M,Hausser J,Soutschek J,etal.MicroRNAs 103 and 107 regulate insulin sensitivity[J].Nature,2011,474(7353):649-653.
[29]He A,Zhu L,Gupta N,etal.Overexpression of micro ribonucleic acid 29,highly up-regulated in diabetic rats,leads to insulin resistance in 3T3-L1 adipocytes[J].Mol Endocrinol,2007,21(11):2785-2794.
[30]Sekine S,Ogawa R,Ito R,etal.Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis[J].Gastroenterology,2009,136(7):2304-2315.
[31]Esau C,Davis S,Murray SF,etal.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metab,2006,3(2):87-98.
[32]Najafi-Shoushtari SH,Kristo F,Li Y,etal.MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J].Science,2010,328(5985):1566-1569.
[33]Davalos A,Goedeke L,Smibert P,etal.miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J].Proc Natl Acad Sci U S A,2011,108(22):9232-9237.
[34]Ryu HS,Park SY,Ma D,etal.The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes[J]. PLoS One,2011,6(3):e17343.
[35]Huang B,Qin W,Zhao B,etal.MicroRNA expression profiling in diabetic GK rat model[J].Acta Biochim Biophys Sin (Shanghai),2009,41(6):472-477.
[36]Mitchell PS,Parkin R,Kroh EM,etal.Circulating microRNAs as stable blood-based markers for cancer detection[J].Proc Natl Acad Sci U S A,2008,105(30):10513-10518.
[37]Muralidharan-Chari V,Clancy JW,Sedgwick A,etal.Microvesicles:mediators of extracellular communication during cancer progression[J].J Cell Sci,2010,123(Pt 10):1603-1611.
[38]Gahan PB.Circulating nucleic acids in plasma and serum:roles in diagnosis and prognosis in diabetes and cancer[J].Infect Disord Drug Targets,2008,8(2):100-108.
[39]Ogawa R,Tanaka C,Sato M,etal.Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation[J].Biochem Biophys Res Commun,2010,398(4):723-729.
[40]Muller G,Schneider M,Biemer-Daub G,etal.Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid syn-thesis[J].Cell Signal,2011,23(7):1207-1223.
[41]Heneghan HM,Miller N,Kerin MJ.Role of microRNAs in obesity and the metabolic syndrome[J].Obes Rev,2010,11(5):354-361.
[42]Zampetaki A,Kiechl S,Drozdov I,etal.Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J].Circ Res,2010,107(6):810-817.
Research Progresses on Obesity-related miRNAZHANGNai-jian1,2,ZHAOChao2,ZHAOYa-ping2. (1.GraduateFaculty,BengBuMedicalCollege,Bengbu233030,China; 2.DepartmentofClinicalLaboratory,No.82HospitalofChinesePeople'sLiberationArmy,Huaian223001,China)
Abstract:Obesity,a public health problem worldwide,is closely related to hypertension, hyperlipidemia,cardiovascular disease,type 2 diabetes and certain types of cacinoma and is a serious threat to human health and life safety.However,the pathogenesis of obesity is unclear Recently,emerging studies suggest that microRNAs (miRNA) involve in many kinds of biological processes of metabolic disease.Here is to make a review of the changes of miRNA expression profiles during adipogenesis,mechanism of miRNAs and their important role in adipogenesis and obesity-related insulin resistance.
Key words:Obesity; Adipocyte; Insulin resistance; Extracellular miRNA
收稿日期:2014-07-08修回日期:2014-10-08編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.09.012
中圖分類號:R318.19
文獻標識碼:A
文章編號:1006-2084(2015)09-1567-05