• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified particle swarm optimization-based antenna tiltangle adjusting scheme for LTE coverage optimization

    2015-03-01 08:07:18PhanNhuQuanJiangHuilinBuiThiOanhLiPeiPanZhiwenLiuNan

    Phan NhuQuan  Jiang Huilin  Bui ThiOanh  Li Pei  Pan Zhiwen  Liu Nan

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2Faculty of Mechatronics-Electronics, Lachong University, Bien Hoa City 810000, Vietnam)

    ?

    Modified particle swarm optimization-based antenna tiltangle adjusting scheme for LTE coverage optimization

    Phan NhuQuan1,2Jiang Huilin1Bui ThiOanh1Li Pei1Pan Zhiwen1Liu Nan1

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2Faculty of Mechatronics-Electronics, Lachong University, Bien Hoa City 810000, Vietnam)

    Abstract:In order to solve the challenging coverage problem that the long term evolution (LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle (ATA) of evolved Node B (eNB) is proposed based on the modified particle swarm optimization (MPSO) algorithm. The number of mobile stations (MSs) served by eNBs, which is obtained based on the reference signal received power (RSRP) measured from the MS, is used as the metric for coverage optimization, and the coverage problem is optimized by maximizing the number of served MSs. In the MPSO algorithm, a swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs; and the evolution velocity corresponds to the ATAs adjustment scale for each iteration cycle. Simulation results show that compared with the fixed ATA, the number of served MSs by eNBs is significantly increased by 7.2%, the quality of the received signal is considerably improved by 20 dBm, and, particularly, the system throughput is also effectively increased by 55 Mbit/s.

    Key words:long term evolution (LTE) networks; antenna tilt angle; coverage optimization; modified particle swarm optimization algorithm

    Received 2015-03-12.

    Biographies:Phan NhuQuan (1980—), male, graduate; Pan Zhiwen (corresponding author), male, doctor, professor, pzw@seu.edu.cn.

    Foundation items:The National High Technology Research and Development Program of China (863 Program) (No.2014AA01A702), the National Science and Technology Major Project (No.2013ZX03001032-004), the National Natural Science Foundation of China (No.61221002, 61201170).

    Citation:Phan NhuQuan, Jiang Huilin, Bui ThiOanh, et al. Modified particle swarm optimization-based antenna tilt angle adjusting scheme for LTE coverage optimization[J].Journal of Southeast University (English Edition),2015,31(4):443-449.[doi:10.3969/j.issn.1003-7985.2015.04.003]

    The optimization of capacity and coverage of the long term evolution (LTE) system is a fascinating area and it has attracted the interest of researchers all over the world[1-9]. With the constant population of mobile stations (MSs) such as mobile phones, laptops, tablets, etc., the networks must respond to the demands of the individual MS such as voice calls, games, movie, music, web surfing, etc. The network operators are facing great challenges on how to satisfy user services by increasing the system capacity and ensuring evolved Node B (eNBs) coverage, and to serve more and more MSs.

    Recently, there has been little research on coverage optimization. In these works, coverage problems are mainly optimized through schemes, e.g., switching on/off the eNBs, adjusting the transmit power of eNBs, adjusting the antenna tilt angle (ATA) and optimizing the placement of antennas[10-15]. To overcome the blind coverage area, Gao et al.[10]proposed switching on/off the eNBs and adjusting the transmit power of the eNBs by multiple objects genetic algorithm based on the received signal code power parameter and the carrier to interference ratio. In Ref.[11], the call dropping ratio (CDR) is regarded as the evaluation criterion of the eNBs coverage. To decrease the CDR, they used a sparse sampling algorithm to adjust the ATAs. The coverage problems such as the coverage holes, loud neighbor overlap and cell overload of femtocell clusters is solved by using a modified particle swarm optimization (MPSO)-based heuristic power control scheme[12]. To maximize coverage, the branch and bound search algorithm is used to obtain the optimal placement of antennas within the coverage area[13]. Naseer ul Islam et al.[14]proposed a cooperative fuzzy Q-learning scheme by using the fuzzy rules to adjust the antenna tilt angle based on the antenna tilt angle and spectral efficiency state. In Ref.[15], the authors proposed to jointly change the mechanical antenna tilt and transmit power to aid maintaining coverage and reducing the system power consumption.

    The tilt angle of the eNB antennas plays a key role in determining eNB coverage and management of interference, but it has not been paid much attention to by the research community. Traditionally, most of ATA adjustments are done by hand, whereas, the eNBs are increasingly more modern and are automatically adjusted. This makes eNBs more adaptive to dynamic ATA, and it is better for coordinating eNB coverage, such as minimizing coverage holes caused by the failure at the neighboring eNBs, and better in managing the interference of users’ deployment[16].

    In this paper, an MPSO-based tilt angle adjusting algorithm for coverage optimization in the LTE network is proposed. We define the network coverage as the number of the served MSs of eNB, which is determined by eNBs’ ATA, and the coverage problem is solved by maximizing the number of MSs under the coverage of eNBs.

