• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultimate load bearing capacity evaluation of concrete beamssubjected to freeze-thaw cycles

    2015-03-01 08:07:29QinXiaochuanMengShaopingTuYongmingCaoDafu

    Qin Xiaochuan  Meng Shaoping  Tu Yongming  Cao Dafu

    (1School of Civil Engineering, Southeast University, Nanjing 210096, China)(2College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

    ?

    Ultimate load bearing capacity evaluation of concrete beamssubjected to freeze-thaw cycles

    Qin Xiaochuan1Meng Shaoping1Tu Yongming1Cao Dafu2

    (1School of Civil Engineering, Southeast University, Nanjing 210096, China)(2College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

    Abstract:A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (FTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.

    Key words:concrete beam; freeze-thaw cycles; ultimate bending moment; structural analysis

    Received 2015-02-09.

    Biographies:Qin Xiaochuan (1985—), male, graduate; Tu Yongming (corresponding author), male, doctor, associate professor, tuyongming@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.50978224, 51378104), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Citation:Qin Xiaochuan, Meng Shaoping, Tu Yongming, et al. Ultimate load bearing capacity evaluation of concrete beams subjected to freeze-thaw cycles[J].Journal of Southeast University (English Edition),2015,31(4):522-528.[doi:10.3969/j.issn.1003-7985.2015.04.016]

    The freeze-thaw cycle (FTC) attack is one of the most severe factors that lead to the durability deterioration of existing reinforced concrete structures in cold regions[1-2]. As FTCs are repeated, the concrete material gradually loses its strength and stiffness with the growth of the internal cracks caused by the volume expansion of freezing water stored in the pore system of concrete[3-4]. Several reports have been focused on the performance of concrete material under FTCs[5-12]. However, little attention was paid to reinforced concrete members and prestressed concrete members[13-15]. For concrete structures, concrete material deterioration will cause load-bearing capacity degradation, which eventually makes the whole structure incapable of service. Thus, there is a growing need for methods to evaluate the freeze-thaw damaged concrete structures. A method for predicting the ultimate load bearing capacity of freeze-thaw damaged concrete structures is proposed, testified and discussed in this paper.

    1Foundations of the Prediction Method

    1.1 Indicators of freeze-thaw damage

    In the assessment of the freeze-thaw damage on concrete, various indicators, such as the relative dynamic modulus of elasticity (RDME), compressive strength and etc., must be measured after a specified number of FTCs.

    The RDME is the most popular indicator of freeze-thaw damage in many test standards, such as ASTM C666/C666M-03[16], GB/T 50082—2009[17], etc. The test of RDME is developed from the analysis of a homogeneous rod under free flexural vibration. Thus, it is assumed that the specimen is homogeneous and elastic. However, this assumption is not quite true for concrete material, especially for freeze-thaw damaged concrete material. For undamaged concrete material, as shown in Fig.1(a), the assumption is reasonable because the whole specimen is tightly bound by cementitious materials and the volume ratio of the micro-cracks to the specimen is very low, which means that vibration can be transmitted through the specimen easily. For freeze-thaw damaged concrete material, as shown in Fig.1(b), the situation is different. As FTCs go on, the original micro-cracks will grow larger and new cracks will form. Hence, the specimen will be separated into a few micro-units and cannot be treated as a homogeneous material any more.

    Another feasible indicator of freeze-thaw damage is the compressive strength of the freeze-thaw damaged concrete cube. In the compression test, it is appropriate to assume that the undamaged concrete material is homogeneous because the micro-cracks tend to close under compression. When performing the compression test on the freeze-thaw damaged concrete cube, it is still reasonable to believe that the specimen is homogeneous, because some of the cracks induced by FTCs (i.e. horizontal cracks) will first be compacted by the compressive force from the test machine before the concrete cubic is ruptured, which can be regarded as a process of “crack closure”(see Fig.2)[18]. In the compressive stress-strain curves of the freeze-thaw damaged concrete, the initial parts of the ascending branches are not so steep as the following parts of these ascending branches, revealing a “crack closure”.

