• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    2015-03-01 09:23:39ZhengYuqiaoSuChunCaoBaixueShiYangmei

    Zheng Yuqiao  Su Chun  Cao Baixue  Shi Yangmei

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    Zheng Yuqiao1Su Chun2Cao Baixue2Shi Yangmei2

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:Aimed at the remanufacturing system, the effect of the uncertainty of returns’ quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system’s current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns’ quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns’ repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns’ quality grade.

    Key words:bottleneck shifting; remanufacturing; returns; quality grading; uncertainty

    Received 2015-04-27.

    Biographies:Zheng Yuqiao(1977—), female, doctor, associate professor; Su Chun (corresponding author), male, doctor, professor, suchun@seu.edu.cn.

    Foundation items:The Program for Special Talent in Six Fields of Jiangsu Province(No.2013ZBZZ-046), the Program of Lanzhou Technology Development (No.2014-1-175).

    Citation:Zheng Yuqiao, Su Chun, Cao Baixue, et al. Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading[J].Journal of Southeast University (English Edition),2015,31(4):516-521.[doi:10.3969/j.issn.1003-7985.2015.04.015]

    Remanufacturing is regarded as an effective approach for circular economy. Through a number of industrial operations, the worn-out components or end-of-life products (hereafter referred to as “returns”) are restored to useful life[1]. Various uncertainties exist in the remanufacturing system, including quantity and quality of returns, which lead to large difference in the remanufacturing process route and operation time, and pose a great challenge for the design, production planning and operation of such systems[2].

    In Ref.[3], the production planning problem was studied by considering the difference in returns’ quality. Zikopoulos et al.[4]investigated the effect of returns’ quality on the profitability of the remanufacturing system. Aras et al.[5]demonstrated that the random characteristics of returns are significant challenges faced by the remanufacturing system. Behret et al.[6]studied the effect of quality uncertainties on the total cost of remanufacturing. The experimental results show that classification of returns can reduce cost effectively. Jin et al.[7]graded the returns based on their quality, and modeled the remanufacturing system with the Markov decision process. The above studies show that quality grading is an effective method for dealing with quality uncertainties of returns.

    Bottlenecks are one of the key problems in production planning and scheduling[8]. Influenced by various internal and external stochastic factors, the location of the bottleneck in the remanufacturing system will change dynamically. In addition, the improvement of current bottleneck will also cause the shifting of bottleneck. The phenomenon described above is called bottleneck shifting or dynamic bottleneck[9]. In recent years, the identification and improvement for the dynamic bottleneck has received much attention. Moss et al.[10]used the linear regression model and simulation method to solve bottleneck shifting problems. Liu et al.[11]adopted indicators of bottleneck degree and bottleneck index to describe the properties of dynamic bottlenecks. Li et al.[12]regarded the blocking and starving time as a time series, and the bottleneck shifting was predicted by using an auto-regressive and moving average (ARMA) model. A bottleneck identification approach based on orthogonal experiments was proposed by Zhai et al[13]. Lawrence et al.[14]used the analytic approach to study the bottleneck shifting problem. In Ref.[15], a bottleneck machine identification algorithm was proposed with the objective to minimize total tardiness.

    Existing research mainly aimed at predicting bottleneck workstations, and the study on dynamic bottlenecks and overall system performance is quite limited. Up to now, few studies have been found to concentrate upon the uncertainties of returns’ quality acting on bottleneck shifting in the remanufacturing system. In this article, selecting the remanufacturing system as the research object and based on the analysis of uncertainties in core quality, a novel definition of bottleneck station is proposed by considering quality grading proportion, repair rate and process rate uncertainty. On that basis, the probability analytic figure of bottleneck stations are derived. It can be used to describe the effect of quality uncertainties on bottleneck shifting. A case study is provided to illustrate the efficiency of the approach.

    1Definition of Bottleneck Shifting

    1.1 Bottleneck shifting indicator

    Lawrence et al.[14]developed a simple Jackson production network model, and each node in the network was regarded as aM/M/1 queuing system. Under steady state conditions, the probability that there aremreturns at the station is equivalent to the probability that the queue length of theM/M/1 queuing system ism, and the node with the longest length synchronically is defined as the bottleneck of the system.

    Based on the mathematical description of queuing system performance, the queue length of each node is larger than other nodes with probabilityPjunder steady state conditions. Thus,P=(P1,P2, …,Pj) is used to describe the probability that each node becomes a bottleneck. Obviously, when the system contains only one bottleneck station, the corresponding probabilityPjfor the bottleneck station is 1, and the probability of the other stations is 0.

    Defineβas the indicator of bottleneck shifting, which is used to measure the bottleneck shifting property.βis defined as

    (1)

    The value range ofβis [0, 1].β=0 represents that there is only one static bottleneck in the system;β=1 implies that each node has an identical probability to become a bottleneck, which will lead to the largest bottleneck shifting probability for the system.

