• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Habitat evaluation for target species following deep-waterchannel project in the Yangtze River

    2015-03-01 08:07:33XuSudongLiRuiYinKai

    Xu Sudong  Li Rui  Yin Kai

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    Habitat evaluation for target species following deep-waterchannel project in the Yangtze River

    Xu Sudong Li Rui Yin Kai

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Abstract:In order to optimize the design of a 12.5 m deep-water channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.

    Key words:deep-water channel project; hydrodynamic model; habitat suitability index; ecological engineering

    Received 2015-07-27.

    Biography:Xu Sudong (1980—), male, doctor, associate professor, sudongxu@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.51209040, 51279134), the Natural Science Foundation of Jiangsu Province (No.BK2012341).

    Citation:Xu Sudong, Li Rui, Yin Kai. Habitat evaluation for target species following deep-water channel project in the Yangtze River[J].Journal of Southeast University (English Edition),2015,31(4):559-565.[doi:10.3969/j.issn.1003-7985.2015.04.022]

    In recent years, the human impact on the river ecosystem has gained increasing concern. Human activities, such as dam construction, dredging, channel regulation, can affect the river patterns and thus leave a significant impact on the river ecosystem[1]. The number of local species may decline or disappear due to human disruption. A major alteration of the river ecosystem is the hydrodynamic change caused by spur dikes and submerged dikes. The spur dikes and submerged dikes affect the velocity, depth, and substrate distributions which can detrimentally alter the physical habitat. Hydrologic processes are interconnected with biological communities[2]. Therefore, it is necessary to analyze, assess and quantify the impact of channel regulation works. With the sustained and rapid growth of the national economy in the Yangtze River Delta, a 12.5 m deep-water channel project was required urgently to take advantage of the ports along the Yangtze River and the deep-water channels[3]. Spur dikes and submerged dikes were constructed with the necessary dredging to scarify the requirements of the navigation for large tonnages carriers. Therefore, it is necessary to select an effective method to assess the impact of human modifications on the surrounding species.

    The habitat suitability index (HSI) model is one such way to monitor and predict changes in the ecosystem after channel regulation works. The HSI model was developed in the 1970s by the US Fish and Wildlife Service (USFWS)[4], which can define functioning relationships between animals and habitat variables based on the ecological theories on habitat selection, niche differentiation and restriction factors[5]. The HSI model is based on the assumptions that species will select and use areas that are best suited for a particular activity during a life stage, resulting in full use of a high quality habitat[6]. Thus, the HSI model was applied specifically to evaluate the effects of the main environment factors on species distribution and density. The lack of attention paid to the effects of artificial embankments and dams on their surrounding habitats resulted in a significant disturbance of the ecosystems of several rivers in China[7]. A HSI model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). The change in suitability of the model is mostly attributed to the change in river depth following dam removal for both the fish and invertebrate species[8]. The fish habitat model of Schizothorax chongi coupled with the water environmental model was developed according to the relationship between fish and the water environment factors. By running the model, river ecological flow was calculated based on the fish habitat conservation in the Jinping River Bend of Yalong River[9]. Yi et al.[7]created a habitat suitability index model combined with a two-dimensional mathematical model and used it to evaluate the impacts of the Gezhouba Dam and Three Gorges Project on Chinese sturgeon spawning sites. The results show that the impoundment of the Three Gorges Project has a significant effect on the habitat suitability index of Chinese sturgeon. However, the influence on the HSI of the target species generated by large-scale channel regulation was rarely discussed. In this paper, the ADCIRC+HSI model is employed to simulate the flow field changes generated by regulation works to evaluate the habitat for target species.

    1Study Area and Species

    1.1 Study area

    The study area (see Fig.1) is the Yangtze River next to the estuary from Tiansheng Port to Dangqianzha, with an area of 658 km2, which is an intertidal zone affected by runoff and the tide. The development of the economy promoted port building along the river and shipping demand. Channels in this area connect the Shanghai port with ports along the river, the depth of which is less than 12.5 m caused by an unstable river regime and swale changes. The deep-water channel regulations were established in August 2012 and aimed to achieve the navigation of 50 000 t ocean-going vessels. There are abundant fishery resources in the Yangtze River, and benthos play a significant role in purifying water pollution[10]. Target fish and benthos were selected to evaluate the impact of deep-water channel regulation engineering.

    Fig.1 Map of the study area located in the Yangtze River Delta near the estuary

    1.2 Target fish and target benthos

    Coilia nasus is one of typical ecological fishes in the Yangtze River estuary[11]. Coilia nasus are divided into two categories. One migrates from the ocean to the estuary in certain seasons, and the other settles in inland lakes[12].The waterways, along the Yangtze River downstream from Nanjing to Nantong, are usually the best concentrated living place for the fishing season of Coilia nasus[13], which is chosen as the target fish.

