• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical method of minimum spacing of signalized intersectionson bidirectional two-lane highways

    2015-03-01 09:24:00MaYongfengYuanLiZhangWenbo

    Ma Yongfeng  Yuan Li  Zhang Wenbo

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)(3Department of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

    ?

    Analytical method of minimum spacing of signalized intersectionson bidirectional two-lane highways

    Ma Yongfeng1Yuan Li2Zhang Wenbo3

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)(3Department of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

    Abstract:In order to improve the smoothness of traffic flow on bidirectional two-lane highways, an analytical method is proposed to optimize the minimum spacing of the signalized intersections. The minimum signal spacing is determined by two parts, including the necessary distance for stabilizing the traffic flow after it passes through the signalized intersections and the length of the upstream functional area of intersection. For the former, based on the platoon dispersion theory, the stable distance determination problem of traffic flow is studied and a model of dispersion degrees varying with the distance from the upstream intersection is presented, in which the time headway is intended to yield the shifted negative exponential distribution. The parameters of the model for arterial and collector highways are estimated respectively based on the field data. Then, the section at which the slope of dispersion degree curve equals -0.1 is regarded as the beginning of the dispersion stable state. The length of the intersection upstream functional area is determined by three parts, including the distance traveled during perception-reaction time, the distance traveled while a driver decelerates to a stop, and the queue storage length. Based on the above procedures, the minimum signal spacing of each highway category is proposed.

    Key words:highway; signalized intersection; spacing; platoon dispersion

    Received 2015-01-30.

    Biography:Ma Yongfeng (1980—), male, doctor, associate professor, mayf@seu.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51208100, 51308192).

    Citation:Ma Yongfeng, Yuan Li, Zhang Wenbo. Analytical method of minimum spacing of signalized intersections on bidirectional two-lane highways[J].Journal of Southeast University (English Edition),2015,31(4):547-552.[doi:10.3969/j.issn.1003-7985.2015.04.020]

    Intersection spacing is an important element in highway design and can greatly affect the operational efficiency and traffic safety. Closely-spaced or irregularly-spaced traffic signals on arterial or collector roadways can result in frequent stops, unnecessary delays, increased fuel consumption, excessive vehicular emissions, and high crash rates[1-4]. Wang et al.[5]examined 161 road segments of eight suburban arterials in Shanghai. Their modeling results showed that the density of signal spacing along arterials had a significant influence on minor injuries, severe injuries, and total crash frequencies; and non-uniform signal spacing had a significant impact on the occurrence of minor injury crashes. A long signal spacing interval increased the range of the cycle lengths and speeds, which can produce efficient traffic progression. When the signals are installed at a suboptimal location, a corresponding reduction in the through band or time will occur. Moreover, increasing signalized intersections per mile resulted in more stop-and-go movement, which may lead to more fuel consumption and vehicular emissions[1].

    Some indices have been introduced to research the intersection spacing, such as the weaving section distance, the additional left-turn lane, sight distance, deceleration lane distance, and traffic management, etc. AASHTO[6]indicates that the length between accesses and intersections should be not less than the length of the functional area of at-grade intersections. Generally speaking, few studies emphasized traffic flow characteristics. On the segment between two signalized intersections, the traffic flow characteristics present “turbulence-transition-stable moving-transition-turbulence”[4]. Due to the compression and splitting at signal lights, traffic flow is separated into series and moves downstream in platoons. Vehicles in platoons travel at different speeds due to the driving behaviors of drivers and the maneuvering characteristics of vehicles. While moving downstream, the platoon starts spreading out in a long segment. At the beginning, vehicles move at low speeds, are at small headways, and clusters, which can be seen as turbulence. Afterwards, vehicles speed up and attain suitable headways and similar operating states, which can be regarded as stable movement. This phenomenon, known as platoon dispersion, has been studied by many researchers[7-11]. Platoon dispersion is a procedure for determining the deterioration of platoon integrity, which means a change in the compactness of a platoon depending on the time[9].

    The purpose of this paper is to introduce a procedure to measure the minimum spacing of signalized intersections on bidirectional two-lane highways. Based on the platoon dispersion theory, an analytical method is proposed and calibrated. Furthermore, the minimum spacing criteria for bidirectional two-lane highways are computed.