    First, how to estimate the number of MSs served by eNBs is presented. The coverage of the eNBs is determined by the reference signal received power (RSRP) measured from the MSs. The MSs with the maximum RSRP from all eNBs larger than the RSRP threshold are recognized as under coverage. Then, the coverage optimization problem is figureted as the optimal number of MSs under the coverage of eNBs. Since the adjustment of each ATA can affect the maximum RSRP of each MS, how to cooperatively adjust all ATAs to maximize the total number of MSs under coverage becomes a critical problem. After that, an ATA adjusting scheme based on the MPSO is proposed to maximize the number of served MSs covered by eNBs.

    1System Model and Problem figuretion

    The simplified system is shown in Fig.1, in which the strong and weak signal strengths are shown by solid and dashed lines, respectively.

    Fig.1 System model

    1.1 Antenna down tilt angle

    The ATA denoted as an elevation angle of the antennaθis described in Fig.2. When we change the ATA, the direction of the antenna’s main lobe will be changed. This is an important issue in determining the coverage area of eNB.

    Fig.2 The relationship between antenna main lobe and tilt angle

    1.2 Path-loss

    To simplify, the path-loss is[17]

    l=128.1+37.6log10d

    (1)

    wheredis the distance between MS and eNB antenna.

    1.3 Shadow fading model

    The effect of shadow fading is usually modelled on free space and shadow fading is logarithmically distributed[18-19]. Assume that the considered space has a map size ofx×yexpressed in square meters. The envelope of the autocorrelation shadow fading function is

    (2)

    1.4 The number of MSs served by eNB

    A 3GPP LTE multi-cell network as shown in Fig.1 withneNBeNBs,nantenantennas andnmsMSs is considered here. Since the system will be evaluated at each timet, for convenience, we omit the symboltin the following analysis. The reference signal received power (RSRP) on each subcarrier at timetfor MSjserved by eNBiand eNB antennakis

    (3)

    wherePiis the transmit power of eNBi;lj,iis the path loss at MSjfrom eNBi; (xj,yj) are the geographical position-coordinates of MSj;θis the eNB ATAkof eNBi; andφj,i=sin-1((yj-yeNBi)/r) is the azimuth angle between MSjand eNBi;sjis the position-related shadow fading of MSj;Aj,iis the antenna gain at MSjfrom eNBiin dBi. The MSs served by eNB antennas are determined as follows: If -60°≤φ<60°, the eNB antenna 1 is serving. If 60°≤φ<180°, the eNB antenna 2 is serving. If -180°≤φ<-60°, the eNB antenna 3 is serving.

    The received signal to interference plus noise ratio (SINR) of MSjserved by eNBiand eNB antennakat timetis

    (4)

    wherecnrepresents all the neighboring interfering cells andδis the noise power.

    The system throughputTis

    (5)

    whereBjis the bandwidth allocated to MSj.

    eNBiand eNB antennakwill serve MSjwith the maximum of RSRP which is greater than the RSRP threshold.

    (6)

    where RSRPthris the threshold used to judge which eNB and which eNB antenna are serving the MS.

    The number of MSs being served by eNBiand eNB antennakis then determined by

    (7)

    From Eq.(7), we can see that the number of MSs served by eNB is determined by the antenna tilt angles when the transmit power of eNBs and the horizontal angles are fixed and the position of MSs is changed. Therefore, the served MS number can be maximized by adjusting the antenna tilt angle.

    The total number of MSs served by the eNBs is figureted as

    (8)

    whereθ={θ1,θ2,…,θanten} is the ATAs set of the eNBs andθk(k∈[1,nanten]) is the ATAk.f(P,x,y,φ,θ) is used as the fitness function in the following proposed algorithm.

    Then, the optimization problem can be figureted as

    (9)

    The objective is maximizing the total number of MSs served by the eNBs through finding the optimal ATAs setθ.

    2MPSO-Based ATA Adjusting Algorithm

    The optimal problem in Eq.(9) is a non-convex one, which is not easy to solve through computational efficient algorithms. It is fortunate that, taking the manifest non-linear and multimodal features of the solution into account, and taking into account that the search space can be constricted very quickly, the MPSO algorithm can be used to solve the ATA adjusting problem. As far as we know, there are not any efficient solutions to solve this problem, so we propose an ATA adjusting scheme based on the MPSO algorithm.

    In the MPSO, there exists a swarm of particles, and each of them represents a potential solution to the optimization problem and corresponds to a fitness value determined by the fitness function of the optimization problem. All the particles update according to the evolution velocity calculated by the cooperation among the particles themselves[20].

    For the proposed MPSO-based adjusting ATA algorithm aiming to solve the aforementioned coverage optimization problem, the solution is the ATAs set. A swarm of particles exists. Each particle represents a potential solution to the coverage optimization problem and corresponds to a fitness value. All the particles are updated according to the velocities calculated by their own experience and the global experience of the whole swarm.