    Corbicula fluminea, also named the Asian clam, has an intensive distribution in the Yangtze River Delta[14]. Benthonic mollusks are the indicators of the aquatic environment. Corbicula fluminea have the ability to accumulate heavy metals and toxic substances, and can be found in sandy and muddy bottomed streams, rivers, ponds, lakes, and man-made canals[15]. Feeding on benthic algae, plankton and organic debris, Corbicula fluminea are omnivorous. Thus, Corbicula fluminea play an important role in ecological balance and are chosen as the target benthos.

    2Model Description

    2.1 Hydrodynamic model

    Hydraulic conditions, such as water surface elevations and vertically averaged velocities, are computed by the fully nonlinear two-dimensional, depth-integrated option of the ADCIRC model[16]. The ADCIRC model has had many successful applications in coastal and estuary numerical modeling[17].

    The governing equations are described in space using the linear finite element method and in time using the finite difference method. The basic governing continuity equation of the model is

    (1)

    and the momentum equations of the model are

    (2)

    (3)

    wheretis the time;x,yare the horizontal coordinates;ζis the free surface elevation;Uis the depth-averaged horizontal velocity;Vis the depth-averaged horizontal velocity;His the total water column depth,h+ζ;his the bathymetric depth;fis the Coriolis parameter;gis the acceleration due to gravity;ηis the Newtonian equilibrium tide potential;αis the earth elasticity factor;ρ0is the reference density of water;psis the atmospheric pressure at the free surface;τ*is the bottom stress;τsX,τsYare the applied free surface stress;MX,MYare the depth-integrated momentum dispersion.

    2.2 Habitat suitability model

    Generally, the habitat suitability model setup consists of five stages: 1) Obtain habitat data; 2) Setup the SI curve; 3) Give a weight to SI; 4) Choose a HSI calculation method and obtain the composite HSI score; 5) Scatterplot HSI[18]. It is assumed that the species and population directly choose a suitable habitat, meanwhile there is a linear relationship between the environment variables (food, water and abiotic factors) and the population[19].

    The minimum model (MINM) and geometric mean model (GMM) are the basic methods of HSI[20]. Depending on the minimum of various SI, the MINM is applied to the establishment and evaluation of fishery reserves, and the ecological system maintenance and management[21-22]. The GMM is one of the HSI model mostly applied to resource estimation and fishery analysis[23-24]. The GMM is not affected by the extreme of SI with various SI at the same level.

    H=min(S1,S2,…,Sn)

    (4)

    (5)

    2.2.1Coilia nasus suitability

    Variables which affect growth, survival, abundance, and other measures of Coilia nasus well-being, are considered in the creation of this model. Four aquatic ecological factors, which influence the habitat quality of Coilia nasus juveniles, are selected for the modeling as follows: 1) Water level amplitude for juvenilesV1; 2) Flow velocity for juvenilesV2; 3) Water temperature for adults and juvenilesV3; 4) Dissolved oxygen for juvenilesV4.

    The suitable ranges and suitability index (SI) curves of the four main ecological factors are proposed based on the previous research. As shown in Fig.2, the suitability index curves for the habitat of Coilia nasus are established. A GMM is developed by analyzing a combination of these ecological factors. This model can be used to evaluate the habitat changes caused by deep-water channel regulation works.

    Fig.2 Suitability index curves for habitat of Coilia nasus. (a) Water level amplitude; (b) Velocity; (c) Temperature; (d) Dissolved oxygen

    The HSI is defined for each grid in the simulation season. The habitat suitability index is

    HSI=(V1V2V3V4)1/4

    (6)

    whereV1toV4are the SIs. The SI curve quantifies physical habitat, such as water temperature and flow velocity. The habitat suitability ranges from unsuitable (0) to optimal habitat suitability (1). The intermediate values represent the suitability range based on a specified hydraulic variable.

    2.2.2Corbicula fluminea suitability

    Corbicula fluminea live in the rivers and lakes with sand and mud substrate. We find its distribution density at the joining point between the river and ocean. Five aquatic ecological factors are selected for the modeling as follows: 1) Water temperature (V1); 2) Water depth (V2); 3) Flow velocity (V3); 4) Substrate types (V4); 4) Substrate depth (V5).

    The components of this model are determined by the geometric mean of variables regardless of the values of the other habitat variables. The habitat suitability of flow conditionSFCis determined by the geometric mean variables (V1,V2,V3); while the habitat suitability of substrate conditionSSCis determined by the geometric mean variables (V4,V5).