    1Methodology

    1.1 Definition of minimum spacing

    According to the platoon dispersion theory, when the traffic flow departs from the upstream signalized intersection, the speed of each vehicle is affected by the speed of others, resulting in a high inter-vehicles influence degree. With the platoon moving downstream, the mean speed increases, some vehicles begin to overtake others, the inter-vehicles influence degree decreases, and the traffic flow ultimately reaches a stable state, meanwhile, the vehicles basically achieve their expected speeds. Before this, the traffic flow should not be affected by the downstream intersection. For presentation purposes, the platoon dispersion degree is adopted to express the inter-vehicles influence. The mathematical form of the minimum spacing is

    (1)

    with

    d2=l1+l2+l3

    The functional intersection area is critical to its function, in which motorists respond to the intersection, decelerate, and maneuver into the appropriate lane to stop or to complete a turn. It consists of the distance during perception-reaction time, the distance for maneuvering and deceleration, and the length of the queue storage, as shown in Fig.1. The current procedure and parameter values, which are used to determine the upstream functional intersection area, can be found in Refs.[1,4]. The emphasis in this paper is on determining the vehicles’ platoon stable distanced1.

    Fig.1 Illustration of minimum spacing

    1.2 Platoon stable distance

    The number of traffic conflicts is minimum when the platoon is completely in a dispersion state. Therefore, the platoon dispersion degree can be used to measure the safety performance of different road sections. The higher the platoon dispersion degree, the larger the headway, which means a high level of safety performance. The time headway is introduced to specify the platoon dispersion degree,

    (2)

    whereRis the platoon dispersion degree in the traffic flow;nis the total number of vehicles;f(hi) is the influence function between vehicles;hiis the time headway between vehicles, s;h0is the time headway threshold when vehicles have no effect on each other, s;hminis the minimum safe time headway threshold, s.

    WhenR=1, the traffic flow is under a free flow state; whenR=0, it is in a congested state. Using the platoon dispersion degree to describe the freedom degree of the traffic flow is a solid basis for studying the platoon dispersion process.

    1.2.1Relationship between volume and dispersion degree

    For a two-lane highway, the time headways yield different distribution forms under various traffic flow conditions. Each distribution form has its special characteristics and limitations. The shifted negative exponential distribution, which is not complicated and commonly suitable for low to medium volume conditions, was adopted in this paper. This distribution form can satisfy the precision requirement[10]. The mathematical form of the distribution is

    (3)

    whereqis the traffic flow rate, veh/s;τis the parameter estimation value, which can be estimated by the sample mean and variance, and its value interval is [1.0,1.5]. The time headway distribution is usually divided into three states: the overtaking state (0

    According to the definition of dispersion degreeRand influence degree functionf(h), whenh≥h0,f(h)=0; whenh≤hmin,f(h)=1; and for vehicles whose headway yieldsh∈{hmin,h0}, the mean influence degree yields the following equation:

    (4)

    Based on the calculated probabilities, Eq.(4) and the definition of influence degree functionf(h), the arithmetic mean value of the influence degree function under the dispersion stable state can be computed using the following equation:

    (P2-P1)E[f(h)]+(1-P2)

    (5)

    In Eqs.(4) and (5), the computation ofP1,P2can refer to Ref.[10]. Therefore, the expression of the dispersion degreeR1under stable state is

    (6)

    1.2.2Dispersion degree when vehicles departing

    When vehicles pass through an intersection, the traffic flow condition consists of two parts: 1) During the early green period, traffic flow is under saturation traffic flow, and 2) During the late green period, traffic flow is under the non-saturation state. In order to simplify the calculation, the number of vehicles that arrive in each cycle is assumed to yield a uniform distribution, then

    Nu=Q-N=qc-q(r+t)

    (7)

    with

    (8)

    1.2.3Model of dispersion degree along the segment

    Based on the above analysis, the dispersion degree along the segment can be figureted. Whenx=0,R=R0; whenx=∞,R=R1. Hence, the dispersion degree yields the following equation:

    R(x)=R0exp(-ax)+R1(1-exp(-bx))(9)

    whereR(x) is the dispersion degree value at a certain section which isxaway from the upstream intersection;aandbare the undetermined constants;xis the distance between the control point and the upstream intersection, km.