    ATAs are adjusted based on the total number of MSs served by the eNBs. First, many ATA sets are initialized randomly, each of which corresponds to a fitness value according to the fitness function (8). Secondly, all the sets of ATAs are updated in each iteration cycle according to the past experience of the best utility of each ATA set and the global best utility of all the ATA sets. The global best ATA can be obtained by iteratively updating these initial ATA sets when achieving a better fitness value. Finally, the global best solution can be obtained by the multiple restart processes.

    For the optimization problem in (9), the fitness function is the total number of served MSs, and the evolution velocity corresponds to the ATAs adjustment scale for each iteration.

    The algorithm consists of the following steps:

    1) Given the number of the antennasnantenand the positions of the eNBs and MSs, set the number of particlesnp, the maximum number of the iteration timestmax, the maximum number of the restart timessmax, the inertia weightωand the acceleration coefficientsc1andc2.

    2) Set the current restart times=0 for the restart processes.

    3) Set the current iteration timet=0 for the iterations of the particle swarm.

    4) Initialize the set ofnpATA sets,

    {θ1(t),θ2(t),…,θnp(t)}

    {V1(t),V2(t),…,Vnp(t)}

    5) Calculate the fitness valuefn(t) of each setθn(t) according to the fitness function (8).

    (10)

    which is the best ATA set corresponding to the maximum number of the served MSs obtained so far by the setθn(t); the global best ATA set denoted byθg(t) is

    (11)

    which is corresponding to the best ATA obtained so far for all sets of ATA.

    7) Update the ATA adjustment scale for a typical setVnaccording to

    c2η[θg(t)-θn(t)]

    (12)

    whereω∈[ωmin,ωmax] withωmin=0.4 andωmax=1 is the inertia weight which keeps the update of the ATA adjustment scale and balances the local and global optimizing;c1andc2are two positive constants called the acceleration coefficients; andξ,η∈[0,1]. Since the parametersc1,c2,ξandηwill determine the sense of the variation of the velocity, according to the experimental studies,c1andc2are taken 1.49,ξandηare random numbers in [0,1][21-22]. The second part of Eq.(12) is the cognition part, and the third part is the social part.

    8) Update the ATA setθnas

    θn(t+1)=θn(t)+Vn(t+1)

    (13)

    9) If the maximum number of iterationstmaxis not satisfied, sett=t+1 and go to Step 5); otherwise, go to Step 10).

    10) If the maximum number of the restart timessmaxis not satisfied, set the restart times=s+1 and go to Step 3) to restart the algorithm; otherwise, stop the algorithm and set the ATAs of the eNBs with the global bestθg(t).

    3Simulation Results

    The system with 19 eNBs under cell layout in three sectors is considered. The eNBs are in the center of the hexagonal and 1 000 MSs randomly move at a speed in the range of 0 to 120 km/h in eight directions (east, west, south, north, north-east, south-east, north-west and south-west). The shadow fading is considered. We assume that the azimuth angle is kept fixed, but the antenna tilt angle can be adjusted, and the height of eNBs and MSs are the same for all eNBs and MSs. The antenna pattern is in accordance with 3GPP standard[17]. The system parameters are listed in Tab.1.

    Tab.1 Setting of the system parameters

    The simulation system is shown in Fig.3. The eNBs are shown by green triangles placed at the center of the hexagons, and the MSs (MS and user are interchangeable) are shown by red dots. Fig.4 shows the comparison of the served MSs number by the 1st, 2nd and 3rd antennas of eNBs with the fixed tilts of 0°, 6° and 16° and with the tilts adjusted by the MPSO algorithm. The sum of the served MSs number with the fixed tilt of 0° is 1 061 over the sum of the generated MSs number, with the fixed tilt of 6° is 805; with the fixed tilt of 16° is 424 and with the tilts adjusted by the MPSO algorithm is 877. Hence, we can see that, with the fixed tilt of 0°, the excessive coverage occurs; with the fixed tilt of 16°, the insufficient coverage occurs; with the fixed tilts of 6°, the coverage of eNBs can be acceptable; and the proposed algorithm achieves the best coverage compared with the fixed tilts. Obviously, compared with the fixed tilt of 6°, the proposed algorithm significantly improves the number of the served MSs by 7.2%. From the results of Fig.4, we select the fixed tilt of 6° to compare with the proposed scheme in the following simulation.

    Fig.3 The simulation system

    Fig.4 Comparison of served MSs number and antennas of eNBs. (a) 0°; (b) 6°; (c) 16°; (d) With tilts adjusted by MPSO

    The cumulative distribution function (CDF) of the MSs’ RSRP comparison between the fixed tilt of 6° and the tilts adjusted by the MPSO algorithm is shown in Fig.5. We can observe that the proposed MPSO scheme improves the quality of received signal better than that of the fixed tilt of 6° by 20 dBm. Fig.6 illustrates that the MSs’ SINR of the proposed algorithm is significantly better than that of the fixed tilts of 6°. Users’ throughput and system throughput are illustrated in Fig.8. We can see that the system throughput is considerably improved by 55 Mbit/s compared with that of the fixed tilts of 6°.