    Fig.2 Stress-strain relationship under compression

    Comparing the two indicators mentioned above, the compressive strength is better than the RDME theoretically. In addition, the RDME tends to recover itself if it is not measured timely, especially in high-strength concrete. However, the compressive strength varies relatively little as time goes on[19]. Last but not least, the compressive strength is a more effective indicator, which directly affects the behaviors of the freeze-thaw damaged concrete structures.

    1.2 Uniaxial compression behavior after FTCs

    There are lots of internal micro-cracks, mainly existing in the paste and paste-aggregate interfaces when concrete hardens even if there is not any load or environmental effect. When submerged into water, these cracks will suck water into the concrete pore system. As the temperature drops below the freezing point, water will turn into ice accompanied by a 9% volume increase, which causes tensile stress inside the concrete. If the tensile stress exceeds the tensile strength of concrete material, new internal cracks will initiate and the old ones will open wider. As FTCs are repeated, more and more water will be absorbed into the concrete during thawing, causing larger expansion and more internal cracks during the next freezing process. The load carrying area will decrease with the formation and growth of internal cracks, which leads to a decrease in the compressive strength. Since there are less micro-units to carry the load, each unit will reach its elastic limit more quickly. Hence, the compressive behavior of concrete becomes softer. The peak compressive strength and the Young’s modulus decrease, while the peak compressive strain and the ultimate compressive strain increase (see Fig.2)[18]. The damage level in Fig.2[18]is re-rated in terms of residual compressive strength.

    2Theoretical Prediction Method

    2.1 General considerations

    Based on Refs.[15,19], the theoretical prediction is carried out by the following assumptions:

    1) Plane sections before bending remain plane after bending. This assumption is proved to be true in Ref.[15].

    2) The tensile strength of the concrete may be neglected. Due to freeze-thaw damage and the low tensile strength of the undamaged concrete, the freeze-thaw damaged concrete can barely carry tension.

    3) The simplified stress-strain curve of the freeze-thaw damaged concrete is shown in Fig.3 and the curve is determined by

    (1)

    (2)

    (3)

    (4)

    (5)

    whereεcis the compressive strain in the concrete;σcis the compressive stress corresponding toεc;fcis the

    Fig.3 Compressive stress-strain curve of concrete

    4) The stress-strain curve for steel is perfect elastoplastic, and the ultimate strain is 0.01. Commonly, FTCs have little effect on steel, which substantiates this assumption.

    2.2 Ultimate load bearing capacity

    Then, based on the classic figuree of material mechanics with minor adjustments, the ultimate load bearing capacity of the freeze-thaw damaged beam can be calculated as

    (7)

    (8)

    3Verification Tests

    3.1 Materials

    Two concrete mix designs (named type A and type B) are used. The components and mix designs for the concrete materials are described in Tab.1 and Tab.2.

    Tab.1 Materials used for the concrete mix

    Tab.2 Concrete mix designs and basic properties

    Hot-rolled ribbed steel bars (HRB335) of either 10 or 8 mm diameter were used as the longitudinal reinforcement. The stirrup was a cold-drawn wire with a diameter of 4 mm. The prestressed reinforcement was a 5 mm low-relaxation steel wire with a nominal ultimate strength of 1 570 MPa. The physical and mechanical properties of these reinforcements are shown in Tab.3.

    3.2 Specimens

    For each type of concrete, four kinds of specimens were prepared:

    1) Twelve cubic specimens (100 mm×100 mm×100 mm), three as a group, were used to test the residual compressive strength after a specified number of FTCs.

    Tab.3 Physical and mechanical properties of the reinforcements

    2) Three prismatic specimens (400 mm×100 mm×100 mm) were used to test RDME during FTCs.

    3) Twelve prestressed concrete beams with straight prestressed wires, three as a group, were used to test the bending response after specified number of FTCs (see Fig.4(a)).

    4) Twelve prestressed concrete beams with curved prestressed wires, three as a group, were also used to test the bending response after specified number of FTCs (see Fig.4(b)).