    Suitability index curves established for the habitat of Corbicula fluminea are shown in Fig.3. A MINM was developed by analyzing the combination of these ecological factors. The HSI is defined for each grid in the simulation season. The habitat suitability index is

    HSI=min(SFC,SSC)

    (7)

    and

    SFC=(V1V2V3)1/3

    (8)

    SSC=(V4V5)1/2

    (9)

    The intermediate values represent the suitability range based on a specified hydraulic variable.

    3Model Setup and Verification

    3.1 Model setup

    The model domain is shown in Fig.3, which covers

    Fig.3 Suitability index curves for habitat of Corbicula fluminea. (a) Temperature; (b) Water depth; (c) Velocity; (d) Subtrate; (e) Subtrate depth fluminea

    the Yangtze River next to the estuary from Tiansheng Port to Dangqianzha. Three types of boundaries, namely, the inlet, outlet and solid walls are considered in the hydrodynamic model. The same unstructured finite-element mesh and bathymetry of this studied domain are developed for water depth and vertically averaged velocities. Meanwhile, habitat suitability index models calculating the final HSI score are programed, and the models are integrated with flow velocity and water depth.

    3.2 Hydrodynamic model verification

    To assess the modeling accuracy, the numerical model system is initially applied to simulate the hydrodynamic conditions. The stations for model verification are shown in Fig.4.

    Fig.4 Stations used for verification

    The hydrodynamic model is verified by comparing the observed tide level and velocity with the model simulation results in February 1998. As shown in Fig.5 and Fig.6, the tide levels of Xuliujing and the velocity of Yanglin stations match well with the observed datasets. The verified hydrodynamic model can be used in the following sections.

    Fig.5 Comparison between model-predicted and observed tide levels of Xuliujing station

    3.3 Habitat suitability index model verification

    The velocities and water depth were simulated during

    Fig.6 Comparison between the model-predicted and observed velocity of Yanglin station

    the 27th and 28th July, 2013 using the ADCIRC hydrodynamic model. Observed datasets include water temperature, dissolved oxygen, the density of the target species, etc. With simulated hydrodynamic conditions and observed datasets, the HSI score was calculated using the habitat suitability model. Simulated HSI and the observed density of Coilia nasus anchovy were fitted. The same method was taken to verify the Corbicula fluminea HSI model during the 10th and 11th November, 2012. As shown in Fig.7, the model simulation results of the two target species both have a good correspondence with the observed datasets. The association coefficient of the two datasets are 0.787 and 0.665, respectively, which proves that the HSI models calculated according to the above mentioned SI curves are practical.

    (a)

    (b)Fig.7 Fitting between model-predicted HSI and observed density. (a) Coilia nasus; (b) Corbicula fluminea

    4Effect of Regulation Project on HSI

    4.1 Hydrodynamic conditions change

    After a series verifications, the model can be applied to simulate the hydrodynamic conditions of the study area. The flow fields of pre- and post- regulation at ebb tide were simulated. The flow fields visualized are shown in Fig.8. Velocity changes occur around the spur dike and submerged dike. Particularly, in the R2area, regulation works influence the velocity field significantly, and decrease the velocity by as much as 2.0 m/s. In the R1area, the velocity changes range from 0 to 0.5 m/s. Meanwhile, the bodies of the spur dike and submerged dike decrease the water depth, and the bottom of the regulation works are covered by concrete structures. Other areas show little change. As an important ecological factor, the changes of the flow velocity can definitely affect the final HSI score.

    (a)

    (b)Fig.8 Velocity at ebb tide from the hydrodynamic model in the study area. (a) Pre-regulation; (b) Post-regulation

    4.2 Coilia nasus habitat evaluation

    The value of HSI can be calculated for pre- and post-regulation conditions of the 12.5 m deep-water channel. The visualization of the model clearly indicates the changes in the study area before and after channel regulation. As shown in Fig.9, most regions have a high HSI value approaching 0.8 to 0.9, while shallow regions and left bank upstream have a relatively low HSI value approaching 0. There is little change in the Coilia nasus HSI value from the pre-regulation to post-regulation period in most areas, while results differ around spur dike and submerged breakwater. The suitability decreases in the regulation areas of both R1and R2, where velocity suitability and water level amplitude suitability decreases with bottom shoaling. There is a small area behind the spur dike where the HSI score increases, mainly due to the decrease in the flow velocity.

    (a)

    (b)Fig.9 HSIs of Coilia nasus from the coupled model in the study area. (a) Pre-regulation; (b) Post-regulation

    4.3 Corbicula fluminea habitat evaluation

    Corbicula fluminea’s results from the model evaluation are different from Coilia nasus. As shown in Fig.10, the HSI score of most regions approaches 0.9, and some shoal areas have a maximum value approaching 1.0. The mainly affected regions remain the regulation areas. There is an obvious increase of HSI score in the R1area.