    Fig.5 CDF of users’ RSRP

    Fig.6 User’s SINR. (a) With fixed tilt of 6°; (b) With tilts adjusted by MPSO; (c) CDF

    Fig.7 shows that the algorithm only needs a few iteration times to obtain the optimal value of the system throughput, and its convergence is fast. The computational complexity of the solution is polynomial time complexity.

    Fig.7 The convergence of solution

    From Figs.4 to 8, we can see that the proposed MPSO-based ATA adjusting algorithm can significantly increase the number of MSs served by eNBs and also improve both the MSs’ SINR and system throughput. It demonstrates that, the proposed algorithm is a promising solution for the optimization of both the eNB coverage area and the system capacity in LTE networks.

    Fig.8 Throughput. (a) The users’ throughput; (b) System throughput

    4Conclusion

    In this paper, an MPSO-based coverage optimization scheme is proposed for adjusting the tilt angle of the antennas of eNBs to solve the coverage problem in LTE networks. We define the network coverage as the number of served MSs of eNB. A swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs, and the evolution velocity corresponds to the ATAs adjustment scale for each iteration. Simulation results show that compared with the fixed ATA, the number of served MSs by eNBs is significantly increased by 7.2%, the quality of received signal is considerably improved by 20 dBm, and, particularly, the system throughput is also effectively increased by 55 Mbit/s benefiting from the proposed algorithm. However, without considering the load of eNBs, some eNBs are heavy load and some are light load. We will take the load of eNBs into account in future work.

    References

    [1]Jiang Y, Yu P, Li W, et al. Automated coverage optimization scheme based on downtilt adjustment in wireless access networks[C]//InternationalWirelessCommunicationsandMobileComputing(IWCMC). Limassol, Cyprus, 2012: 945-948.

    [2]Naseer ul Islam M, Mitschele-Thiel A. Reinforcement learning strategies for self-organized coverage and capacity optimization [C]//IEEEWirelessCommunicationsandNetworkingConference(WCNC). Shanghai, China, 2012: 2818-2823.

    [3]Engels A, Reyer M, Xu X, et al. Autonomous self-optimization of coverage and capacity in LTE cellular networks [J].IEEETransactionsonVehicularTechnology, 2013, 62(5): 1989-2004.

    [4]Berger S, Fehske A, Zanier P, et al. Online antenna tilt-based capacity and coverage optimization [J].IEEEWirelessCommunicationsLetters, 2014, 3(4): 437-440.

    [5]Rouzbeh R, Siegfried K, Holger C. A fuzzy reinforcement learning approach for self-optimization of coverage in LTE networks [J].BellLabsTechnicalJournal, 2010, 15(3): 153-175.

    [6]Luketic I, Simunic D, Blajic T. Optimization of coverage and capacity of self-organizing network in LTE [C]//Proceedingsofthe34thInternationalConvention. Opatija, the Republic of Croatia, 2011: 612-617.

    [7]Razavi R, Klein S, Claussen H. Self-optimization of capacity and coverage in LTE networks using a fuzzy reinforcement learning approach[C]//IEEEInternationalSymposiumonPersonalIndoorandMobileRadioCommunications(PIMRC). Istanbul, Turkey, 2010: 1865-1870.

    [8]Karvounas D, Vlacheas P, Georgakopoulos A, et al. An opportunistic approach for coverage and capacity optimization in self-organizing networks [C]//FutureNetworkandMobileSummit. Lisboa, Portugal, 2013: 1-10.

    [9]Combes R, Altman Z, Altman E. Self-organization in wireless networks: a flow-level perspective [C]//ProceedingsofIEEEINFOCOM. Orlando, FL,USA, 2012: 2946-2950.

    [10]Gao M, Huang L, Cai H. Intelligent coverage optimization with multi objective genetic algorithm in cellular system [C]//InternationalConferenceonComputerScience&Education(ICCSE). Colombo, Democratic Socialist Republic of Sri Lanka, 2013: 859-863.

    [11]Thampi A, Kaleshi D, Randall P, et al. A sparse sampling algorithm for self-optimization of coverage in LTE networks [C]//InternationalSymposiumonWirelessCommunicationSystems(ISWCS). Paris, France, 2012: 909-913.

    [12]Huang L, Zhou Y, Hu J, et al. Coverage optimization for femtocell clusters using modified particle swarm optimization [C]//IEEEInternationalConferenceonCommunication(ICC). Ottawa, ON, USA, 2012: 611-615.

    [13]Hafiz H, Aulakh H, Raahemifar K. Antenna placement optimization for cellular networks [C]//26thAnnualIEEECanadianConferenceonElectricalandComputerEngineering(CCECE). Regina, SK, USA, 2013: 1-6.