    Fig.4 Prestressed concrete beam (unit: mm). (a) With straight prestressed wires; (b) With curved prestressed wires

    3.3 Program

    The freeze-thaw test followed the Procedure A in ASTM C666/C666M-03[16]. In this procedure of rapid freeze-thaw in water, the temperature of the specimen was decreased from 5 to -16 ℃ and then increased from -16 to 5 ℃ over a period of 2.8 h, during which the cooling time took 2.0 h and heating took 0.8 h; i.e. 28.6 % of the time was used for thawing. Moreover, the time taken to decrease the core temperature of the specimen from 3 to -16 ℃ was about 1.7 h, and to increase it from -16 to 3 ℃ was 0.75 h. The period of transition between the freezing and thawing phases of the cycle was 5 min. All specimens were tested after 0, 75, 100, 125 FTCs, respectively.

    4Results and Discussion

    4.1 Compressive strength and RDME

    The test results of the RDME and the residual compressive strength are shown in Fig.5. The compressive strength of type A and type B concrete decrease in a similar way. However, the RDME of type A does not decrease obviously before 100 FTCs, while the RDME of type B remains only 3% after 125 FTCs. For type A concrete, the compressive strength drops faster than the RDME. On the contrary, for type B concrete, the RDME drops faster than the compressive strength. This reinforces that the compressive strength may be a better indicator of freeze-thaw damage.

    Fig.5 Test results of concrete material damaged by FTCs

    4.2 Ultimate bending moment

    The test results of this experiment as well as those of the experiments performed by others[21-22]are listed in Tab.4. The predicted results calculated from Eqs.(3) to (8) are shown in Tab.4.

    From Tab.4, it is clear that FTCs reduce the compressive strength of concrete material, which lead to a reduction in the load bearing capacity, and this trend is sharper when the concrete damage aggravates. The layout of prestressed wire affects the load bearing capacity most when the concrete is slightly damaged; however, as damage goes on, the effect of concrete type becomes more and more dominant. Moreover, the experimental results suggest that the prestressed concrete beam with higher strength concrete and curved prestressed wire performs better under FTCs.

    4.3 Comparison and discussion

    The reliability of the proposed method for predicting the load bearing capacity of freeze-thaw damaged beams is shown in Fig.6. Results show that the failure load is better estimated while the concrete strength remains more than 50%. More than half of the predicted results are on the safe side (Mu,num/Mu,exp≤1), and most of the prediction errors remain less than 10%. In other words, if the margin of error is ±10%, the predicted results are reliable except for damaged beam HD2.

    The overestimation of HD2 is 46%, which is larger than the FEM result in Ref.[14]. This is partly because of the bond-slip behavior which might exist in concrete

    Tab.4 Summary of beam test results

    beams with damage of more than 50% by FTCs. Moreover, it is reported that the freeze-thaw induced cracks of HD2 were mostly parallel to the longitudinal axis of beams, which have a decisive influence on the fracture of concrete in compression[21]. These may account for the disagreement between the theoretical and experimental results of HD2.

    The load bearing capacity of freeze-thaw damaged beams can be evaluated following the method presented in this paper. The compressive stress-strain behavior of concrete blocks is the key to the load bearing capacity prediction. For most reinforced and prestressed concrete beams, the compressive behavior of concrete can be easily obtained through drilled concrete cores from the main structure or pre-casted blocks which experienced the same environmental condition as the main structure. Thereafter,

    Fig.6 Comparison of results from experiments and theoretical predictions

    the ultimate load bearing capacity can be calculated by Eqs. (7) and (8), which is familiar to most civil engineers. Though the prediction method is reliable for most of the concrete beams when the concrete strength loss due to FTCs is less than 50%, it is significant that bond-slip behavior will influence the accuracy of the prediction when the compressive strength loss is more than 50%. The size-effect of freeze-thaw damage was not researched thoroughly, but Ref.[23] showed that the frost-damage might significantly differ at various distances from the exposed surface. Thus, when evaluating concrete structures with larger sections, frost-damage distribution is an important factor.

    5Conclusions

    1) The compressive strength of concrete is proved to be a better indicator of freeze-thaw damage on concrete material than RDME.

