• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    欠驅(qū)動(dòng)水下航行器編隊(duì)協(xié)同控制

    2015-03-03 08:15:15肖瑞武孫洪飛

    肖瑞武,孫洪飛

    (廈門(mén)大學(xué)信息科學(xué)與技術(shù)學(xué)院,福建 廈門(mén) 361005)

    ?

    欠驅(qū)動(dòng)水下航行器編隊(duì)協(xié)同控制

    肖瑞武,孫洪飛

    (廈門(mén)大學(xué)信息科學(xué)與技術(shù)學(xué)院,福建 廈門(mén) 361005)

    [摘要]針對(duì)復(fù)雜海況中欠驅(qū)動(dòng)無(wú)人水下航行器(UUV)的水平面上編隊(duì)問(wèn)題,結(jié)合路徑跟蹤控制和一致性算法構(gòu)建編隊(duì)運(yùn)動(dòng)控制策略.將編隊(duì)任務(wù)分為兩步:1)對(duì)于每個(gè)UUV個(gè)體設(shè)計(jì)路徑跟蹤控制器,完成對(duì)各自期望路徑的跟蹤;2)對(duì)于多個(gè)UUV之間設(shè)計(jì)一致性協(xié)同算法,完成UUV編隊(duì)的協(xié)同運(yùn)動(dòng);編隊(duì)控制器設(shè)計(jì)考慮了外界海流干擾及UUV模型參數(shù)不確定性等因素.針對(duì)海流干擾設(shè)計(jì)干擾觀測(cè)器,利用自適應(yīng)技術(shù)對(duì)參數(shù)不確定性進(jìn)行在線估計(jì),最后通過(guò)仿真驗(yàn)證了所設(shè)計(jì)編隊(duì)控制策略的有效性.

    [關(guān)鍵詞]無(wú)人水下航行器;路徑跟蹤;干擾觀測(cè)器;一致性算法

    0引言

    欠驅(qū)動(dòng)無(wú)人水下航行器(Under-actuated Underwater Vehicle,UUV)的誕生給人類(lèi)對(duì)海洋的探索和資源開(kāi)發(fā)帶來(lái)了新的工具.由于大范圍復(fù)雜的水下作業(yè),需要多個(gè)UUV協(xié)同作業(yè),因此急需有效的編隊(duì)控制策略,來(lái)完成整個(gè)UUV編隊(duì)的控制,合理地分配各UUV的工作任務(wù).近年來(lái),編隊(duì)控制問(wèn)題成為眾多學(xué)者研究的熱點(diǎn)[1].文獻(xiàn)[2]研究了欠驅(qū)動(dòng)水下航行器的領(lǐng)航者-跟隨者編隊(duì)控制問(wèn)題,采用反步法設(shè)計(jì)了編隊(duì)控制律.文獻(xiàn)[3]提出了分布式框架的虛擬結(jié)構(gòu)法編隊(duì)控制策略,研究了多智能體編隊(duì)運(yùn)動(dòng)在固定拓?fù)浜颓袚Q拓?fù)鋬煞N情況下的協(xié)同一致性.但是傳統(tǒng)的編隊(duì)控制方法只要求UUV間的相對(duì)位置或者距離達(dá)到期望值,對(duì)單個(gè)UUV路徑?jīng)]有限制,無(wú)法克服水聲通信中斷導(dǎo)致的混亂狀態(tài),致使UUV發(fā)生碰撞.

    為了防止上述問(wèn)題的出現(xiàn),需要對(duì)各UUV 的運(yùn)動(dòng)路徑加以限制.當(dāng)水聲通信中斷時(shí),各UUV 仍可沿預(yù)定的路徑運(yùn)動(dòng),因此編隊(duì)協(xié)同路徑跟蹤具有重要的研究意義.文獻(xiàn)[4]研究單個(gè)UUV的路徑跟蹤問(wèn)題,基于Serret-Frenet坐標(biāo)系建立 UUV 路徑跟蹤誤差模型,利用反步法設(shè)計(jì)控制器,完成預(yù)期的控制目標(biāo).文獻(xiàn)[5]不僅完成了對(duì)路徑跟蹤控制器的設(shè)計(jì),還通過(guò)路徑參數(shù)設(shè)計(jì)一致性算法實(shí)現(xiàn)各UUV的協(xié)同運(yùn)動(dòng).但是上述研究未同時(shí)考慮海流干擾和參數(shù)不確定性的影響.有學(xué)者將智能算法與控制理論結(jié)合應(yīng)用于水下航行器編隊(duì)控制的研究,從而提高了控制器的魯棒性.文獻(xiàn)[6]考慮了參數(shù)不確定性和海流干擾對(duì)UUV編隊(duì)控制的影響,采用神經(jīng)網(wǎng)絡(luò)自適應(yīng)動(dòng)態(tài)面方法對(duì)其進(jìn)行在線逼近.但是神經(jīng)網(wǎng)絡(luò)控制存在計(jì)算上的復(fù)雜性,在權(quán)值的選擇上需要通過(guò)反復(fù)試驗(yàn)進(jìn)行優(yōu)化.本文綜合考慮欠驅(qū)動(dòng)、參數(shù)不確定性以及外界海流干擾等因素影響下的UUV編隊(duì)問(wèn)題,提出了基于虛擬結(jié)構(gòu)法、路徑跟蹤控制和一致性算法的編隊(duì)控制策略.