    [14]Naseer ul Islam M, Mitschele-Thiel A. Cooperative fuzzy q-learning for self-organized coverage and capacity optimization [C]//IEEEInternationalSymposiumonPersonalIndoorandMobileRadioCommunications(PIMRC). Sydney, Australia, 2012: 1406-1411.

    [15]Gao Y, Li Y, Zhou S, et al. System level performance of energy efficient dynamic mechanical antenna tilt angle switching in LTE-advanced systems [C]//IEEEInternationalWirelessSymposium(IWS). Beijing, China, 2013: 1-4.

    [16]Partov B, Leith D J, Razavi R. Utility fair optimization of antenna tilt angles in LTE networks [J].IEEE/ACMTransactionsonNetworking, 2014, 23(1): 175-185.

    [17]3GPP. TR36.814 Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects [S]. San Antonio, USA: 3GPP, 2010.

    [18]Gudmundson M. Correlation model for shadow fading in mobile radio systems [J].ElectronicsLetters, 1991, 27(23): 2145-2146.

    [19]Giancristoraro D. Correlation model for shadow fading in mobile radio channels [J].ElectronicsLetters, 1996, 32(11): 958-959.

    [20]Shi Y, Eberthart R. A modified particle swarm optimizer[C]//IEEEInternationalConferenceonEvolutionaryComputationProceedings. Anchorage, AK, USA, 1998: 69-73.

    [21]Liu Y T, Fu M Y, Gao H B. Multi-threshold infrared image segmentation based on the modified particle swarm optimization algorithm[C]//2007InternationalConferenceonMachineLearningandCybernetics. Hong Kong, China, 2007: 383-388.

    [22]Lalwani S, Kumar R, Gupta N. A study on inertia weight schemes with modified particle swarm optimization algorithm for multiple sequence alignment[C]//2013SixthInternationalConferenceonContemporaryComputing(IC3). Noida, India, 2013: 283-288.