    The parametersaandbin Eq.(9) can be estimated by the field data, which should be collected from at least two control points. In order to ensure the precision of the estimation, four control points are investigated in this study on the spot, where the investigated results at 0 m are adopted in the parameter estimation.

    2Data Collection

    The field surveys were carried out on sections of arterial highways and collector highways. The following criteria were used in selecting and observing the sample road segments:

    1) Independent, fixed period and two-phase signalized intersection;

    2) Low external disturbance, low non-motorized vehicles, and pedestrians flow;

    3) Low lateral interference within 500 m of an intersection downstream area (e.g., driveway);

    4) The distance to the downstream intersection is longer than 1 000 m;

    5) The wide field of vision, favorable for the arrangement of traffic survey equipment.

    Segment 1Intersection “S122-G312” is located in Jiangsu province, signalized by a signal cycle of 58 s. The exit segment on S122 from west to east was observed. S122 belongs to the minor arterial highway (2B access classification) with a design speed of 80 km/h.

    Segment 2Signalized intersection “Danyang Road-G312” is located in Jiangsu province, with a signal cycle of 52 s. The exit segment from west to east on Danyang Road was observed. Danyang Road belongs to the 3C access classification with a design speed of 60 km/h.

    Cameras were deployed at the successive control points (100, 200, and 300 m) in the departure lane. The duration time of the synchronous observation was 1 h. The videos were processed with the help of Moviemaker software manually. At each control point, the vehicular license plate numbers and front bumper passing time were recorded. The time headways were extracted during each signal cycle. The dispersion degree was calculated under stable stateR1and at the starting point of the segmentR0.

    For each signal cycle, the number of vehicles that passed through the intersection under saturation traffic flow was found to be 60% of the total traffic volume.N/Q=0.6 was adopted during the calculation. After the data comparison of each cycle, the data of 20 signal cycles was selected. The data analysis results for the two segments are shown in Tab.1 and Tab.2. Overall, the waving range of the dispersion degree at different control points for each signal cycle is relatively large. However, the general distribution tendency is accordant; i.e., as the distance away from the upstream intersection increases, the platoon dispersion degree decreases.

    Tab.1 Field data analysis on Segment 1

    Tab.2 Field data analysis on Segment 2

    3Determination of Parameters

    3.1 Time headway threshold

    Numerous observations and statistics are required to determine the time headway threshold. Generally, the thresholds are related to vehicle speeds and vehicle types[12]. Due to the speeds varying along with road sections, the corresponding thresholds should be different. Furthermore, the differences in the proportions of vehicle types for various functional category highways will also result in different headway thresholds. Considering the numerous differences, we measured the headway threshold based on the previous research results[10-13]. The minimum time headwayhminto ensure safe driving is 2 s; the time headway threshold under free flow state is 5 s.

    3.2 Model parameter calibration

    Based on the conclusions of the field survey, the parameters used in the dispersion degree model were calibrated using the Leverberg-Marquardt method in SPSS. At the beginning of calibration,R0andR1were input as the known parameters. The initial value of parameterais 3, andbis 4. The model calibration results are shown in Tab.3.

    Tab.3 The results of model calibration

    Rarterial=0.651 3exp(-5.582x)+

    0.110 2(1-exp(-15.268x))

    (10)

    Rcollector=0.648 8exp(-9.348x)+

    0.102 8(1-exp(-29.34x))

    (11)

    3.3 Platoon dispersion stable distance

    According to Eq.(10) and Eq.(11), whenx→∞,R→R1. It is found that the curve is monotone decreasing, at least before reaching the stable state. Therefore, the slopefof the dispersion degree function can be used to estimate the stable point, the curve slope equations are

    farterial=1.682 5exp(-15.268x)-3.635 6exp(-5.582x)

    (12)

    fcollector=3.016 2exp(-29.34x)-6.065exp(-9.348x)

    (13)

    The changes in the dispersion degrees and slopes with increasing distances to the upstream signalized intersections can be observed (50 m interval), as shown in Fig.2 and Fig.3. Whenf=-0.1, the dispersion degrees are regarded as reaching a sufficient small value. The corresponding distance is the expected distance to stabilize the traffic flow. The dispersion stable distance for two-lane highways are shown in Tab.4.