    5Conclusion

    This paper builds a hydrodynamic and habitat suitability model to evaluate the habitat for the target species

    (a)

    (b)Fig.10 HSIs of Corbicula fluminea from the coupled model in the study area. (a) Pre-regulation; (b) Post-regulation

    following deep-water channel regulations in the Yangtze River. Both two models are verified by observed datasets. Suitability index curves for the habitat of Coilia nasus and Corbicula fluminea are summarized and applied in the HSI models. With the coupled eco-hydrodynamic model, the comparison analysis of the habitat changes from the pre-regulation to post-regulation period indicates an improvement in potential habitat availability behind the spur dike for the two species studied.

    The use of habitat suitability models to predict changes in river networks following disturbances or restoration efforts is a fast and effective method in river systems. The models allow researchers to forecast hydrodynamic and ecological impacts caused by different engineering activities in a river system, which can prove the accuracy of regulation plans and provide pertinent suggestions for ecosystem protection. Advancements in coupling of HSI models with the ADCIRC hydrodynamic model offer a novel prediction tool for the transverse distribution of habitats. This model can be applied to more similar engineering cases in the Yangtze River.

    References

    [1]Takayuki N, Yoshiki S, Kouki O, et al. Evaluation of suitable hydraulic conditions for spawning of ayu with horizontal 2D numerical simulation and PHABSIM[J].EcologicalModelling, 2008, 215(1): 133-143.

    [2]Pringle C M. Hydrologic connectivity and the management of biological reserves: a global perspective[J].EcologicalApplications, 2001, 11(4): 981-998.

    [3]Xiao D X. Introduction of 12.5 m deep-water channel construction project and its first phase of the Yangtze River below Nanjing city[J].Port&WaterwayEngineering, 2012, 11: 1-4. (in Chinese)

    [4]USFWS (US Fish and Wildlife Service). Habitat as a basis for environmental assessment[R]. Washington, DC: USFWS, 1980.

    [5]Morrison M L, Marcot B G, Mannan R W.Wildlife-habitatrelationships:conceptsandapplications[M]. Madison: University of Wisconsin Press, 1998.

    [6]Kliskey A D, Lofroth E C, Thompson W A, et al. Simulating and evaluating alternative resource-use strategies using GIS-based habitat suitability indices[J].Landscape&UrbanPlanning, 1999, 45(99): 163-175.

    [7]Yi Y J, Wang Z Y, Yang Z F. Two-dimensional habitat modeling of Chinese sturgeon spawning sites[J].EcologicalModelling, 2010(5): 864-875.

    [8]Tomsic C A, Granata T C, Murphy R P, et al. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal[J].EcologicalEngineering, 2007, 30(3): 215-230.

    [9]Li R N, Chen Q W, Chen D. Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams[J].ScienceChinaTechnologicalSciences, 2011, 54(Sup): 54-63.

    [10]Chen X H. Research of hydrobiology in the Yangtze River in Jiangsu Province [D]. Nanjing: Fisheries College of Nanjing Agriculture University, 2007. (in Chinese)

    [11]Jiang T, Yang J, Liu H B, et al. A comparative study of the morphology of sagittal otolith in Coilia nasus, Coilia mystus and Coilia nasus taihuensis[J].MarineSciences, 2011, 35(3): 23-31. (in Chinese)

    [12]Yuan C M, Qin A L. Ecological habits and distribution of coilia along the chinese coast and its changes of output[J].MarineSciences, 1984, 8: 35-37. (in Chinese)

    [13]Huang R S. Coilia nasus biological characteristics and the present situation of resources and protection countermeasures[J].ReservoirFisheries, 2005, 25(2): 33-33. (in Chinese)

    [14]Zhang H C, Chen Y, Fan H F, et al. Climatic background of modern Cobicula fluminea and the stable isotopes of shells from the representative areas in continental China[J].MarineGeology&QuaternaryGeology, 2007, 32(1): 87-94. (in Chinese)

    [15]Liu M, Xiong B X. Ecological characteristics of corbicula fluminea and its effect on the heavy metals accumulation[J].JournalofAnhuiAgriculturalSciences, 2008, 36(1): 221-224. (in Chinese)

    [16]Luettich R A, Westerink J J. figuretion and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX [EB/OL]. (2004-08-12) [2015-10-27].http://www.unc.edu/ims/adcirc/publications/2004/2004_Luettich.pdf.

    [17]Xu S D, Huang W R. Integrated hydrodynamic modeling and frequency analysis for predicting 1% storm surge[J].JournalofCoastalResearch, 2008(52): 253-260.