    doi:10.3969/j.issn.1003-7985.2015.04.003

    中文亚洲av片在线观看爽| 卡戴珊不雅视频在线播放| 国产精品国产高清国产av| 久久久色成人| 国内精品美女久久久久久| 免费人成视频x8x8入口观看| 亚洲国产精品合色在线| 欧美日本视频| 欧美成人精品欧美一级黄| 一本精品99久久精品77| 亚洲欧美成人综合另类久久久 | 好男人在线观看高清免费视频| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 成年免费大片在线观看| 一级二级三级毛片免费看| 久久99蜜桃精品久久| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久大av| 国产精品永久免费网站| 亚洲aⅴ乱码一区二区在线播放| 色综合亚洲欧美另类图片| 国产成人精品久久久久久| 天堂影院成人在线观看| 最后的刺客免费高清国语| 97在线视频观看| 日韩精品青青久久久久久| 日韩欧美在线乱码| 欧美另类亚洲清纯唯美| 亚洲五月天丁香| 亚洲精品色激情综合| 中文字幕av成人在线电影| 成年版毛片免费区| 啦啦啦韩国在线观看视频| 午夜爱爱视频在线播放| 淫秽高清视频在线观看| 久久精品国产清高在天天线| 国产成人一区二区在线| 十八禁国产超污无遮挡网站| 老司机影院成人| 男人舔奶头视频| 亚洲av电影不卡..在线观看| 欧美成人一区二区免费高清观看| 国产一区亚洲一区在线观看| 国产爱豆传媒在线观看| 久久久久国产网址| av黄色大香蕉| 久99久视频精品免费| 国产成人影院久久av| 女人十人毛片免费观看3o分钟| 91久久精品国产一区二区三区| 久久这里只有精品中国| 悠悠久久av| www.av在线官网国产| 国产综合懂色| 一进一出抽搐动态| 日本av手机在线免费观看| 五月伊人婷婷丁香| 人体艺术视频欧美日本| 尾随美女入室| 高清在线视频一区二区三区 | 日韩在线高清观看一区二区三区| 99热全是精品| 欧美极品一区二区三区四区| 中国美白少妇内射xxxbb| 男女那种视频在线观看| 美女被艹到高潮喷水动态| 国产探花极品一区二区| 永久网站在线| 中文字幕制服av| 成人欧美大片| 国产免费男女视频| 一个人看的www免费观看视频| 国产高潮美女av| 神马国产精品三级电影在线观看| 九九在线视频观看精品| 精品人妻熟女av久视频| 免费不卡的大黄色大毛片视频在线观看 | 国产片特级美女逼逼视频| 欧美性猛交黑人性爽| 久久久久久久久久黄片| 国产av不卡久久| 久久久成人免费电影| 国产精品久久久久久久电影| 国产女主播在线喷水免费视频网站 | 六月丁香七月| 亚洲精品亚洲一区二区| 高清午夜精品一区二区三区 | 男女啪啪激烈高潮av片| 亚洲最大成人中文| 亚洲欧美日韩高清在线视频| 国产91av在线免费观看| 熟女人妻精品中文字幕| 一本久久中文字幕| 91久久精品国产一区二区成人| 国产成年人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久久欧美国产精品| 欧美潮喷喷水| 日本在线视频免费播放| 中文字幕制服av| 免费看日本二区| 国产精品一二三区在线看| 日韩 亚洲 欧美在线| 久久久久九九精品影院| 欧美在线一区亚洲| 最近中文字幕高清免费大全6| 亚洲最大成人av| 国产亚洲91精品色在线| 国产成人91sexporn| 日韩精品有码人妻一区| 成人毛片60女人毛片免费| 成人毛片a级毛片在线播放| 国产白丝娇喘喷水9色精品| 黄色一级大片看看| 亚洲在线自拍视频| 免费黄网站久久成人精品| 国产精品久久久久久精品电影小说 | 国产精品乱码一区二三区的特点| 中国美白少妇内射xxxbb| 精品久久久久久久久久免费视频| 精品99又大又爽又粗少妇毛片| 国产精品一区www在线观看| 一边摸一边抽搐一进一小说| 一区二区三区四区激情视频 | 成人性生交大片免费视频hd| 偷拍熟女少妇极品色| 免费不卡的大黄色大毛片视频在线观看 | 亚洲不卡免费看| 国产亚洲欧美98| 最近手机中文字幕大全| 国产精品久久久久久av不卡| 亚洲av一区综合| 国产精品女同一区二区软件| 亚洲美女视频黄频| 国产精品一及| 亚洲熟妇中文字幕五十中出| 国产高清激情床上av| 麻豆国产97在线/欧美| 变态另类丝袜制服| 中文精品一卡2卡3卡4更新| 91在线精品国自产拍蜜月| 69av精品久久久久久| 免费人成视频x8x8入口观看| 日本免费a在线| 一个人免费在线观看电影| 欧美精品国产亚洲| 亚洲精品成人久久久久久| 国产极品天堂在线| ponron亚洲| 婷婷精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 丝袜喷水一区| 国产真实乱freesex| 亚洲精品久久国产高清桃花| 国产高清有码在线观看视频| 成人特级av手机在线观看| 天天躁日日操中文字幕| 日韩成人av中文字幕在线观看| 国产成人福利小说| 精品国产三级普通话版| 男人舔奶头视频| 变态另类成人亚洲欧美熟女| 亚洲国产高清在线一区二区三| 亚洲最大成人中文| 1000部很黄的大片| 最好的美女福利视频网| 全区人妻精品视频| 91狼人影院| 国产欧美日韩精品一区二区| 免费av观看视频| 国产色婷婷99| 亚洲三级黄色毛片| 少妇的逼水好多| 亚洲中文字幕日韩| 亚洲经典国产精华液单| 男人狂女人下面高潮的视频| av女优亚洲男人天堂| 亚洲国产精品成人久久小说 | 综合色av麻豆| 超碰av人人做人人爽久久| 国产一区二区激情短视频| 亚洲美女视频黄频| 高清日韩中文字幕在线| 亚洲乱码一区二区免费版| 亚洲精品乱码久久久久久按摩| 大型黄色视频在线免费观看| 国产高潮美女av| 亚洲欧美精品专区久久| 中文欧美无线码| 男女做爰动态图高潮gif福利片| 黄片wwwwww| 亚洲真实伦在线观看| 日韩精品青青久久久久久| 亚洲精品亚洲一区二区| 亚洲成人精品中文字幕电影| 亚洲自拍偷在线| 久久久午夜欧美精品| 3wmmmm亚洲av在线观看| 美女大奶头视频| 亚洲精品成人久久久久久| 久久99热这里只有精品18| 国产一级毛片七仙女欲春2| 日本熟妇午夜| 成年女人看的毛片在线观看| 国产成人精品久久久久久| 国产熟女欧美一区二区| 九草在线视频观看| 人人妻人人看人人澡| 亚洲成av人片在线播放无| 天天一区二区日本电影三级| 成人永久免费在线观看视频| av在线亚洲专区| 国产欧美日韩精品一区二区| 亚洲av中文字字幕乱码综合| 