• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kernel principal component analysis networkfor image classification

    2015-03-01 08:07:20WuDanWuJiasongZengRuiJiangLongyuLotfiSenhadjiShuHuazhong

    Wu Dan  Wu Jiasong  Zeng Rui  Jiang LongyuLotfi Senhadji  Shu Huazhong

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    ?

    Kernel principal component analysis networkfor image classification

    Wu Dan1,4Wu Jiasong1,2,3,4Zeng Rui1,4Jiang Longyu1,4Lotfi Senhadji2,3,4Shu Huazhong1,4

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    Abstract:In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network (PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.

    Key words:deep learning; kernel principal component analysis net (KPCANet); principal component analysis net (PCANet); face recognition; object recognition; handwritten digit recognition

    Received 2015-05-04.

    Biographies:Wu Dan (1990—), female, graduate; Shu Huazhong (corresponding author), male, doctor, professor, shu.list@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.61201344, 61271312, 61401085, 11301074), the Research Fund for the Doctoral Program of Higher Education (No.20120092120036), the Program for Special Talents in Six Fields of Jiangsu Province (No.DZXX-031), Industry-University-Research Cooperation Project of Jiangsu Province (No.BY2014127-11), “333” Project (No.BRA2015288), High-End Foreign Experts Recruitment Program (No.GDT20153200043), Open Fund of Jiangsu Engineering Center of Network Monitoring (No.KJR1404).

    Citation:Wu Dan, Wu Jiasong, Zeng Rui, et al. Kernel principal component analysis network for image classification[J].Journal of Southeast University (English Edition),2015,31(4):469-473.[doi:10.3969/j.issn.1003-7985.2015.04.007]

    Amajor difficulty of image classification is the considerable intra-class variability, arising from different illuminations, rigid deformations, non-rigid deformations and occlusions, which are useless for classification and should be eliminated. Deep learning structures like deep convolutional networks have the ability to learn invariant features[1]. Bruna et al.[2]built a scattering network (ScatNet) which is invariant to both rigid and non-rigid deformations. Chan et al.[3]constructed a principal component analysis network (PCANet), which cascaded principal component analysis (PCA), binary hashing, and block-wise histogram. PCANet achieves the state-of-the-art accuracy in many datasets of classification tasks, such as extended Yale B dataset, AR dataset, and FERET dataset. Kernel PCA (KPCA)[4-5]is a nonlinear generalization of PCA in the sense that it performs PCA in the feature spaces of arbitrary large dimension. KPCA can generally provide a better recognition rate than ordinary PCA due to the following two reasons: 1) KPCA uses an arbitrary number of nonlinear components, while ordinary PCA uses only a limited number of linear principal components; 2) KPCA has more flexibility than ordinary PCA since KPCA can choose different kernel functions (for example, Gaussian kernel, Polynomial kernel, etc.) for different recognition tasks, while ordinary PCA uses only linear kernel functions.

    In this paper, we propose a new deep learning network named kernel principal component network (KPCANet), which cascades two KPCA stages and one pooling stage. When the kernel function is linear, the proposed KPCANet degrades to the PCANet[3]. Experimental results show that the proposed KPCANet is invariant to illumination and stable to slight non-rigid deformation, and it generally outperforms PCANet in both face recognition and object recognition tasks.

    1KPCANet

    Fig.1 shows the whole structure of the proposed KPCANet, which consists of two KPCA stages and one pooling stage. Suppose that the patch size isk1×k2at all stages, and all the input images are of sizem×n.

    1.1 The first stage of KPCANet

    We inputNimages Ii(i=1,2,…,N) that belong tocclasses, and take a patch pi,j∈Rk1×k2centered in thej-th

    Fig.1 The detailed block diagram of the proposed KPCANet

    T: Rk1k2×k1k2→F,X|→XF

    (1)

    (2)

    1.2 The second stage of KPCANet

    1.3 The pooling stage of KPCANet

    EveryL2input images are binarized and converted to an image with

    i=1,2,…,N;l=1,2,…,L1

    (3)

    whereHis the Heaviside step (like) function[3].

    Each of theL1images Pi,l(l=1,2,…,L1) is then partitioned intoBblocks. We compute the histogram of the decimal values in each block, and concatenate all theBhistograms into one vector denoted as Bhist(Pi,l). Finally, the KPCANet features of Iiare given by

    fi=[Bhist(Pi,1),Bhist(Pi,2),…,Bhist(Pi,L1)]T∈R(2L2)L1B

    (4)

    Since deep architectures are composed of multiple levels of nonlinear operations, such as in complicated propositional figuree re-using many sub-figuree[6], the first two stages of KPCANet are set to be the same in this paper, we can re-use the whole structure of the first stage as well.