    Fig.2 Platoon dispersion degree trend

    Fig.3 Curve slope of dispersion degree distribution trend

    Tab.4 Minimum spacing of signalized intersections

    3.4 Minimum spacing

    Based on the analysis above, the minimum spacing of highway signalized intersections can be measured as shown in Tab.4.

    4Conclusion

    Based on the platoon dispersion theory, an analytical method is proposed to measure the minimum spacing for signalized intersections, which is determined by the traffic flow stable distance and the length of the intersection upstream functional area. In order to obtain the minimum distance that will make the platoon dispersion stable, the changes in platoon dispersion are estimated with the varying distance to the upstream signalized intersection. The length of the upstream functional intersection area is determined based on previous research. This paper places particular emphasis on the theoretical analysis of optimal spacing of signalized intersections from the aspect of traffic flow stability. However, the traffic flow stable distance is influenced by various factors, such as the proportion of vehicle types, traffic volumes, and distribution of time headways. Future research should collect more detailed field data to calibrate the model. Furthermore, in engineering practice, the recommended specifications for signalized intersection spacing should be adjusted considering various influencing factors, such as access category, land use, driveways, and median openings.

    References

    [1]Williams K M, Stover V G, Dixon K K, et al.Accessmanagementmanual[M]. Washington, DC: Transportation Research Board, 2014.

    [2]Gluck J S, Levinson H S, Stover V G.Impactsofaccessmanagementtechniques[M]. Washington, DC: Transportation Research Board, 1999.

    [3]Ministry of Transport of the People’s Republic of China. JTG B01—2014 Technical standard of highway engineering [S]. Beijing: China Communications Press, 2014. (in Chinese)

    [4]Ma Yongfeng, Xiang Qiaojun, Lu Jian. Analysis of signalized intersection safety spacing of multi-lane based on traffic flow stability distance [J].ChinaJournalofHighwayandTransport, 2010, 23(3): 83-88. (in Chinese)

    [5]Wang X, Song Y, Yu R, et al. Safety modeling of suburban arterials in Shanghai, China [J].AccidentAnalysis&Prevention, 2014, 70: 215-224.

    [6]AASHTO.Apolicyongeometricdesignofhighwaysandstreets[M]. Washington, DC: American Association of State Highway and Transportation Officials, 2011.

    [7]Manar A, Baass K G. Traffic platoon dispersion modeling on arterial streets [J].TransportationResearchRecord, 1996, 1566: 49-53.

    [8]Wu W, Jin W, Shen L. Mixed platoon flow dispersion model based on speed-truncated Gaussian mixture distribution [J/OL].JournalofAppliedMathematics, 2013. http://dx.doi.org/10.1155/2013/480965.

    [9]Bonneson J A, Pratt M P, Vandehey M A. Predicting arrival flow profiles and platoon dispersion for urban street segments[J].TransportationResearchRecord, 2010, 2173: 28-35.

    [10]Yang Peikun, Huang Wenzhong, Che Peiming. Traffic flow model of platoon dispersion process for urban highways [J].TongjiUniversityTransaction, 1994, 22(3): 294-299. (in Chinese)

    [11]Bonneson J A, Pratt M P, Vandehey M A. Predicting arrival flow profiles and platoon dispersion for urban street segments[J].TransportationResearchRecord, 2010, 2173: 28-35.

    [12]Luo Xia, Du Jinyou, Huo Yamin. Study on the distribution patterns of time headway of vehicles [J].JournalofSouthwestJiaotongUniversity, 2001, 36(2): 113-116. (in Chinese)