最近最新中文字幕大全电影3| a级一级毛片免费在线观看| 联通29元200g的流量卡| 国产大屁股一区二区在线视频| 国产人妻一区二区三区在| 99热6这里只有精品| 桃色一区二区三区在线观看| 国产单亲对白刺激| 能在线免费观看的黄片| 观看美女的网站| 男女边吃奶边做爰视频| 日韩欧美三级三区| 亚洲av成人av| 中国国产av一级| 超碰av人人做人人爽久久| 婷婷六月久久综合丁香| 久久热精品热| 国产精品福利在线免费观看| 小说图片视频综合网站| 中文字幕av在线有码专区| 欧美日本视频| 成人午夜精彩视频在线观看| 国内精品一区二区在线观看| 国内精品一区二区在线观看| 亚洲电影在线观看av| 18禁黄网站禁片免费观看直播| 波多野结衣高清无吗| 亚洲中文字幕日韩| 国产乱人视频| av免费观看日本| 看非洲黑人一级黄片| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| av免费观看日本| 亚洲成人中文字幕在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国语自产精品视频在线第100页| 熟妇人妻久久中文字幕3abv| 九九在线视频观看精品| 2022亚洲国产成人精品| 国产成人91sexporn| 日韩欧美三级三区| 丰满人妻一区二区三区视频av| 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 欧洲精品卡2卡3卡4卡5卡区| 丝袜喷水一区| 亚洲欧美日韩高清在线视频| 欧美变态另类bdsm刘玥| 国产精品永久免费网站| 如何舔出高潮| 成熟少妇高潮喷水视频| 欧美潮喷喷水| 欧美激情久久久久久爽电影| 人人妻人人澡人人爽人人夜夜 | 最近手机中文字幕大全| 综合色av麻豆| 婷婷六月久久综合丁香| 美女黄网站色视频| 久久久久久久久久黄片| avwww免费| 青青草视频在线视频观看| 好男人视频免费观看在线| 男人舔女人下体高潮全视频| 国产一区亚洲一区在线观看| 97在线视频观看| 日韩av在线大香蕉| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 成人亚洲精品av一区二区| 久久精品久久久久久久性| 国产色婷婷99| 少妇高潮的动态图| 男人舔奶头视频| 午夜福利在线在线| 精品久久国产蜜桃| 午夜福利在线观看吧| 亚洲一区高清亚洲精品| 日本一本二区三区精品| 亚洲,欧美,日韩| 变态另类成人亚洲欧美熟女| 久久国产乱子免费精品| 精品久久久久久久久av| 久久6这里有精品| 三级毛片av免费| 春色校园在线视频观看| 久久久久性生活片| 国产色婷婷99| 国产黄片美女视频| 久久欧美精品欧美久久欧美| 丰满的人妻完整版| 中文字幕熟女人妻在线| 丝袜美腿在线中文| 亚洲国产精品成人久久小说 | 最近2019中文字幕mv第一页| 美女cb高潮喷水在线观看| 午夜福利在线观看吧| 秋霞在线观看毛片| 午夜福利成人在线免费观看| 亚洲丝袜综合中文字幕| 国产精品一区二区在线观看99 | 日韩欧美精品免费久久| 男人狂女人下面高潮的视频| 精品久久久久久久久久免费视频| 在线国产一区二区在线| 亚洲成人久久性| 3wmmmm亚洲av在线观看| 色综合站精品国产| 一夜夜www| 最近2019中文字幕mv第一页| 最近最新中文字幕大全电影3| 美女被艹到高潮喷水动态| 少妇高潮的动态图| 日韩人妻高清精品专区| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 热99re8久久精品国产| 精品人妻一区二区三区麻豆| 色视频www国产| 国产激情偷乱视频一区二区| 国产激情偷乱视频一区二区| 免费无遮挡裸体视频| 亚洲av中文av极速乱| av又黄又爽大尺度在线免费看 | 99久久精品一区二区三区| 国产精品国产高清国产av| 国产av在哪里看| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看| 少妇熟女欧美另类| 亚洲丝袜综合中文字幕| 九九在线视频观看精品| 成人国产麻豆网| 亚洲国产精品成人综合色| 久久韩国三级中文字幕| 久久99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av| 久久6这里有精品| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 男人狂女人下面高潮的视频| 一边摸一边抽搐一进一小说| 99精品在免费线老司机午夜| 日韩欧美三级三区| 舔av片在线| 99久久中文字幕三级久久日本| 亚洲精品国产成人久久av| 久久九九热精品免费| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 看非洲黑人一级黄片| 亚洲精品色激情综合| 国产黄片视频在线免费观看| 亚洲七黄色美女视频| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验 | 亚洲中文字幕一区二区三区有码在线看| 色噜噜av男人的天堂激情| 校园人妻丝袜中文字幕| 秋霞在线观看毛片| 啦啦啦观看免费观看视频高清| 一个人看的www免费观看视频| 国产亚洲5aaaaa淫片| 国产午夜精品久久久久久一区二区三区| 欧美性猛交黑人性爽| 日本欧美国产在线视频| 中文在线观看免费www的网站| 国产午夜精品论理片| 亚洲人成网站在线播放欧美日韩| 草草在线视频免费看| 日韩av在线大香蕉| 最近的中文字幕免费完整| 国产激情偷乱视频一区二区| 亚洲在线自拍视频| 不卡一级毛片| 亚洲内射少妇av| 亚洲av熟女| 国产69精品久久久久777片| av在线亚洲专区| 免费av观看视频| 在线观看av片永久免费下载| 26uuu在线亚洲综合色| 观看美女的网站| 看片在线看免费视频| 婷婷六月久久综合丁香| 少妇人妻精品综合一区二区 | 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 免费一级毛片在线播放高清视频| avwww免费| 日韩一区二区三区影片| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| 久久精品夜色国产| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 亚洲精品久久久久久婷婷小说 | 成人永久免费在线观看视频| 