    2Experimental Results

    We evaluate the performance of the proposed KPCANet on various databases including MNIST, USPS, Yale face dataset, COIL-100 objects dataset, and AR dataset. Besides, we compare KPCANets that cascade various (from one to three) stage(s) of the KPCA layer in this paper. All the features learned by KPCANet are classified with a SVM classifier.

    2.1 Comparison of KPCANet in different recognition tasks

    In this section, we use various kernel functions to evaluate the performance of the proposed KPCANet in recog-

    nition tasks including handwritten digit recognition, face recognition and object recognition. Kernel functions that are used in this paper are presented in Tab.1.

    MNIST[7]and USPS[8]are used to evaluate the performance of KPCANet on handwritten images. MNIST contains 60 000 train images and 10 000 test images, and all images are of size 28×28 pixel. USPS contains 9 298 images of size 16×16 pixel in total, 5 000 of which are chosen randomly to train KPCANet and the rest are for testing. The Yale face database[9]is used to evaluate the performance of the proposed KPCANet on face images. It contains 165 grayscale images of 15 individuals in GIF format, and each individual contains 11 images with different facial expressions or configurations: center-light, wearing glasses, happy, left-light, wearing no glasses, normal, right-light, sad, sleepy, surprised, and winking. All images of this database are cropped to size 64×64 pixel, 90 of which are chosen randomly to train the proposed KPCANet and the rest are for testing. COIL-100 (Columbia Object Image Library)[10]is a database of the color images of 100 objects. The images of the objects are taken at pose intervals of 5°, and they correspond to 72 poses per object. All images are transformed into gray images and cropped to size 32×32 pixel. Half images of each object are chosen randomly to train KPCANet and the others are for testing.

    Tab.1 Various kernel functions used in this paper

    The performances of different kernel functions on datasets including MNIST, USPS, Yale face dataset and COIL-100 dataset are presented in Tab.2. Both the patch size and the block size are set to be 8×8 pixel, and the filter number is set to be 8 at all stages. The overlapping ratio of block is 0.5.

    Tab.2 Comparison of error rates of KPCANet with various kernel functions on different datasets %

    It can be seen from Tab.2 that the performance of PCANet performs better than KPCANet in handwritten digit recognition generally, while the latter outperforms the former in face recognition and object recognition.

    2.2 Face recognition on AR face dataset

    The properties of KPCANet are tested by performing KPCANet on the AR dataset[11]. The AR dataset contains about 4 000 color images of size 165×120 pixel from 126 individuals. The subset of the data that contains 100 individuals including 50 males and 50 females is chosen. The color images are converted to gray scale ones. Each individual consists of two images with frontal illumination and neutral expression, which is used as the training samples. The other images including 24 images varying from illumination to disguise are used for testing.

    The patch size and the block size are set to be 7×7 pixel and 8×8 pixel, respectively. The overlapping ratio of the block is 0.5. We compare the proposed KPCANet with LBP[12]and P-LBP[13]in Tab.3. KPCANet with linear kernel function and Laplacian kernel function is used in this experiment. From Tab.3, one can see that when the images only undergo the change of illumination, the testing accuracy rate achieves 100% with both linear kernel KPCANet and Laplacian kernel KPCANet. It is demonstrated that KPCANet is invariant to illumination. Besides, KPCANet outperforms LBP[12]and P-LBP[13]on different expressions and disguises under various illumination conditions, showing that KPCANet is robust to small deformation and occlusion.

    Tab.3 Comparison of accuracy rates of the methods on the AR face database %

    2.3 KPCANet with various stages in AR face dataset

    KPCANet, which cascades different numbers of the KPCA filter bank layer and a pooling layer, is performed with the AR face dataset used in Section 2.2, and all images are cropped to size 32×32 pixel. Linear kernel, sigmoid kernel and circular kernel are chosen here in order to simplify the results. The patch size and the block size are set to be 7×7 pixel and 8×6 pixel, respectively. The overlapping ratio of the block is 0.5. The results are shown in Tab.4.

    Tab.4 Comparison of accuracy rates of KPCANet with different number of stages on the AR face dataset %

    From Tab.4, we can see that the accuracy rate increases as the number of KPCA filter bank layers increases in the KPCANet, however, the training time grows exponentially at the same time.