    [18]Jin L R, Sun K P. Research advances in habitat suitability index model[J].ChineseJournalofEcology, 2008, 27(5): 841-846. (in Chinese)

    [19]Van Horne B. Density as a misleading indicator of habitat quality[J].WildlifeManage, 1983(4): 893-901.

    [20]Chen X, Tian S, Chen Y, et al. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommostrephes bartramii) in the Northwest Pacific Ocean[J].FisheryBulletin, 2010, 108(1): 1-14.

    [21]Yi Y J, Wang Z Y, Yao S M. Habitat suitability model for evaluating Chinese sturgeon spawning sites[J].JournalofTsinghuaUniversity(ScienceandTechnology), 2008, 48(3): 340-343. (in Chinese)

    [22]Y Y J, Wang Z Y, Lu Y J. Habitat suitability index model for Chinese Sturgeon in the Yangtze River[J].AdvancesinWaterScience, 2007, 18(4): 538-543. (in Chinese)

    [23]Tian S Q, Chen X J, Chen Y, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean[J].FisheriesResearch, 2009, 95(2): 181-188.

    [24]Tomsic C, Granata T, Murphy R, et al. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal[J].EcologicalEngineering, 2007, 30(3): 215-230.

    doi:10.3969/j.issn.1003-7985.2015.04.022

    国产精品爽爽va在线观看网站| 亚洲av一区综合| 美女xxoo啪啪120秒动态图 | 亚洲一区高清亚洲精品| 一本久久中文字幕| www.www免费av| 欧美成人一区二区免费高清观看| 欧美xxxx黑人xx丫x性爽| 欧美激情在线99| 日韩高清综合在线| 真人一进一出gif抽搐免费| 国内精品久久久久久久电影| 成年免费大片在线观看| 色av中文字幕| 人妻丰满熟妇av一区二区三区| 99久久精品一区二区三区| 亚洲在线自拍视频| 免费在线观看日本一区| 亚洲三级黄色毛片| 在线观看舔阴道视频| 欧美日韩瑟瑟在线播放| 熟妇人妻久久中文字幕3abv| 成人国产综合亚洲| 中文亚洲av片在线观看爽| 成人国产一区最新在线观看| 久久人人精品亚洲av| av国产免费在线观看| 久久久久久久久大av| 国产精品日韩av在线免费观看| 国产一区二区激情短视频| av视频在线观看入口| 51国产日韩欧美| 窝窝影院91人妻| 国产免费一级a男人的天堂| 国产成年人精品一区二区| 一边摸一边抽搐一进一小说| 国内久久婷婷六月综合欲色啪| 欧美激情久久久久久爽电影| www日本黄色视频网| 免费大片18禁| 免费黄网站久久成人精品 | 久久午夜福利片| 特大巨黑吊av在线直播| .国产精品久久| 热99在线观看视频| 亚洲最大成人手机在线| 夜夜躁狠狠躁天天躁| 国产精品久久久久久久电影| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| АⅤ资源中文在线天堂| 久久久久性生活片| 日韩国内少妇激情av| 18禁黄网站禁片免费观看直播| 亚洲av一区综合| 国产成人欧美在线观看| 精品福利观看| 深夜精品福利| 一级作爱视频免费观看| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| av专区在线播放| 精品一区二区三区视频在线观看免费| 亚洲自偷自拍三级| 国产美女午夜福利| 国产亚洲精品综合一区在线观看| 国产av在哪里看| 国产精品精品国产色婷婷| 国内精品久久久久久久电影| 亚洲一区二区三区不卡视频| 18禁黄网站禁片免费观看直播| av视频在线观看入口| 亚洲久久久久久中文字幕| 欧美不卡视频在线免费观看| 亚洲精品成人久久久久久| 国产伦人伦偷精品视频| 又爽又黄a免费视频| 99视频精品全部免费 在线| www.