亚洲av中文av极速乱| 乱人视频在线观看| 黄色视频,在线免费观看| 日本黄色片子视频| 午夜激情欧美在线| 内射极品少妇av片p| 97人妻精品一区二区三区麻豆| 色播亚洲综合网| 日本三级黄在线观看| 久久久久久久久久久免费av| 国产三级中文精品| 欧美bdsm另类| 久久韩国三级中文字幕| av黄色大香蕉| 少妇高潮的动态图| 久久久成人免费电影| 国产成人影院久久av| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 一边亲一边摸免费视频| 女的被弄到高潮叫床怎么办| 日韩欧美精品v在线| 国产白丝娇喘喷水9色精品| kizo精华| av免费在线看不卡| 久99久视频精品免费| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 国产久久久一区二区三区| 亚洲欧美精品自产自拍| 深夜精品福利| 国产日本99.免费观看| 一个人看视频在线观看www免费| 精品一区二区免费观看| 国产精品伦人一区二区| 在线观看66精品国产| 九色成人免费人妻av| 久久人人爽人人片av| 成人高潮视频无遮挡免费网站| 草草在线视频免费看| 午夜精品在线福利| 97超碰精品成人国产| 国产午夜精品久久久久久一区二区三区| 一级毛片久久久久久久久女| 中文字幕制服av| 中文亚洲av片在线观看爽| 久久久久久国产a免费观看| 成人午夜高清在线视频| 亚洲图色成人| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 99热6这里只有精品| 欧美激情久久久久久爽电影| 久久中文看片网| 能在线免费观看的黄片| 内射极品少妇av片p| 亚洲av.av天堂| 非洲黑人性xxxx精品又粗又长| 看十八女毛片水多多多| 亚洲av免费在线观看| 久久久国产成人免费| 中文字幕久久专区| 村上凉子中文字幕在线| 日本av手机在线免费观看| 91精品国产九色| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄 | 午夜激情欧美在线| 欧美变态另类bdsm刘玥| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 18禁在线无遮挡免费观看视频| 女的被弄到高潮叫床怎么办| 欧美不卡视频在线免费观看| 五月玫瑰六月丁香| 九九在线视频观看精品| 久久精品夜夜夜夜夜久久蜜豆| 男女边吃奶边做爰视频| 少妇熟女欧美另类| 伦理电影大哥的女人| 国产亚洲91精品色在线| 亚洲成人久久爱视频| 精品久久久久久久久久久久久| 99热这里只有是精品50| av在线蜜桃| 我的老师免费观看完整版| 日日摸夜夜添夜夜爱| 久久久久久久亚洲中文字幕| 亚洲成人久久性| 日本爱情动作片www.在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品亚洲一区二区| 欧美在线一区亚洲| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 99久久精品国产国产毛片| 可以在线观看毛片的网站| 亚洲自拍偷在线| 日韩欧美精品免费久久| 99久久精品一区二区三区| 日韩欧美精品v在线| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 国产淫片久久久久久久久| 少妇的逼水好多| 婷婷六月久久综合丁香| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放 | 国产高清视频在线观看网站| 1024手机看黄色片| 午夜精品一区二区三区免费看| 日日啪夜夜撸| 亚洲高清免费不卡视频| 亚洲av中文字字幕乱码综合| 欧美+亚洲+日韩+国产| 亚洲欧美日韩东京热| 国产毛片a区久久久久| 99热只有精品国产| 插阴视频在线观看视频| 搞女人的毛片| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 久久久精品94久久精品| 国产精品久久视频播放| 午夜久久久久精精品| 黑人高潮一二区| 国产成人精品一,二区 | 在线免费观看不下载黄p国产| av在线观看视频网站免费| 性欧美人与动物交配| 五月伊人婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| av国产免费在线观看| 成人亚洲精品av一区二区| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 一级毛片aaaaaa免费看小| 国产成人福利小说| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 亚洲最大成人手机在线| 久久久久久九九精品二区国产| 久99久视频精品免费| 大型黄色视频在线免费观看| 色视频www国产| 在线观看一区二区三区| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看 | 免费在线观看成人毛片| 深夜a级毛片| 特大巨黑吊av在线直播| 婷婷六月久久综合丁香| 久久久a久久爽久久v久久| 黑人高潮一二区| 99久久精品一区二区三区| 久久久久久大精品| 国产探花极品一区二区| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 成人性生交大片免费视频hd| 久久99精品国语久久久| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 观看免费一级毛片| 久久久久久大精品| 国内精品一区二区在线观看| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区 | 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 波多野结衣高清无吗| 免费看日本二区| 国产精品,欧美在线| 成人欧美大片| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 日本一二三区视频观看| 在线观看av片永久免费下载| 男人狂女人下面高潮的视频| 亚洲美女视频黄频| 精品国内亚洲2022精品成人| 我要搜黄色片| 在线a可以看的网站| 午夜爱爱视频在线播放| 91aial.com中文字幕在线观看| 亚洲精品乱码久久久v下载方式|