    3Conclusion

    In this paper, we propose the KPCANet, which is an extension of PCANet, for image classification. The proposed KPCANet cascades kernel PCA, binary hashing and block-wise histogram. Experiments prove that KPCANet with different kernel functions is stable in general and also is invariant to illumination and stable to slight deformation and occlusion. Moreover, KPCANet is suitable for the recognition of handwritten images, face images and object images.

    References

    [1]LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision[C]//Proceedingsof2010IEEEInternationalSymposiumonCircuitsandSystems. Paris, France, 2010: 253-256.

    [2]Bruna J, Mallat S. Invariant scattering convolution networks[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2013, 35(8): 1872-1886.

    [3]Chan T H, Jia K, Gao S, et al. PCANet: a simple deep learning baseline for image classification?[J].arXivpreprintarXiv: 1404.3606, 2014.

    [4]Sch?lkopf B, Smola A, Müller K R. Kernel principal component analysis[C]//InternationalConferenceonArtificialNeuralNetworks. Lausanne, Switzerland, 1997: 583-588.

    [5]Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J].NeuralComputation, 1998, 10(5): 1299-1319.

    [6]Bengio Y. Learning deep architectures for AI[J].FoundationsandTrends?inMachineLearning, 2009, 2(1): 1-127.

    [7]LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].ProceedingsoftheIEEE, 1998, 86(11): 2278-2324.

    [8]Hull J J. A database for handwritten text recognition research[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 1994, 16(5): 550-554.

    [9]Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2001, 23(6): 643-660.

    [10]Nene S A, Nayar S K, Murase H. Columbia object image library (COIL-20), CUCS-005-96 [R]. New York: Department of Computer Science, Columbia University: 1996.

    [11]Martinez A M, Benavente R. The AR face database, CVC technical report #24[R]. CVC, 1998.

    [12]Ahonen T, Hadid A, Pietik?inen M. Face description with local binary patterns: application to face recognition[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2006, 28(12): 2037-2041.

    [13]Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEETransactionsonImageProcessing, 2010, 19(6): 1635-1650.