    [13]Chang Yulin, Wang Wei, Deng Wei, et al. Research of the headway distribution models on two lane highways and their applications [J].JournalofSoutheastUniversity:NaturalScienceEdition, 1999, 29(6): 108-112. (in Chinese)

    doi:10.3969/j.issn.1003-7985.2015.04.020

    男插女下体视频免费在线播放| 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 精品免费久久久久久久清纯| 久久精品国产自在天天线| 黄色丝袜av网址大全| 女人被狂操c到高潮| 99精品久久久久人妻精品| 搡老妇女老女人老熟妇| 国产91精品成人一区二区三区| 国内精品美女久久久久久| 日韩一区二区视频免费看| 蜜桃亚洲精品一区二区三区| 日韩欧美精品免费久久| 免费av毛片视频| 国产精品一区二区三区四区免费观看 | 日韩亚洲欧美综合| www.色视频.com| 伊人久久精品亚洲午夜| 嫩草影院入口| 99久久精品热视频| 波多野结衣高清无吗| 白带黄色成豆腐渣| 国产精品野战在线观看| 亚洲男人的天堂狠狠| 51国产日韩欧美| 一级毛片久久久久久久久女| 91久久精品电影网| 国产精品永久免费网站| 精品欧美国产一区二区三| 91久久精品国产一区二区三区| 18禁黄网站禁片免费观看直播| 在线天堂最新版资源| 99热这里只有是精品50| 老司机福利观看| 嫩草影院新地址| 国产精品三级大全| 日韩精品有码人妻一区| 伊人久久精品亚洲午夜| 桃色一区二区三区在线观看| 欧美在线一区亚洲| 男女边吃奶边做爰视频| 在线观看一区二区三区| 国产一区二区在线观看日韩| 国产精品久久久久久亚洲av鲁大| 亚洲成人久久性| 嫩草影视91久久| 嫩草影视91久久| 日本色播在线视频| 色噜噜av男人的天堂激情| 99热只有精品国产| 久久久久久国产a免费观看| 九九热线精品视视频播放| 我要看日韩黄色一级片| 欧美性猛交╳xxx乱大交人| 国产高清有码在线观看视频| 欧美成人一区二区免费高清观看| 国产精华一区二区三区| 成人性生交大片免费视频hd| 又爽又黄无遮挡网站| av黄色大香蕉| 天堂网av新在线| 91狼人影院| 国产白丝娇喘喷水9色精品| 我的老师免费观看完整版| 亚洲 国产 在线| 国产真实伦视频高清在线观看 | 搡老妇女老女人老熟妇| 午夜福利在线观看吧| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区 | 日韩中文字幕欧美一区二区| 国产女主播在线喷水免费视频网站 | 性色avwww在线观看| 在现免费观看毛片| 中出人妻视频一区二区| 午夜久久久久精精品| 国产在线男女| 亚洲av五月六月丁香网| 国产精品久久久久久久电影| 久久久午夜欧美精品| 一区福利在线观看| 日本精品一区二区三区蜜桃| 欧美一区二区国产精品久久精品| 天美传媒精品一区二区| 一边摸一边抽搐一进一小说| 久久九九热精品免费| x7x7x7水蜜桃| 国产单亲对白刺激| 精品久久久久久久久久久久久| 观看免费一级毛片| 日日夜夜操网爽| 国产伦在线观看视频一区| 欧美日韩综合久久久久久 | 丰满的人妻完整版| 99热只有精品国产| 99九九线精品视频在线观看视频| 亚洲欧美日韩卡通动漫| a在线观看视频网站| 99热这里只有是精品在线观看| 99热这里只有精品一区| 亚洲人成网站高清观看| 99热精品在线国产| 国产亚洲精品综合一区在线观看| 看免费成人av毛片| 999久久久精品免费观看国产| 自拍偷自拍亚洲精品老妇| 日韩,欧美,国产一区二区三区 | 国产av麻豆久久久久久久| 久久久久久久久久成人| 国产极品精品免费视频能看的| 欧美日本亚洲视频在线播放| 内射极品少妇av片p| 亚洲va日本ⅴa欧美va伊人久久| 亚洲电影在线观看av| 久久国产乱子免费精品| 天堂动漫精品| 欧美在线一区亚洲| 精品免费久久久久久久清纯| 久久久久九九精品影院| 少妇人妻精品综合一区二区 | 免费看a级黄色片| 日韩欧美三级三区| 欧美日本亚洲视频在线播放| 亚洲精品在线观看二区| 精品国产三级普通话版| 国产精品三级大全| 免费人成视频x8x8入口观看| 精品一区二区三区视频在线| 中出人妻视频一区二区| 欧美潮喷喷水| 三级男女做爰猛烈吃奶摸视频| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久av不卡| 亚洲欧美激情综合另类| 级片在线观看| 特级一级黄色大片| 国产午夜福利久久久久久| 91午夜精品亚洲一区二区三区 | 中文字幕精品亚洲无线码一区| 校园春色视频在线观看| 