    2) Based on the characteristics of the compressive stress-strain curve of freeze-thaw damaged concrete, a theoretical method to predict the ultimate bending moment is proposed.

    3) Comparisons of the predicted results with the experimental data show that the load bearing capacity of freeze-thaw damaged beams can be predicted by the proposed method.

    4) Two factors, the bond-slip behavior and the frost-damage distribution, affect the prediction of the failure load, especially when the residual compressive strength is less than 50%.

    References

    [1]Pigeon M, Pleau R.Durabilityofconcreteincoldclimates[M]. Taylor & Francis, 1995.

    [2]Fagerlund G. Modeling the service life of concrete exposed to frost[C]//InternationalConferenceonIonandMassTransportinCement-BasedMaterials. Toronto, Canada, 1999: 195-204.

    [3]Cho T. Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method[J].Construction&BuildingMaterials, 2007, 21(12): 2031-2040.

    [4]Ueda T, Wang L, Hasan M, et al. Mesoscale simulation of influence of frost damage on mechanical properties of concrete[J].JournalofMaterialsinCivilEngineering, 2009, 21(6): 244-252.

    [5]Duan A, Jin W L, Qian J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J].MaterialsandStructures, 2011, 44(7): 1309-1324.

    [6]Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J].JournalofMaterialsinCivilEngineering, 2008, 20(1): 37-45.

    [7]Li W T, Sun W, Jiang J Y. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously[J].Construction&BuildingMaterials, 2011, 25(5): 2604-2610.

    [8]Shang H S, Song Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J].Cement&ConcreteResearch, 2006, 36(10): 1857-1864.

    [9]Shang H S, Song Y P, Qin L K. Experimental study on the property of concrete after freeze-thaw cycles[J].ChinaConcreteandCementProducts, 2005, 32(2): 9-11. (in Chinese)

    [10]Shang H S, Song Y P, Qin L K. Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles[J].Building&Environment, 2008, 43(7): 1197-1204.

    [11]Shang H S, Yin Q X, Song Y P, et al. Experimental study on the influence of freezing and thawing cycles on deformation features of common concrete[J].YangtzeRiver, 2006, 39(4): 60-63. (in Chinese)

    [12]Sun W, Zhang Y M, Yan H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J].Cement&ConcreteResearch, 1999, 29(9): 1519-1523.

    [13]Diao B, Sun Y, Cheng S H, et al. Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams[J].JournalofColdRegionsEngineering, 2011, 25(1): 37-52.

    [14]Hanjari K Z, Kettil P, Lundgren K. Modelling the structural behaviour of frost-damaged reinforced concrete structures[J].StructureandInfrastructureEngineering, 2013, 9(5): 416-431.

    [15]Cao D F, Qin X C, Yuan S F. Experimental study on mechanical behaviors of prestressed concrete beams subjected to freeze-thaw cycles[J].ChinaCivilEngineeringJournal, 2013, 46(8): 38-44. (in Chinese)

    [16]ASTM. ASTM C666/C666M-03 Standard test method for resistance of concrete to rapid freezing and thawing[S]. ASTM, 2008.

    [17]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50082—2009 Standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    [18]Cao D F, Fu L Z, Yang Z W, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J].JournalofBuildingMaterials, 2013, 16(1): 17-23, 32. (in Chinese)

    [19]Jacobsen S, Sellevold J. Self healing of high strength concrete after deterioration by freeze/thaw[J].Cement&ConcreteResearch, 1996, 26(1): 55-62.

    [20]Guo Z H.Thestrengthandtheconstitutiverelationofconcrete:theoryandapplication[M]. Beijing:China Architecture & Building Press, 2004. (in Chinese)

    [21]Hassanzadeh M, Fagerlund G. Residual strength of the frost-damaged reinforced concrete beams[C]//EuropeanConferenceonComputationalMechanics. Lisbon, Portugal, 2006: 366-366.