    doi:10.3969/j.issn.1003-7985.2015.04.007

    h日本视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 成人二区视频| 大又大粗又爽又黄少妇毛片口| 久久av网站| 亚洲成人av在线免费| 久久这里有精品视频免费| 亚洲三级黄色毛片| 国产中年淑女户外野战色| 美女内射精品一级片tv| 超碰av人人做人人爽久久| 久久综合国产亚洲精品| 国产精品爽爽va在线观看网站| 亚洲真实伦在线观看| av网站免费在线观看视频| 三级经典国产精品| 国产精品一区二区三区四区免费观看| www.av在线官网国产| 国产一区有黄有色的免费视频| 天堂俺去俺来也www色官网| 欧美成人精品欧美一级黄| 亚洲精品成人av观看孕妇| 免费av中文字幕在线| 一区二区av电影网| 草草在线视频免费看| 久久久成人免费电影| 99热网站在线观看| 国产精品欧美亚洲77777| 日本猛色少妇xxxxx猛交久久| 成人特级av手机在线观看| 国产亚洲欧美精品永久| 99热网站在线观看| 国产精品欧美亚洲77777| 国产av国产精品国产| 天美传媒精品一区二区| 卡戴珊不雅视频在线播放| 日本爱情动作片www.在线观看| 久久综合国产亚洲精品| 国产黄片视频在线免费观看| 亚洲成人手机| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 亚洲欧美成人精品一区二区| 在线看a的网站| 久久久久精品久久久久真实原创| av一本久久久久| 亚洲四区av| 麻豆成人午夜福利视频| 尤物成人国产欧美一区二区三区| av在线app专区| 国产淫语在线视频| 国产精品一区二区三区四区免费观看| 日韩av在线免费看完整版不卡| 我的女老师完整版在线观看| 综合色丁香网| 国语对白做爰xxxⅹ性视频网站| 免费看日本二区| tube8黄色片| 18+在线观看网站| 欧美激情极品国产一区二区三区 | 国产精品不卡视频一区二区| 少妇高潮的动态图| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 亚洲国产精品成人久久小说| 亚洲国产精品999| 男女啪啪激烈高潮av片| 又大又黄又爽视频免费| 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 最后的刺客免费高清国语| 3wmmmm亚洲av在线观看| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图 | 联通29元200g的流量卡| 蜜桃在线观看..| 午夜福利网站1000一区二区三区| 精品久久久久久电影网| 亚洲欧美日韩东京热| 岛国毛片在线播放| 成人黄色视频免费在线看| 男女国产视频网站| 下体分泌物呈黄色| 观看免费一级毛片| 成人亚洲精品一区在线观看 | 亚洲aⅴ乱码一区二区在线播放| 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 国产一区二区三区综合在线观看 | av卡一久久| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 久久av网站| 99精国产麻豆久久婷婷| 国产免费一级a男人的天堂| 精品国产露脸久久av麻豆| 国产成人freesex在线| 伊人久久精品亚洲午夜| 大陆偷拍与自拍| 少妇人妻一区二区三区视频| 欧美另类一区| 一本久久精品| 在线亚洲精品国产二区图片欧美 | av一本久久久久| 亚洲av.av天堂| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 亚洲精品一二三| 最近中文字幕2019免费版| 国产黄色免费在线视频| 777米奇影视久久| 精品久久久久久久末码| 亚洲国产最新在线播放| av免费观看日本| 精品久久久久久久久亚洲| 国产成人精品婷婷| 黄色怎么调成土黄色| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久| 大片免费播放器 马上看| 国产乱人偷精品视频| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 在线亚洲精品国产二区图片欧美 | 久久 成人 亚洲| 国产v大片淫在线免费观看| 国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 国产精品av视频在线免费观看| 国产精品欧美亚洲77777| 久久国内精品自在自线图片| 日韩一区二区三区影片| 啦啦啦在线观看免费高清www| 我的老师免费观看完整版| 国产精品无大码| 美女主播在线视频| 一级二级三级毛片免费看| 欧美日韩国产mv在线观看视频 | 亚洲在久久综合| 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图综合在线观看| 免费黄网站久久成人精品| 岛国毛片在线播放| 精品人妻偷拍中文字幕| 我的女老师完整版在线观看| 亚洲综合精品二区| 国产 一区 欧美 日韩| 99精国产麻豆久久婷婷| 高清日韩中文字幕在线| 好男人视频免费观看在线| av黄色大香蕉| 欧美最新免费一区二区三区| 十分钟在线观看高清视频www | 日本vs欧美在线观看视频 | 多毛熟女@视频| 久久久亚洲精品成人影院| 久热这里只有精品99| 色网站视频免费| 久久99热这里只有精品18| 亚洲精品久久午夜乱码| 一本久久精品| 少妇精品久久久久久久| 老司机影院毛片| 丰满人妻一区二区三区视频av| 啦啦啦视频在线资源免费观看| 高清欧美精品videossex| 特大巨黑吊av在线直播| 成人高潮视频无遮挡免费网站| 亚洲精品自拍成人| 国产精品欧美亚洲77777| 亚洲av免费高清在线观看| 性色av一级| 一个人免费看片子| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 极品少妇高潮喷水抽搐| 欧美高清成人免费视频www| 国产精品麻豆人妻色哟哟久久| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 毛片女人毛片| 最近最新中文字幕免费大全7| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 国产成人91sexporn| 我要看黄色一级片免费的| 国产日韩欧美亚洲二区| 在线天堂最新版资源| 日韩大片免费观看网站| 99久久精品国产国产毛片| 中文字幕久久专区| 天天躁夜夜躁狠狠久久av| 亚洲精品国产成人久久av| 97精品久久久久久久久久精品| 少妇的逼水好多| 亚洲精品久久久久久婷婷小说| 