小蜜桃在线观看免费完整版高清| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 亚洲内射少妇av| 日本 欧美在线| 欧美丝袜亚洲另类 | 男女啪啪激烈高潮av片| 成人三级黄色视频| 成人特级av手机在线观看| www.www免费av| 如何舔出高潮| 国产伦精品一区二区三区四那| 小说图片视频综合网站| 国产精品福利在线免费观看| 亚洲av成人av| 男女视频在线观看网站免费| 久9热在线精品视频| 91麻豆av在线| 小蜜桃在线观看免费完整版高清| 成年女人看的毛片在线观看| 国产一区二区三区av在线 | 国产伦一二天堂av在线观看| 国产一区二区三区视频了| 少妇丰满av| 免费看美女性在线毛片视频| 99精品久久久久人妻精品| 十八禁国产超污无遮挡网站| 日韩国内少妇激情av| 中文字幕av成人在线电影| 国产精品国产三级国产av玫瑰| а√天堂www在线а√下载| x7x7x7水蜜桃| 欧美一级a爱片免费观看看| 亚洲av二区三区四区| 亚洲专区中文字幕在线| 少妇人妻一区二区三区视频| 国产成人福利小说| 男人和女人高潮做爰伦理| 精品久久久久久成人av| 91在线观看av| 两个人的视频大全免费| 黄色女人牲交| 岛国在线免费视频观看| 韩国av在线不卡| 欧美一级a爱片免费观看看| 国语自产精品视频在线第100页| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 一个人观看的视频www高清免费观看| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 国产精品乱码一区二三区的特点| 久久久午夜欧美精品| 少妇的逼好多水| 嫁个100分男人电影在线观看| 老司机午夜福利在线观看视频| av专区在线播放| 999久久久精品免费观看国产| 国产伦精品一区二区三区视频9| 午夜亚洲福利在线播放| x7x7x7水蜜桃| 国产在线男女| 成人毛片a级毛片在线播放| 免费电影在线观看免费观看| 色播亚洲综合网| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 欧美日韩中文字幕国产精品一区二区三区| 亚洲无线在线观看| 在现免费观看毛片| 日韩欧美国产在线观看| 黄色配什么色好看| 日日啪夜夜撸| 有码 亚洲区| 久久久久九九精品影院| 亚洲美女搞黄在线观看 | 免费无遮挡裸体视频| 精品久久久久久,| 欧美性猛交╳xxx乱大交人| 精品无人区乱码1区二区| 国产色婷婷99| 亚洲成人免费电影在线观看| 久久亚洲精品不卡| 女人十人毛片免费观看3o分钟| 成人二区视频| 国产精品亚洲美女久久久| 搡老岳熟女国产| 国国产精品蜜臀av免费| 国产精品嫩草影院av在线观看 | 99视频精品全部免费 在线| 男女做爰动态图高潮gif福利片| 日本免费a在线| 桃色一区二区三区在线观看| 免费一级毛片在线播放高清视频| 国产精品久久久久久久电影| 久久99热这里只有精品18| 嫩草影院入口| 一卡2卡三卡四卡精品乱码亚洲| 91狼人影院| 国产男靠女视频免费网站| 欧美性猛交黑人性爽| 18禁黄网站禁片午夜丰满| 成人综合一区亚洲| 全区人妻精品视频| 国产精品一及| 亚洲精品影视一区二区三区av| 蜜桃久久精品国产亚洲av| 在线观看舔阴道视频| 波多野结衣高清无吗| 色哟哟·www| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| av福利片在线观看| 丰满的人妻完整版| 久久久久九九精品影院| 久久久久久久亚洲中文字幕| 欧美三级亚洲精品| 久久精品国产清高在天天线| 美女cb高潮喷水在线观看| 黄色欧美视频在线观看| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 内地一区二区视频在线| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 嫩草影院入口| 国产在视频线在精品| av.在线天堂| 亚洲18禁久久av| av女优亚洲男人天堂| 欧美潮喷喷水| 男女啪啪激烈高潮av片| 国产精品三级大全| aaaaa片日本免费| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区 | 亚洲av中文字字幕乱码综合| 免费看a级黄色片| 女人十人毛片免费观看3o分钟| 日本三级黄在线观看| 变态另类成人亚洲欧美熟女| 丰满的人妻完整版| 午夜精品在线福利| 美女被艹到高潮喷水动态| 国产精品久久久久久亚洲av鲁大| 18禁在线播放成人免费| 欧美丝袜亚洲另类 | 国内毛片毛片毛片毛片毛片| 国产成人av教育| 国产伦一二天堂av在线观看| 国产主播在线观看一区二区| 99riav亚洲国产免费| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在 | 午夜精品久久久久久毛片777| 