    [22]Guo R Y. Experimental research on reinforced concrete bending members under freeze-thaw cycles[D]. Yangzhou: School of Civil Engineering, Yangzhou University, 2011. (in Chinese)

    [23]Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J].ACIMaterialsJournal, 2007, 104(4): 369-378.

    doi:10.3969/j.issn.1003-7985.2015.04.016

    国产成人精品久久久久久| 综合色av麻豆| 美女cb高潮喷水在线观看| 99热这里只有是精品在线观看| 国产 一区 欧美 日韩| 亚洲,欧美,日韩| 免费观看在线日韩| av在线观看视频网站免费| 天堂√8在线中文| 日日摸夜夜添夜夜爱| 女人被狂操c到高潮| 国产成人午夜福利电影在线观看| 久久久久久九九精品二区国产| 97超视频在线观看视频| 老司机影院成人| 午夜久久久久精精品| 亚洲欧美日韩东京热| 中文天堂在线官网| 亚洲国产欧美人成| 国产中年淑女户外野战色| 中文字幕久久专区| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 嫩草影院入口| 久久精品国产鲁丝片午夜精品| 国内精品一区二区在线观看| 日本wwww免费看| 日本爱情动作片www.在线观看| 国产精品国产三级国产专区5o| 国产在线男女| 国产三级在线视频| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 国产成人午夜福利电影在线观看| 日日啪夜夜撸| 国产精品精品国产色婷婷| 最近2019中文字幕mv第一页| 91狼人影院| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 久99久视频精品免费| 一级毛片aaaaaa免费看小| 身体一侧抽搐| 激情五月婷婷亚洲| 久久人人爽人人片av| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 噜噜噜噜噜久久久久久91| 午夜激情福利司机影院| 麻豆成人av视频| 人人妻人人澡欧美一区二区| 久久6这里有精品| 18禁动态无遮挡网站| 日韩国内少妇激情av| 国产精品福利在线免费观看| 日本爱情动作片www.在线观看| 国产一级毛片在线| 夫妻性生交免费视频一级片| 777米奇影视久久| 国产精品熟女久久久久浪| 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 亚洲av免费在线观看| 一区二区三区免费毛片| 国产成人精品一,二区| 久久久久久久久中文| 在线播放无遮挡| 色5月婷婷丁香| 久久久久久久久久久免费av| 色网站视频免费| 国内精品一区二区在线观看| 免费观看在线日韩| 边亲边吃奶的免费视频| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 综合色av麻豆| 欧美成人一区二区免费高清观看| 在线免费观看不下载黄p国产| 成人亚洲精品av一区二区| 成人欧美大片| 网址你懂的国产日韩在线| 国产高清不卡午夜福利| 国产黄片美女视频| 午夜福利网站1000一区二区三区| 只有这里有精品99| 亚洲自偷自拍三级| 有码 亚洲区| 有码 亚洲区| av在线天堂中文字幕| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 又爽又黄a免费视频| kizo精华| 国产一级毛片七仙女欲春2| 少妇被粗大猛烈的视频| 久久久国产一区二区| 亚州av有码| 免费观看无遮挡的男女| 大香蕉97超碰在线| 99久国产av精品国产电影| 建设人人有责人人尽责人人享有的 | 日韩大片免费观看网站| 婷婷六月久久综合丁香| 深爱激情五月婷婷| 久久国内精品自在自线图片| 99久国产av精品| 亚洲精品一区蜜桃| 如何舔出高潮| 中文在线观看免费www的网站| 国产久久久一区二区三区| 精品一区二区三卡| 成年版毛片免费区| 国产女主播在线喷水免费视频网站 | 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说 | 亚洲无线观看免费| 欧美+日韩+精品| 熟女电影av网| 精品久久久久久久久亚洲| xxx大片免费视频| 精品熟女少妇av免费看| 免费观看在线日韩| 街头女战士在线观看网站| 日韩三级伦理在线观看| 国产亚洲5aaaaa淫片| av播播在线观看一区| 美女国产视频在线观看| 久久久久久久午夜电影| 美女xxoo啪啪120秒动态图| 搡老妇女老女人老熟妇| 久久99热6这里只有精品| 高清在线视频一区二区三区| 久久精品国产亚洲av涩爱| av在线蜜桃| 亚洲经典国产精华液单| 热99在线观看视频| 成人漫画全彩无遮挡| 午夜福利视频1000在线观看| 