    1預(yù)備知識(shí)與問(wèn)題描述

    1.1 水下航行器的數(shù)學(xué)模型

    研究水平面上運(yùn)動(dòng)的n艘UUV組成的編隊(duì)運(yùn)動(dòng)系統(tǒng),用i=1,2,3,…,n對(duì)編隊(duì)成員進(jìn)行編號(hào).基于文獻(xiàn)[7],對(duì)第i艘欠驅(qū)動(dòng)UUV考慮海流干擾和參數(shù)不確定性的因素建立如下運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)模型:

    1.2 基于虛擬結(jié)構(gòu)法的編隊(duì)控制策略

    其中,ROF為坐標(biāo)系CO相對(duì)坐標(biāo)系CF的旋轉(zhuǎn)矩陣.

    1.3 UUV路徑跟蹤

    (1)

    對(duì)式(1)兩邊求導(dǎo)得到跟蹤誤差方程:

    (2)

    式(2)中,Upi和ψei分別決定了自由參考點(diǎn)的運(yùn)動(dòng)速率和運(yùn)動(dòng)方向,視為路徑跟蹤的導(dǎo)引律.由此,將路徑跟蹤問(wèn)題轉(zhuǎn)化為跟蹤誤差的鎮(zhèn)定問(wèn)題.

    1.4 問(wèn)題描述

    本文的主要控制目標(biāo)是設(shè)計(jì)編隊(duì)控制策略,完成某個(gè)水平面上滿(mǎn)足通信拓?fù)錈o(wú)向連通的多UUV編隊(duì)按照事先指定的隊(duì)形運(yùn)動(dòng).由虛擬結(jié)構(gòu)法,將編隊(duì)的運(yùn)動(dòng)問(wèn)題轉(zhuǎn)化為多個(gè)UUV個(gè)體的協(xié)同路徑跟蹤問(wèn)題.為了達(dá)到該目標(biāo),分兩部分來(lái)完成編隊(duì)控制器的設(shè)計(jì).

    2內(nèi)環(huán)回路設(shè)計(jì)

    2.1 運(yùn)動(dòng)學(xué)控制設(shè)計(jì)

    選擇航向角誤差ψei為中間控制量,設(shè)計(jì)導(dǎo)引律Upi和ψei為

    (3)

    2.2 動(dòng)力學(xué)控制設(shè)計(jì)

    定義前進(jìn)速度跟蹤誤差為:uei=ui-udi;定義航向角速度跟蹤誤差為:rei=ri-rdi.

    得到控制器為:

    (4)

    其中,上標(biāo)“^”表示對(duì)不確定參數(shù)的估計(jì)值.

    2.3 自適應(yīng)更新律設(shè)計(jì)

    (5)

    在式(4)所示控制器作用下,得到

    (6)

    2.4 干擾觀測(cè)器設(shè)計(jì)

    狀態(tài)觀測(cè)器設(shè)計(jì)為:

    (7)

    3外環(huán)回路設(shè)計(jì)

    4穩(wěn)定性分析

    定理1對(duì)于n艘UUV編隊(duì)協(xié)同控制問(wèn)題,假設(shè)通信拓?fù)錆M(mǎn)足無(wú)向連通,設(shè)計(jì)式(4)所示控制器τui和τri、式(5)所示的參數(shù)不確定性自適應(yīng)更新律和式(7)干擾觀測(cè)器,可實(shí)現(xiàn)UUV對(duì)各自期望路徑的漸近跟蹤.前進(jìn)速度跟蹤期望值udi,且能夠保證橫移速度有界,UUV之間完成編隊(duì)協(xié)同,實(shí)現(xiàn)對(duì)期望隊(duì)形的形成與保持.