国产av麻豆久久久久久久| 此物有八面人人有两片| 国内毛片毛片毛片毛片毛片| 色av中文字幕| 在线a可以看的网站| 亚洲一级一片aⅴ在线观看| 国产美女午夜福利| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 一区二区三区免费毛片| 欧美最黄视频在线播放免费| 日日啪夜夜撸| av视频在线观看入口| 亚洲avbb在线观看| av福利片在线观看| 国产欧美日韩精品亚洲av| bbb黄色大片| 欧美+日韩+精品| 最新中文字幕久久久久| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 国内少妇人妻偷人精品xxx网站| 亚洲无线在线观看| 精品久久久久久久末码| av黄色大香蕉| 看十八女毛片水多多多| 美女大奶头视频| 久久午夜福利片| 99久久精品一区二区三区| 最好的美女福利视频网| 岛国在线免费视频观看| 日韩欧美国产在线观看| 老熟妇仑乱视频hdxx| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 国产三级在线视频| 亚洲国产精品成人综合色| 黄色欧美视频在线观看| 亚洲av中文av极速乱 | 在线播放无遮挡| 深夜a级毛片| 日韩欧美精品免费久久| 99精品在免费线老司机午夜| 久久久午夜欧美精品| 亚洲国产精品成人综合色| 日本一本二区三区精品| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 小说图片视频综合网站| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 久久精品影院6| 91麻豆av在线| 国产视频一区二区在线看| a级毛片免费高清观看在线播放| 99久国产av精品| 99久久九九国产精品国产免费| 99久久精品热视频| 午夜爱爱视频在线播放| 在线观看舔阴道视频| 精品一区二区免费观看| 国产人妻一区二区三区在| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 99在线视频只有这里精品首页| 色5月婷婷丁香| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 日韩精品中文字幕看吧| 国产黄a三级三级三级人| 老司机福利观看| 精品人妻偷拍中文字幕| 最近中文字幕高清免费大全6 | 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 午夜福利欧美成人| 99精品久久久久人妻精品| 搞女人的毛片| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| 国产精品三级大全| 蜜桃亚洲精品一区二区三区| 日韩欧美 国产精品| 天美传媒精品一区二区| 国产精品亚洲一级av第二区| 免费高清视频大片| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 乱人视频在线观看| 成熟少妇高潮喷水视频| 国产高潮美女av| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看日本一区| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 欧美激情久久久久久爽电影| 国产精品三级大全| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 久久午夜福利片| 欧美人与善性xxx| 亚洲18禁久久av| 99热这里只有精品一区| 日韩人妻高清精品专区| 97热精品久久久久久| 91狼人影院| 亚洲av成人av| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看| 69av精品久久久久久| 免费人成在线观看视频色| 热99在线观看视频| 夜夜夜夜夜久久久久| 亚洲成人久久性| 嫩草影院新地址| 波多野结衣巨乳人妻| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| 悠悠久久av| a在线观看视频网站| 搞女人的毛片| 色哟哟·www| 高清在线国产一区| 国产午夜精品久久久久久一区二区三区 | 欧美日韩黄片免| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 天堂动漫精品| 亚洲美女搞黄在线观看 | 午夜福利欧美成人| 在线免费观看不下载黄p国产 | 日韩高清综合在线| 日本熟妇午夜| 亚洲精品粉嫩美女一区| 久久精品国产鲁丝片午夜精品 | 亚洲欧美日韩东京热| 日本五十路高清| 99久久精品国产国产毛片| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 免费看日本二区| 日韩人妻高清精品专区| 毛片女人毛片| 白带黄色成豆腐渣| 最近中文字幕高清免费大全6 | 成人毛片a级毛片在线播放| 亚洲精华国产精华精| 国产伦一二天堂av在线观看| 老女人水多毛片| 黄片wwwwww| 国产欧美日韩一区二区精品| 日韩在线高清观看一区二区三区 | 久久久成人免费电影| 国产成人福利小说| 在现免费观看毛片| 女的被弄到高潮叫床怎么办 | 亚洲精品亚洲一区二区| 国产av不卡久久| 中文在线观看免费www的网站| www.