色视频.com| 日韩欧美精品免费久久 | 有码 亚洲区| 51国产日韩欧美| 在线播放无遮挡| 亚洲精品一区av在线观看| 深爱激情五月婷婷| 内地一区二区视频在线| 国产午夜福利久久久久久| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 欧美乱色亚洲激情| 久久精品国产清高在天天线| 亚洲av免费高清在线观看| 看免费av毛片| 日本与韩国留学比较| 嫩草影院新地址| 色av中文字幕| 国内精品一区二区在线观看| 欧美精品啪啪一区二区三区| 国产伦在线观看视频一区| 不卡一级毛片| 国产高清激情床上av| 嫩草影院精品99| 日韩欧美精品免费久久 | 午夜福利在线观看免费完整高清在 | 国产高清三级在线| 久久久久久久亚洲中文字幕 | 欧美日韩乱码在线| 好男人在线观看高清免费视频| 黄色丝袜av网址大全| xxxwww97欧美| 好看av亚洲va欧美ⅴa在| 久久欧美精品欧美久久欧美| 我的女老师完整版在线观看| 亚洲精华国产精华精| 又爽又黄无遮挡网站| 精品久久久久久久久久久久久| 久久久久免费精品人妻一区二区| 亚洲色图av天堂| 国语自产精品视频在线第100页| 少妇的逼水好多| 日韩精品中文字幕看吧| 日日摸夜夜添夜夜添小说| 国产精品亚洲一级av第二区| 最好的美女福利视频网| 在线观看一区二区三区| 免费看美女性在线毛片视频| 久久九九热精品免费| 亚洲不卡免费看| 欧美色欧美亚洲另类二区| 欧美高清性xxxxhd video| 很黄的视频免费| 免费人成在线观看视频色| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件 | 亚洲精华国产精华精| 午夜激情福利司机影院| 久久久精品大字幕| 亚洲国产精品合色在线| 午夜福利在线在线| 国产一区二区激情短视频| 国产欧美日韩一区二区精品| 国产在线精品亚洲第一网站| 色综合婷婷激情| 怎么达到女性高潮| 特级一级黄色大片| 自拍偷自拍亚洲精品老妇| 久久中文看片网| 我要搜黄色片| 麻豆国产av国片精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久中文| 久久精品人妻少妇| 久久中文看片网| 高清毛片免费观看视频网站| 校园春色视频在线观看| 99久久精品一区二区三区| av福利片在线观看| av国产免费在线观看| 中文字幕熟女人妻在线| 免费看美女性在线毛片视频| 一级黄片播放器| 波多野结衣巨乳人妻| 黄色配什么色好看| 美女免费视频网站| av欧美777| 欧美日韩乱码在线| 69人妻影院| 日本黄色片子视频| 人人妻人人看人人澡| 91字幕亚洲| 国产精品日韩av在线免费观看| 亚洲成av人片免费观看| 国产 一区 欧美 日韩| 人妻制服诱惑在线中文字幕| 国产老妇女一区| av欧美777| 亚洲欧美日韩卡通动漫| 亚洲国产色片| 国产大屁股一区二区在线视频| 91九色精品人成在线观看| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 嫁个100分男人电影在线观看| 别揉我奶头 嗯啊视频| 国产精品一区二区三区四区免费观看 | 国产亚洲欧美在线一区二区| www.www免费av| 尤物成人国产欧美一区二区三区| 欧美激情久久久久久爽电影| 亚洲精品日韩av片在线观看| 俄罗斯特黄特色一大片| 欧美日韩福利视频一区二区| 高清在线国产一区| 免费在线观看影片大全网站| 亚州av有码| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| 日韩欧美在线二视频| 欧美激情久久久久久爽电影| 成人三级黄色视频| 偷拍熟女少妇极品色| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 日韩成人在线观看一区二区三区| 极品教师在线免费播放| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 亚洲第一区二区三区不卡| 热99在线观看视频| 一个人观看的视频www高清免费观看| 国产精品亚洲av一区麻豆| 日日摸夜夜添夜夜添av毛片 | 我的老师免费观看完整版| 亚洲激情在线av| 免费人成视频x8x8入口观看| 国产视频内射| 欧美+日韩+精品| 亚洲自拍偷在线| 我要看日韩黄色一级片| 日韩有码中文字幕| 国产精品一区二区免费欧美| 精品不卡国产一区二区三区| www日本黄色视频网| 色播亚洲综合网| 精品午夜福利视频在线观看一区| 内射极品少妇av片p| 亚洲精品成人久久久久久| 综合色av麻豆| 首页视频小说图片口味搜索| 国产伦一二天堂av在线观看| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 免费看光身美女| 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 日日摸夜夜添夜夜添av毛片 | 禁无遮挡网站| 国产精品1区2区在线观看.| 欧美性猛交黑人性爽| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区 | 精品人妻偷拍中文字幕| 午夜免费激情av| 特级一级黄色大片| 嫩草影院精品99| 夜夜躁狠狠躁天天躁| 最新中文字幕久久久久| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 一区二区三区免费毛片| 亚洲欧美日韩东京热| 国产黄a三级三级三级人| 欧美国产日韩亚洲一区| 丁香欧美五月| 国产亚洲欧美98| 欧美日韩黄片免| 亚洲国产精品成人综合色| 午夜视频国产福利| 变态另类丝袜制服| 高清在线国产一区| 久久这里只有精品中国| 国产精品久久久久久久久免 | 午夜福利视频1000在线观看| 成年版毛片免费区| 日本a在线网址| 午夜视频国产福利| 色哟哟·www| 乱码一卡2卡4卡精品| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 