一级毛片久久久久久久久女| 一级av片app| 久久av网站| 国产精品国产三级专区第一集| 中国国产av一级| 免费在线观看成人毛片| 精品一区二区三卡| 国产免费福利视频在线观看| 日韩大片免费观看网站| 在线 av 中文字幕| 赤兔流量卡办理| 国产一区二区三区av在线| 偷拍熟女少妇极品色| 香蕉精品网在线| 成人亚洲精品一区在线观看 | 国产精品精品国产色婷婷| 久久久久久久国产电影| 夫妻性生交免费视频一级片| 日日撸夜夜添| 亚洲av免费高清在线观看| 精品视频人人做人人爽| 午夜福利在线观看免费完整高清在| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频 | 国产免费福利视频在线观看| 有码 亚洲区| 免费在线观看成人毛片| 国产欧美亚洲国产| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 哪个播放器可以免费观看大片| 亚洲色图综合在线观看| 在现免费观看毛片| 舔av片在线| 美女视频免费永久观看网站| 中文资源天堂在线| 亚洲精品久久久久久婷婷小说| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 极品少妇高潮喷水抽搐| 只有这里有精品99| 亚洲综合精品二区| 亚洲精品一二三| 亚洲怡红院男人天堂| 久久久久精品性色| 一个人看视频在线观看www免费| 精品一区二区免费观看| 国产精品久久久久久精品电影小说 | 日韩电影二区| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 久久久欧美国产精品| 国产精品成人在线| 久久97久久精品| 午夜精品国产一区二区电影| 成人亚洲欧美一区二区av| 一区二区av电影网| 欧美性感艳星| 日韩中文字幕视频在线看片 | 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 最新中文字幕久久久久| 国产综合精华液| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 麻豆国产97在线/欧美| 亚洲国产精品成人久久小说| 精品一品国产午夜福利视频| 久久精品国产亚洲av涩爱| 干丝袜人妻中文字幕| 免费看不卡的av| 精品国产乱码久久久久久小说| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 国产午夜精品久久久久久一区二区三区| 久久97久久精品| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 能在线免费看毛片的网站| 在线观看一区二区三区激情| 午夜日本视频在线| 一区二区三区免费毛片| 男女无遮挡免费网站观看| 自拍偷自拍亚洲精品老妇| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 99精国产麻豆久久婷婷| 亚洲av.av天堂| 久久 成人 亚洲| 又粗又硬又长又爽又黄的视频| 色婷婷久久久亚洲欧美| 亚洲精华国产精华液的使用体验| 国产乱人视频| 国产精品久久久久久av不卡| 午夜视频国产福利| 精品久久久久久电影网| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 偷拍熟女少妇极品色| 免费少妇av软件| 日本与韩国留学比较| 久久 成人 亚洲| 国产高清三级在线| 我的老师免费观看完整版| 久久久久人妻精品一区果冻| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 午夜视频国产福利| 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 老司机影院毛片| 久久人人爽av亚洲精品天堂 | 亚洲一区二区三区欧美精品| 精品久久久久久久末码| 久久久欧美国产精品| 久久久成人免费电影| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 亚洲国产精品成人久久小说| 国产成人精品福利久久| 国产精品av视频在线免费观看| 91久久精品电影网| 精品人妻视频免费看| 校园人妻丝袜中文字幕| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 婷婷色综合www| 欧美+日韩+精品| 99久久精品热视频| 日本欧美国产在线视频| 日韩在线高清观看一区二区三区| 美女国产视频在线观看| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 亚洲内射少妇av| 久久久久久久大尺度免费视频| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放| 久久婷婷青草| 一本色道久久久久久精品综合| 欧美丝袜亚洲另类| 久久久久国产网址| 亚州av有码| 热99国产精品久久久久久7| 小蜜桃在线观看免费完整版高清| 国产精品福利在线免费观看| 婷婷色综合www| 色综合色国产| 中国国产av一级| 午夜免费观看性视频| 我的女老师完整版在线观看| 欧美 日韩 精品 国产| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 少妇精品久久久久久久| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 国产黄片视频在线免费观看| 精品一品国产午夜福利视频| 国产精品无大码| 啦啦啦在线观看免费高清www| 我的女老师完整版在线观看| 国产人妻一区二区三区在| 国产精品不卡视频一区二区| 中国三级夫妇交换| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 九色成人免费人妻av| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添av毛片| 日韩中文字幕视频在线看片 | av在线蜜桃| 国产av精品麻豆| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜 | 午夜视频国产福利| 精品国产三级普通话版| 国产美女午夜福利| 一个人看的www免费观看视频| 免费av中文字幕在线| 久久久久久久国产电影| 亚洲av成人精品一区久久| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 99久国产av精品国产电影| 久久国产精品大桥未久av | www.