色视频.com| 亚洲一区高清亚洲精品| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区 | 日本 欧美在线| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 观看美女的网站| 午夜免费男女啪啪视频观看 | 国产一区二区亚洲精品在线观看| 精品人妻一区二区三区麻豆 | 黄色日韩在线| 免费看美女性在线毛片视频| 成人综合一区亚洲| 国产精品一及| 十八禁国产超污无遮挡网站| 亚州av有码| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看| 色av中文字幕| 亚洲精品日韩av片在线观看| 亚洲成人久久爱视频| 国产熟女欧美一区二区| 午夜福利在线观看吧| 免费看光身美女| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 深夜a级毛片| 色视频www国产| 久久精品人妻少妇| 乱系列少妇在线播放| 国内精品美女久久久久久| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看 | 久久热精品热| 99在线视频只有这里精品首页| 一区二区三区激情视频| 欧美黑人巨大hd| 黄色配什么色好看| 91在线精品国自产拍蜜月| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品自产拍在线观看55亚洲| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 真实男女啪啪啪动态图| 色吧在线观看| 观看免费一级毛片| 香蕉av资源在线| 别揉我奶头 嗯啊视频| 国产主播在线观看一区二区| 成人二区视频| 无遮挡黄片免费观看| 美女高潮的动态| 2021天堂中文幕一二区在线观| xxxwww97欧美| 最好的美女福利视频网| 在线看三级毛片| 午夜免费成人在线视频| 在线看三级毛片| 午夜免费成人在线视频| bbb黄色大片| 日韩精品青青久久久久久| 亚洲欧美激情综合另类| 久久欧美精品欧美久久欧美| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| x7x7x7水蜜桃| 国产三级在线视频| 欧美3d第一页| 美女免费视频网站| 亚洲一区高清亚洲精品| 深夜a级毛片| 亚洲精品456在线播放app | 可以在线观看的亚洲视频| 一区二区三区高清视频在线| 能在线免费观看的黄片| 欧美+亚洲+日韩+国产| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 此物有八面人人有两片| 免费在线观看成人毛片| 精品人妻1区二区| 一级av片app| 少妇丰满av| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 联通29元200g的流量卡| 久久久久久国产a免费观看| av专区在线播放| 中文字幕熟女人妻在线| 老司机深夜福利视频在线观看| а√天堂www在线а√下载| 国产毛片a区久久久久| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 一本久久中文字幕| 国产免费一级a男人的天堂| 能在线免费观看的黄片| 91久久精品电影网| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 蜜桃久久精品国产亚洲av| 国产私拍福利视频在线观看| 午夜精品一区二区三区免费看| 国产成人福利小说| 亚洲av中文字字幕乱码综合| 舔av片在线| 欧美精品啪啪一区二区三区| 性插视频无遮挡在线免费观看| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 日韩欧美国产一区二区入口| 国产精品伦人一区二区| 精品国产三级普通话版| 日本一本二区三区精品| 麻豆国产97在线/欧美| 中文资源天堂在线| 精品免费久久久久久久清纯| av福利片在线观看| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区 | 午夜福利在线在线| 女的被弄到高潮叫床怎么办 | 国产久久久一区二区三区| 97超视频在线观看视频| 真人做人爱边吃奶动态| 免费大片18禁| 欧美不卡视频在线免费观看| 一本久久中文字幕|