    證明1)編隊(duì)穩(wěn)定性分析:綜上所述,得到如下級(jí)聯(lián)系統(tǒng):

    由Lyapunov漸近穩(wěn)定性定理可知,第一個(gè)子系統(tǒng)ε1在平衡點(diǎn)上全局漸近穩(wěn)定.據(jù)2.4節(jié)所述,第二個(gè)子系統(tǒng)Σ2在平衡點(diǎn)上全局漸近穩(wěn)定.根據(jù)引理1可知,整個(gè)級(jí)聯(lián)系統(tǒng)局部漸近穩(wěn)定.

    2)關(guān)于橫移速度有界性的證明在此不詳細(xì)推導(dǎo),可參考文獻(xiàn)[12].結(jié)合第3節(jié)可知,UUV路徑參數(shù)趨于一致,而實(shí)現(xiàn)了編隊(duì)的協(xié)同控制.

    5數(shù)值仿真

    為了驗(yàn)證編隊(duì)控制策略的有效性,對(duì)由7艘UUV組成的編隊(duì)進(jìn)行仿真實(shí)驗(yàn).UUV模型的相關(guān)參數(shù)如下:m1i=215 kg,m2i=265kg,m3i=80 kg;Xui=70kg,Yvi=100 kg,Nri=50kgm2/s.為了方便對(duì)編隊(duì)仿真結(jié)果的比較分析,令虛擬結(jié)構(gòu)中心運(yùn)動(dòng)的期望路徑為:xd0(s)=s,yd0(s)=10 sin 0.1s.

    在+20%參數(shù)攝動(dòng)和外界干擾共同影響下的編隊(duì)路徑跟蹤仿真如圖3所示.考慮外界海流干擾的影響為:wcxi=0.05 sin 0.1t,wcyi=0.05 cos 0.1t,受海流干擾以及模型參數(shù)不確定性的影響,所設(shè)計(jì)的控制器仍然能夠較好地完成路徑跟蹤任務(wù),只是需要較長(zhǎng)的收斂時(shí)間.設(shè)計(jì)干擾觀測(cè)器和參數(shù)自適應(yīng)更新律進(jìn)行補(bǔ)償后,編隊(duì)運(yùn)動(dòng)曲線如圖4-圖5所示,跟蹤誤差較快收斂到零,驗(yàn)證了所設(shè)計(jì)的編隊(duì)控制策略的有效性.

    6結(jié)論

    針對(duì)建模參數(shù)不確定以及外界海流干擾影響下的欠驅(qū)動(dòng)UUV編隊(duì)協(xié)同控制問(wèn)題,基于路徑跟蹤、虛擬結(jié)構(gòu)法的編隊(duì)控制策略,利用反步法和李雅普諾夫函數(shù)法設(shè)計(jì)了前進(jìn)推力控制器和轉(zhuǎn)向力矩控制器.對(duì)外界干擾設(shè)計(jì)干擾觀測(cè)器,對(duì)參數(shù)不確定性設(shè)計(jì)自適應(yīng)更新律進(jìn)行在線估計(jì),并分別證明了各自動(dòng)態(tài)誤差的穩(wěn)定性.設(shè)計(jì)編隊(duì)協(xié)同一致性算法實(shí)現(xiàn)編隊(duì)的協(xié)同控制.仿真結(jié)果表明所設(shè)計(jì)的編隊(duì)控制策略能夠快速完成UUV隊(duì)形的形成和保持.但是論文并未考慮UUV個(gè)體之間的通信時(shí)延和編隊(duì)通信拓?fù)涞那袚Q等因素對(duì)編隊(duì)協(xié)同控制的影響,這將是今后進(jìn)一步的研究方向.

    [參考文獻(xiàn)]

    [1]王祥科,李迅,鄭志強(qiáng).多智能體系統(tǒng)編隊(duì)控制相關(guān)問(wèn)題研究綜述[J].控制與決策,2013,28(11):1601-1613.

    [2]DINGL,GUOG.Formationcontrolforshipfleetbasedonbackstepping[J].ControlandDecision,2012,27(2):299-303.

    [3]RENW.Decentralizationofvirtualstructuresinformationcontrolofmultiplevehiclesystemsviaconsensusstrategies[J].EuropeanJournalofControl,2008,14(2):93-103.

    [4]LAPIERREL,SOETANTOD,PASCOALA.Nonlinearpathfollowingwithapplicationstothecontrolofautonomousunderwatervehicles[C/OL].ProceedingsoftheIEEEConferenceonDecisionandControl,Maui,Hawaii,USA,2003:1256-1261.[2014-10-12].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1272781&newsearch=true&queryText=Nonlinear%20path%20following%20with%20applications%20to%20the%20control%20of%20autonomous%20underwater%20vehicles&fname=&mname=&lname=&title=&volume=&issue=&spage=.