亚洲成人免费电影在线观看| 欧美在线一区亚洲| 日本熟妇午夜| 亚洲av一区综合| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 国产久久久一区二区三区| 午夜影院日韩av| 成人av在线播放网站| 国产亚洲精品久久久久久毛片| 日本免费a在线| 国产在线男女| 色哟哟·www| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 精品日产1卡2卡| 精品人妻1区二区| 亚洲av免费高清在线观看| 一个人看的www免费观看视频| 免费大片18禁| 成人特级av手机在线观看| 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频| 伦理电影大哥的女人| 国产成人福利小说| 免费人成在线观看视频色| 黄片小视频在线播放| 日韩欧美在线二视频| 美女大奶头视频| 精品无人区乱码1区二区| 国产免费一级a男人的天堂| 性色avwww在线观看| 黄色一级大片看看| 久久久久久久精品吃奶| 国产精品一区二区三区四区免费观看 | 亚洲真实伦在线观看| 欧美成狂野欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 国产高清有码在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 深爱激情五月婷婷| 91九色精品人成在线观看| 欧美一区二区国产精品久久精品| 成人欧美大片| 国产一区二区在线av高清观看| 99热这里只有是精品50| 精品午夜福利在线看| 级片在线观看| 久久久久久久久大av| 内地一区二区视频在线| 国产伦精品一区二区三区视频9| 精品日产1卡2卡| 无遮挡黄片免费观看| 在线看三级毛片| 精品人妻偷拍中文字幕| 热99re8久久精品国产| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 亚洲 欧美 日韩 在线 免费| a在线观看视频网站| 网址你懂的国产日韩在线| 69人妻影院| 一个人看视频在线观看www免费| or卡值多少钱| 中文资源天堂在线| 欧美一区二区亚洲| 日韩国内少妇激情av| 国内毛片毛片毛片毛片毛片| 欧美激情国产日韩精品一区| 99国产综合亚洲精品| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 一二三四社区在线视频社区8| 国产精品一区二区免费欧美| 精品午夜福利在线看| 国产精品一区二区免费欧美| 天堂动漫精品| 国产av麻豆久久久久久久| 免费高清视频大片| 九色国产91popny在线| 欧美午夜高清在线| 亚洲av成人精品一区久久| 黄片小视频在线播放| 最近最新中文字幕大全电影3| 香蕉av资源在线| 天堂影院成人在线观看| 黄片小视频在线播放| 国产aⅴ精品一区二区三区波| 久久久成人免费电影| 国产成人啪精品午夜网站| 日本 av在线| 国产久久久一区二区三区| 久久这里只有精品中国| 乱码一卡2卡4卡精品| 国产精品,欧美在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本黄色片子视频| 美女免费视频网站| 精品日产1卡2卡| 午夜a级毛片| 亚洲不卡免费看| 久久久成人免费电影| 尤物成人国产欧美一区二区三区| 国产私拍福利视频在线观看| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 赤兔流量卡办理| 久久久久久大精品| 国产精品99久久久久久久久| 偷拍熟女少妇极品色| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 搞女人的毛片| 欧美日韩中文字幕国产精品一区二区三区| 国产色爽女视频免费观看| 欧美黑人欧美精品刺激| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| 国产高清激情床上av| 国产av一区在线观看免费| 国产精品,欧美在线| 欧美一级a爱片免费观看看| 欧美精品国产亚洲| 午夜视频国产福利| 午夜亚洲福利在线播放| h日本视频在线播放| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 最近在线观看免费完整版| 久久热精品热| 亚洲成a人片在线一区二区| 精品人妻视频免费看| 色av中文字幕| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 欧美乱色亚洲激情| 亚洲精品影视一区二区三区av| 九九在线视频观看精品| 国产人妻一区二区三区在| 国产乱人视频| 欧美中文日本在线观看视频| 久久精品国产亚洲av香蕉五月| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 伊人久久精品亚洲午夜| 日本 欧美在线| 中文亚洲av片在线观看爽| 麻豆国产av国片精品| 亚洲精品亚洲一区二区| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 成人美女网站在线观看视频| 亚洲最大成人av| 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 亚洲专区国产一区二区| 精品一区二区三区视频在线| 2021天堂中文幕一二区在线观| 国产精品久久久久久久久免 | 亚洲精品456在线播放app | 日韩高清综合在线| 