又爽又黄无遮挡网站| 黄色欧美视频在线观看| 人人妻人人澡人人爽人人夜夜 | 午夜福利网站1000一区二区三区| 2022亚洲国产成人精品| 91av网一区二区| 九九久久精品国产亚洲av麻豆| 2018国产大陆天天弄谢| 男女视频在线观看网站免费| 亚洲欧美中文字幕日韩二区| 免费黄网站久久成人精品| 欧美高清性xxxxhd video| 欧美一级a爱片免费观看看| 欧美日本视频| av在线蜜桃| 国产精品久久久久久精品电影| 欧美激情在线99| 成人性生交大片免费视频hd| 狠狠精品人妻久久久久久综合| 国产免费又黄又爽又色| 夫妻性生交免费视频一级片| 汤姆久久久久久久影院中文字幕 | 男女边吃奶边做爰视频| 丝袜美腿在线中文| 最近的中文字幕免费完整| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 校园人妻丝袜中文字幕| 99热6这里只有精品| 午夜久久久久精精品| 人妻制服诱惑在线中文字幕| av播播在线观看一区| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| videos熟女内射| 精品国产一区二区三区久久久樱花 | 日日啪夜夜撸| 波多野结衣巨乳人妻| av.在线天堂| 亚洲欧洲国产日韩| 国产亚洲最大av| 国产黄色小视频在线观看| 久久久久九九精品影院| 欧美极品一区二区三区四区| 日韩成人伦理影院| 91午夜精品亚洲一区二区三区| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 久久精品久久精品一区二区三区| 久久99热6这里只有精品| 日日摸夜夜添夜夜添av毛片| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 在线免费十八禁| 日韩一区二区视频免费看| 免费av不卡在线播放| 精品久久久久久久久av| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 亚洲精品影视一区二区三区av| 午夜免费观看性视频| 免费播放大片免费观看视频在线观看| 午夜爱爱视频在线播放| 熟女电影av网| 欧美一区二区亚洲| 成年女人在线观看亚洲视频 | 69av精品久久久久久| 大又大粗又爽又黄少妇毛片口| 精品人妻视频免费看| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看| 亚洲va在线va天堂va国产| 91精品一卡2卡3卡4卡| 七月丁香在线播放| 国产精品蜜桃在线观看| 午夜日本视频在线| 99久国产av精品国产电影| 国产一区二区三区综合在线观看 | 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 国产成人一区二区在线| 有码 亚洲区| 亚洲久久久久久中文字幕| 日韩av不卡免费在线播放| 国产精品久久视频播放| 日韩国内少妇激情av| 2018国产大陆天天弄谢| 免费黄网站久久成人精品| 亚洲精品乱码久久久久久按摩| av卡一久久| 少妇的逼水好多| 精品久久久久久电影网| 国产乱来视频区| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 久久草成人影院| 中文天堂在线官网| 日本欧美国产在线视频| 色网站视频免费| 少妇裸体淫交视频免费看高清| 一级爰片在线观看| 七月丁香在线播放| 女的被弄到高潮叫床怎么办| 免费看a级黄色片| 精品欧美国产一区二区三| 免费看光身美女| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 免费高清在线观看视频在线观看| 精品人妻熟女av久视频| 精品国产露脸久久av麻豆 | 午夜免费男女啪啪视频观看| 高清av免费在线| 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 国产精品美女特级片免费视频播放器| 亚洲av日韩在线播放| 嫩草影院入口| 日韩国内少妇激情av| 国国产精品蜜臀av免费| 午夜久久久久精精品| av国产免费在线观看| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 亚洲最大成人手机在线| 在线a可以看的网站| 嫩草影院新地址| 中文字幕av在线有码专区| 精品人妻视频免费看| 久久99热这里只频精品6学生| 一级黄片播放器| 亚洲精品一二三| 色综合亚洲欧美另类图片| 亚洲欧美中文字幕日韩二区| 搞女人的毛片| 色综合亚洲欧美另类图片| 国产中年淑女户外野战色| 国产黄片美女视频| 色哟哟·www| 亚洲av电影不卡..在线观看| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 麻豆av噜噜一区二区三区| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 亚洲av电影不卡..