色视频.com| 亚洲成人一二三区av| 亚洲精品日韩在线中文字幕| a 毛片基地| 日本免费在线观看一区| av在线播放精品| av专区在线播放| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| 国产乱人视频| 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 不卡视频在线观看欧美| 免费av中文字幕在线| 精品亚洲成a人片在线观看 | videossex国产| 另类亚洲欧美激情| 亚洲美女黄色视频免费看| 在线观看三级黄色| 国产69精品久久久久777片| 久久av网站| 搡女人真爽免费视频火全软件| 三级国产精品片| 两个人的视频大全免费| 日韩欧美精品免费久久| 人妻一区二区av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区在线观看99| 成人特级av手机在线观看| 国产日韩欧美亚洲二区| av.在线天堂| 欧美zozozo另类| 黄色一级大片看看| 国产av国产精品国产| 伊人久久精品亚洲午夜| 色视频在线一区二区三区| 亚洲久久久国产精品| 视频中文字幕在线观看| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 国产伦在线观看视频一区| 欧美性感艳星| 高清视频免费观看一区二区| 18禁在线播放成人免费| 欧美日本视频| 久久久成人免费电影| 尤物成人国产欧美一区二区三区| 日本wwww免费看| 国产欧美日韩一区二区三区在线 | 色5月婷婷丁香| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 欧美bdsm另类| 国产精品国产三级国产专区5o| 久久热精品热| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 国产精品国产av在线观看| 久久久成人免费电影| 99热这里只有精品一区| 99久久精品热视频| 精品亚洲成国产av| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 纵有疾风起免费观看全集完整版| 插阴视频在线观看视频| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 蜜桃在线观看..| 国产视频首页在线观看| 18+在线观看网站| 精品一区在线观看国产| 一级毛片aaaaaa免费看小| 爱豆传媒免费全集在线观看| 老熟女久久久| 自拍偷自拍亚洲精品老妇| 天堂俺去俺来也www色官网| 2022亚洲国产成人精品| 青春草国产在线视频| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 免费黄色在线免费观看| 亚洲精品乱码久久久久久按摩| 99久久精品国产国产毛片| 国产男女超爽视频在线观看| 午夜免费鲁丝| 久久久久久久亚洲中文字幕| 99热国产这里只有精品6| 国产中年淑女户外野战色| 国产精品一区二区性色av| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 国产精品精品国产色婷婷| 日韩在线高清观看一区二区三区| 国产精品三级大全| 联通29元200g的流量卡| xxx大片免费视频| 黄色欧美视频在线观看| 精品久久久久久久久av| 另类亚洲欧美激情| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| av卡一久久| 高清午夜精品一区二区三区| 99久久精品国产国产毛片| 两个人的视频大全免费| 狂野欧美激情性bbbbbb| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说 | 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| 一级毛片久久久久久久久女| 大香蕉久久网| 女人十人毛片免费观看3o分钟| 久久久久久久久久久免费av| 久久青草综合色| 亚洲中文av在线| 精品久久久精品久久久| av在线蜜桃| 秋霞在线观看毛片| 少妇人妻一区二区三区视频| 国产一级毛片在线| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲高清精品| 精品一区二区免费观看| 国产成人a区在线观看| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 国精品久久久久久国模美| 女性生殖器流出的白浆| 嫩草影院入口| 99视频精品全部免费 在线| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 婷婷色综合www| 1000部很黄的大片| 99热6这里只有精品| 日日啪夜夜撸| 欧美3d第一页| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区| 少妇熟女欧美另类| 国产精品国产三级专区第一集| 欧美3d第一页| 日韩伦理黄色片| 尤物成人国产欧美一区二区三区| 十分钟在线观看高清视频www | 久久午夜福利片| 高清午夜精品一区二区三区| 国内精品宾馆在线| 午夜福利高清视频| 国产美女午夜福利| 在线观看免费日韩欧美大片 | 97在线视频观看| 在线精品无人区一区二区三 | 免费少妇av软件| 午夜免费观看性视频| 国产男人的电影天堂91| 99久久精品一区二区三区| 中国国产av一级| 人妻制服诱惑在线中文字幕| 国模一区二区三区四区视频| 精品国产露脸久久av麻豆| 国产老妇伦熟女老妇高清| 国产午夜精品久久久久久一区二区三区| 熟妇人妻不卡中文字幕| 国产成人精品婷婷| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 久久av网站| 在线观看免费高清a一片| 欧美三级亚洲精品| 久久久久精品性色| 久久久午夜欧美精品| 国产精品久久久久久精品古装| av免费观看日本| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 伦理电影免费视频| 亚洲最大成人中文| 大片免费播放器 马上看| 身体一侧抽搐| 建设人人有责人人尽责人人享有的 | 国产av精品麻豆| 麻豆国产97在线/欧美| 久久 成人 亚洲| 看十八女毛片水多多多| 色婷婷久久久亚洲欧美| 久久99蜜桃精品久久| 久久精品国产亚洲av天美| av又黄又爽大尺度在线免费看| 日韩一区二区视频免费看| 青青草视频在线视频观看| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av天美| 多毛熟女@视频| 成人亚洲精品一区在线观看 | 国产免费又黄又爽又色| 欧美性感艳星| 五月开心婷婷网|