    [5]WANGY,YANW,HUANGY.Pathparametersconsensusbasedformationcontrolformultiplemobilerobots[C/OL].Proceedingsofthe2010IEEEInternationalConferenceonMechatronicsandAutomation,Xi’an,China,August4-7,2010:1598-1602.[2015-04-15].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5588935&queryText=Path%20parameters%20consensus%20based%20formation%20control%20for%20multiple%20mobile%20robots&newsearch=true.

    [6]WANGH,WANGD,PENGZ.Robustadaptivedynamicsurfacecontrolforsynchronizedpathfollowingofmultipleunderactuatedautonomousunderwatervehicles[C/OL].Proceedingsofthe33rdIEEEConferenceonChineseControlConference,Nanjing,China.2014:1949-1954.[2014-12-10].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6896928&newsearch=true&queryText=Robust%20adaptive%20dynamic%20surface%20control%20for%20synchronized%20path%20following%20of%20multiple%20underactuated%20autonomous%20underwater%20vehicles.

    [7]FOSSENTI.Nonlinearmodelingandcontrolofunderwatervehicles[D].Trondheim:NorwegianInstituteofTechnology,1991.

    [8]ISIDORIA.NonlinearcontrolsystemsⅡ[M].London:Springer,1999.

    [9]畢鳳陽(yáng).欠驅(qū)動(dòng)自主水下航行器的非線性魯棒控制策略研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2010.

    [10]BIFY,WEIYJ,ZHANGJZ.Position-trackingcontrolofunder-actuatedautonomousunderwatervehiclesinthepresenceofunknownoceancurrents[J].ControlTheoryandApplications,2010,4(11):2369-2380.

    [11]MOREAUL.Stabilityofcontinuous-timedistributedconsensusalgorithms[C/OL].Proceedingsofthe43thIEEEConferenceonDecisionandControl,Atlantis,ParadiseIsland,Bahamas,2004:3998-4003.[2015-04-26].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1429377&queryText=Stability%20of%20continuous-time%20distributed%20consensus%20algorithms&newsearch=true.

    [12]GHOMMAMJ,MNIFF.Coordinatedpath-followingcontrolforagroupofunderactuatedsurfacevessels[J].IEEETansactionsonIndustrialElectionics,2009,56(10):39-3963.

    (責(zé)任編輯陳敏英文審校周云龍)

    Coordinated Control over Formation of Under-actuated Underwater VehiclesXIAO Rui-wu,SUN Hong-fei

    (School of Information Science and Engineering,Xiamen University,Xiamen 361005,China)

    Abstract:With regard to above-water formation issues for under-actuated unmanned underwater vehicles (UUVs) in complex sea conditions,a formation movement-control strategy is presented by means of path-tracking control and distributed consensus algorithm.The formation task is decomposed into two steps.Firstly,a path-tracking controller for each single UUV is designed to track their desired paths.Secondly,for multiple UUVs,a distributed consensus algorithm is proposed to implement their coordinated movements.The aggregate influence of parametric uncertainty and current disturbance are taken into account when designing the formation controller.A disturbance observer is designed for the ocean current disturbance,while the adaptive control technique is used to estimate the parameter uncertainty online.Finally,the validity of the formation control strategy is tested through simulation.

    Key words:UUV;path-tracking;disturbance observer;consensus algorithm

    [中圖分類(lèi)號(hào)]TP 273

    [文獻(xiàn)標(biāo)志碼]A

    [文章編號(hào)]1007-7405(2015)06-0428-07

    [作者簡(jiǎn)介]肖瑞武(1990—),男,碩士生,從事水下航行器編隊(duì)控制研究.通信作者:孫洪飛(1970—),男,教授,研究方向?yàn)榛旌舷到y(tǒng)控制、基于網(wǎng)絡(luò)的系統(tǒng)控制、非線性控制理論及其在運(yùn)動(dòng)體控制上的應(yīng)用,E-mail:sunhf@xmu.edu.cn.

    [基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(61374037)

    [收稿日期]2015-07-21[修回日期]2015-10-18

    安庆市| 淮北市| 浦县| 鹤庆县| 石阡县| 托克逊县| 宾川县| 安庆市| 忻州市| 合作市| 宜兰县| 特克斯县| 高雄市| 台东市| 读书| 吐鲁番市| 台前县| 徐闻县| 浪卡子县| 雅江县| 卫辉市| 纳雍县| 洪雅县| 漯河市| 浦县| 军事| 宁南县| 商河县| 卢龙县| 龙陵县| 东阳市| 大化| 钦州市| 尼玛县| 大丰市| 环江| 肥城市| 普兰店市| 六枝特区| 鸡西市| 东安县|