日本免费一区二区三区高清不卡| 欧美中文日本在线观看视频| 他把我摸到了高潮在线观看| 丁香六月欧美| 国产伦人伦偷精品视频| 国产老妇女一区| 麻豆国产av国片精品| 久久久久亚洲av毛片大全| 极品教师在线视频| 国产精品免费一区二区三区在线| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 在线十欧美十亚洲十日本专区| 97热精品久久久久久| 嫩草影院入口| 日韩中文字幕欧美一区二区| 国产成人av教育| 国产真实伦视频高清在线观看 | 在线观看免费视频日本深夜| 成人性生交大片免费视频hd| 久久人人精品亚洲av| 国产精品久久电影中文字幕| 长腿黑丝高跟| 欧美+日韩+精品| 久久午夜福利片| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 亚洲综合色惰| 人人妻人人看人人澡| av视频在线观看入口| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 天天一区二区日本电影三级| 亚洲成av人片免费观看| 国产三级在线视频| 亚洲天堂国产精品一区在线| 一个人免费在线观看的高清视频| 亚洲av五月六月丁香网| 国产精品98久久久久久宅男小说| 欧美激情在线99| 国产毛片a区久久久久| 免费观看人在逋| 在线播放无遮挡| 亚洲狠狠婷婷综合久久图片| 波多野结衣巨乳人妻| 国产欧美日韩精品亚洲av| 久久久久久久亚洲中文字幕 | 午夜久久久久精精品| 国产精品一及| 国产 一区 欧美 日韩| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 男女做爰动态图高潮gif福利片| 欧美日韩亚洲国产一区二区在线观看| 少妇人妻一区二区三区视频| 欧美黄色淫秽网站| 午夜福利18| 日本黄色片子视频| 色在线成人网| 国产精品伦人一区二区| 美女大奶头视频| 精品日产1卡2卡| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女搞黄在线观看 | 亚洲一区二区三区不卡视频| 亚洲av一区综合| 欧美精品啪啪一区二区三区| 亚洲精品影视一区二区三区av| av福利片在线观看| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区| 国产欧美日韩精品一区二区| 女人十人毛片免费观看3o分钟| 麻豆久久精品国产亚洲av| 性欧美人与动物交配| 美女黄网站色视频| 国产精品不卡视频一区二区 | 亚洲专区中文字幕在线| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 成年版毛片免费区| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久| a级一级毛片免费在线观看| 亚洲av一区综合| 动漫黄色视频在线观看| 最新在线观看一区二区三区| 在线免费观看的www视频| 国产伦一二天堂av在线观看| 国产亚洲精品久久久com| 人人妻人人澡欧美一区二区| 久久人妻av系列| 偷拍熟女少妇极品色| 成人特级黄色片久久久久久久| 欧美黄色淫秽网站| 亚洲国产欧洲综合997久久,| 757午夜福利合集在线观看| av女优亚洲男人天堂| eeuss影院久久| 怎么达到女性高潮| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区 | 久久香蕉精品热| 麻豆av噜噜一区二区三区| 亚洲精品色激情综合| 日韩国内少妇激情av| 国产淫片久久久久久久久 | 美女高潮的动态| 丰满人妻一区二区三区视频av| 久久久久久久久久成人| 精品欧美国产一区二区三| 久久人人精品亚洲av| 天堂网av新在线| 欧美zozozo另类| 又粗又爽又猛毛片免费看| 黄色丝袜av网址大全| 18禁在线播放成人免费| 永久网站在线| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美在线一区二区| 欧美日韩综合久久久久久 | 国产 一区 欧美 日韩| 观看美女的网站| 99久久久亚洲精品蜜臀av| 亚洲久久久久久中文字幕| 国产精品爽爽va在线观看网站| 中文亚洲av片在线观看爽| 国产精品伦人一区二区| 国产一区二区在线av高清观看| 黄色日韩在线| 99久久精品国产亚洲精品| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 午夜激情福利司机影院| 欧美黄色片欧美黄色片| 日韩精品中文字幕看吧| 国产中年淑女户外野战色| 亚洲,欧美精品.| 黄色配什么色好看| 国产中年淑女户外野战色| 99热只有精品国产| 国产毛片a区久久久久| 一级黄片播放器| 亚洲自偷自拍三级| 精品福利观看| 麻豆av噜噜一区二区三区| АⅤ资源中文在线天堂| 欧美最新免费一区二区三区 | 日韩人妻高清精品专区| 天堂影院成人在线观看| 亚洲七黄色美女视频| 日韩人妻高清精品专区| 老女人水多毛片| 女人十人毛片免费观看3o分钟| 日韩精品青青久久久久久| 国产在线精品亚洲第一网站| 亚洲国产精品成人综合色| 免费看a级黄色片| 精品国内亚洲2022精品成人| 色精品久久人妻99蜜桃| 少妇人妻一区二区三区视频| 真人做人爱边吃奶动态| 国产精华一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲无线观看免费| 麻豆成人午夜福利视频| 亚洲av.av天堂|