在线观看| 午夜福利网站1000一区二区三区| 亚洲最大成人av| 别揉我奶头 嗯啊视频| 国产成人精品久久久久久| 国产亚洲最大av| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 不卡视频在线观看欧美| 一级毛片 在线播放| 少妇人妻精品综合一区二区| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 亚洲精品第二区| 国产探花在线观看一区二区| 午夜福利在线在线| 亚洲av一区综合| 婷婷色av中文字幕| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 久久国产乱子免费精品| 91精品伊人久久大香线蕉| 日本一本二区三区精品| 国产黄频视频在线观看| 亚洲婷婷狠狠爱综合网| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 在线观看免费高清a一片| 精品人妻一区二区三区麻豆| 我的老师免费观看完整版| xxx大片免费视频| 免费在线观看成人毛片| 成人亚洲精品一区在线观看 | 非洲黑人性xxxx精品又粗又长| 亚洲性久久影院| 日本wwww免费看| 亚洲精品日本国产第一区| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 最近2019中文字幕mv第一页| 国产一区二区三区综合在线观看 | 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 日韩在线高清观看一区二区三区| 日本色播在线视频| 亚洲国产最新在线播放| 国产激情偷乱视频一区二区| 欧美bdsm另类| 精品一区二区三区视频在线| 伦精品一区二区三区| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| kizo精华| 少妇被粗大猛烈的视频| 久99久视频精品免费| 老司机影院毛片| 夫妻午夜视频| 真实男女啪啪啪动态图| 在线观看av片永久免费下载| www.色视频.com| 午夜爱爱视频在线播放| 久久精品国产亚洲av涩爱| 亚洲av成人av| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 欧美高清成人免费视频www| 夫妻午夜视频| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 亚洲国产最新在线播放| 日本黄大片高清| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 日日啪夜夜撸| 久久草成人影院| 国产一区二区在线观看日韩| 国产单亲对白刺激| 亚洲欧洲国产日韩| 直男gayav资源| 美女国产视频在线观看| 午夜精品一区二区三区免费看| xxx大片免费视频| 联通29元200g的流量卡| 亚洲内射少妇av| 国产伦精品一区二区三区四那| 久久久精品94久久精品| 国产精品人妻久久久久久| 欧美另类一区| 小蜜桃在线观看免费完整版高清| 免费看美女性在线毛片视频| www.av在线官网国产| 欧美zozozo另类| .国产精品久久| 亚洲综合精品二区| 国产午夜福利久久久久久| 国内精品宾馆在线| 两个人的视频大全免费| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 免费黄色在线免费观看| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 美女主播在线视频| 高清毛片免费看| 亚洲av男天堂| 成人综合一区亚洲| 夫妻午夜视频| 搞女人的毛片| 欧美xxxx黑人xx丫x性爽| 高清午夜精品一区二区三区| 久久久久精品性色| 日本与韩国留学比较| 免费看日本二区| 亚洲欧洲国产日韩| 天堂网av新在线| 亚洲内射少妇av| 18+在线观看网站| 午夜亚洲福利在线播放| 夫妻性生交免费视频一级片| 老司机影院成人| 午夜福利高清视频| 99热这里只有是精品在线观看| 精品人妻视频免费看| 熟妇人妻不卡中文字幕| 国产精品人妻久久久影院| 国产激情偷乱视频一区二区| 一个人免费在线观看电影| 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 我的老师免费观看完整版| 一级黄片播放器| 91av网一区二区| 亚洲精品乱码久久久v下载方式| 国产 亚洲一区二区三区 | 免费看日本二区| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 女人十人毛片免费观看3o分钟| 国产高清不卡午夜福利| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品乱码久久久久久按摩| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲| 一级爰片在线观看| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 久久鲁丝午夜福利片| 最近视频中文字幕2019在线8| 久久这里有精品视频免费| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 国产亚洲一区二区精品| 久久精品夜夜夜夜夜久久蜜豆| av在线老鸭窝| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 日日啪夜夜撸| 久久精品国产亚洲av天美| 亚洲国产欧美在线一区| 麻豆成人av视频| av国产久精品久网站免费入址| 永久免费av网站大全| 久久精品久久久久久久性| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 国产黄色小视频在线观看| 最近中文字幕2019免费版| 熟女人妻精品中文字幕| 婷婷色综合大香蕉| 天堂网av新在线| 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 五月天丁香电影| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 床上黄色一级片| 99re6热这里在线精品视频| 成人无遮挡网站| 日韩一本色道免费dvd| 女的被弄到高潮叫床怎么办| 五月玫瑰六月丁香| 99re6热这里在线精品视频| 一区二区三区乱码不卡18| 日韩人妻高清精品专区| 欧美极品一区二区三区四区| 久久久国产一区二区| 99re6热这里在线精品视频| 一本久久精品| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 日韩av免费高清视频| 国产成人freesex在线| 亚洲va在线va天堂va国产| 亚洲av国产av综合av卡| av线在线观看网站| 亚洲欧洲日产国产| 大香蕉久久网| 人妻少妇偷人精品九色| 国产不卡一卡二| 精品国内亚洲2022精品成人| 两个人视频免费观看高清| 欧美三级亚洲精品| 成年免费大片在线观看| 99热网站在线观看| 欧美高清成人免费视频www| 18禁在线无遮挡免费观看视频| 天天躁夜夜躁狠狠久久av| 久久久久久久国产电影| 国产精品三级大全| 亚洲色图av天堂| 国产精品一区www在线观看| 国产不卡一卡二| 欧美潮喷喷水| 色播亚洲综合网| 国产女主播在线喷水免费视频网站 | 国产午夜福利久久久久久| 国产69精品久久久久777片| 一级毛片 在线播放| 中国美白少妇内射xxxbb| 插阴视频在线观看视频| 人人妻人人澡欧美一区二区| 国产色爽女视频免费观看| 国产综合精华液| 午夜福利在线观看免费完整高清在| 超碰97精品在线观看| av又黄又爽大尺度在线免费看| 欧美人与善性xxx| 亚洲最大成人手机在线| 五月伊人婷婷丁香| 久久久久久久久久久丰满| 黑人高潮一二区| av专区在线播放| 青春草亚洲视频在线观看| 高清视频免费观看一区二区 | 久久久久免费精品人妻一区二区| 国产乱人视频| 国产亚洲一区二区精品| 欧美日韩精品成人综合77777| av线在线观看网站| 久久久久久久久久黄片| 秋霞伦理黄片| 乱人视频在线观看| 国产毛片a区久久久久| 国产在视频线精品| 国产免费一级a男人的天堂| 国产精品久久久久久精品电影小说 | 国产免费视频播放在线视频 | 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 免费看av在线观看网站| 精品午夜福利在线看| 免费大片黄手机在线观看| 成人性生交大片免费视频hd| 国产伦精品一区二区三区视频9| 亚洲精华国产精华液的使用体验| 最近手机中文字幕大全| 精品人妻视频免费看| 国产淫语在线视频| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| 大香蕉97超碰在线| 成年女人看的毛片在线观看| av女优亚洲男人天堂| 午夜福利在线在线| 免费看日本二区| 国产精品av视频在线免费观看| 国产一区有黄有色的免费视频 | 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 国产一级毛片在线| 久久99热这里只有精品18| 一级爰片在线观看| 激情五月婷婷亚洲| 国产成人freesex在线| 性色avwww在线观看| ponron亚洲| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 观看免费一级毛片| 国产黄a三级三级三级人| 国产伦理片在线播放av一区| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 精品久久久噜噜| 搡老乐熟女国产| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久久久按摩| 男人狂女人下面高潮的视频| av免费在线看不卡| 人妻制服诱惑在线中文字幕| 99热6这里只有精品| 97超视频在线观看视频| 国产亚洲精品av在线| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 简卡轻食公司| 亚洲自拍偷在线| 99久久精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 美女主播在线视频|