    1.2 Definition of bottleneck station

    The sum of throughout time of all station equals the total throughout time of all the batches, therefore, we have[9]

    (2)

    The ratio of effective operation time (μEOT) is used to denote the contribution of EOT at each station on its total operation time, which is expressed as

    (3)

    whereμEOT,jis the ratio of effective operation time at stationj.

    The ratio of throughout time (μTPT) is used to denote the contribution of total operation time at each station on the total system throughout time,

    (4)

    whereμTPT,jis the ratio of throughout time at stationj.

    It is clear that the bottleneck station has the following characteristics that the throughout time is long while the effective operation time is comparably short. On this basis, the definition of the effective throughout processing time ratio is given as

    (5)

    By calculating the ETPT of each station during the same time period, we can obtain the ranking order of the effective throughout time of each station, among which the station with the maximum ETPT value is regarded as the bottleneck of effective throughout time (BNETPT):

    (6)

    During the given observation time period,Tjdenotes the duration that stationjis a bottleneck station, thus the value of total observation time is defined as the probability that stationjis a bottleneck station during the given observation period.P=(P1,P2, …,PJ) denotes the probability of the station bottleneck:

    (7)

    2Remanufacturing System Model Considering Quality Grading

    It is assumed that returns enter the remanufacturing system according to the independent Poisson process with rateλ, and the first station is the disassembly and testing station. At this station, some of the returns with lower quality cannot meet the remanufacturing requirement, and they will be scrapped directly with the proportion ofp0. The rest returns are classified into four quality grades based on the quality, i.e.i=1, 2, 3, 4. Returns withi=1 denote those with the highest quality grade, while the returns withi=4 denote the lowest quality grade. Suppose that the probability of returns in gradeiispi, obviouslyp0+p1+p2+p3+p4=1. Fig.1 shows the remanufacturing system model with the consideration of quality grading.

    After passing the disassembly and testing station, returns will enter remanufacturing stations sequentially. Assume that there are six remanufacturing stations, i.e.,Wj,j=1, 2, …, 6. In addition, if a return cannot meet the remanufacturing requirements due to quality defects at any remanufacturing station, it will be scrapped.rij(i=1, 2, 3, 4;j=1, 2, …, 6) represents the remanufacturing rate of returns in gradeiand at stationj. Finished remanufactured parts will be assembled with new parts.

    It is supposed that there is only one machine at each remanufacturing station, andCjis the capacity of the buffer before each station. Due to the range in quality of returns, the processing time of each station is different so that the processing routes are also of great difference. In this case, fori=1, the processing route of the returns isW1→W5→W6; fori=2, the processing route isW1→W3→W5→W6; fori=3, the processing route isW1→W2→W4→W6; while fori=4, the processing route isW1→W2→W4→W5→W6. It is supposed that the processing time of each station is exponentially distributed with meansμj, and returns follow the first-in-first-out (FIFO) rule.

    3Case Study

    In this section, numerical examples are illustrated to obtain insight into the effect of uncertainties about the returns’ quality on bottleneck shifting. We will focus on the factors including quality grade proportionp, repair raterand uncertainties of processing route.

    3.1 Design of experiments

    By choosing some typical groups of parameters, the simulation model is established and run in order to obtain the properties of bottleneck shifting. The parameters are as follows:λ=0.1,μ1=1.00,μ2=0.25,μ3=0.20,μ4=0.10,μ5=0.50,μ6=0.40,Cj=20.

    The parameters in the simulation model, includingp,rand their dispersion degrees, are listed in Tab.1. The variation coefficient for repair rate of Groups A, B, C, D are 0.491, 0.430, 0.074 and 0, respectively. The standard deviation of auality grade proportion (Groups 1 to 9) are 0, 0.129, 0.129, 0.173, 0.173, 0.3, 0.3, 0.3 and 0.3, respectively. It should be noted that the higher the dispersion degree ofr, the greater the difference among quality grades will be; while the smaller the dispersion degree ofp, the higher the hybridization rate of returns in different quality grades will be. Meanwhile, the coefficient variation of repair rates in each group decreases progressively.

    Groups A, B and Groups C, D belong to two categories, i.e. higher and lower coefficient variation of repair rates. In Group A, returns are classified into two categories based on quality, i.e. higher and lower repair rates. Group B denotes the group where the repair rate of returns is descending, which is the same as Group C. In Group C, repair rates are at a high level and the difference of quality grade is small. The repair rate of Group D is 1, it means that there are no processing defects. Typical groups of quality grade proportionspare selected. Quality grade proportions in Groups 1 to 3 are constant, decreasing and increasing, respectively; in Group 4 the returns with a high quality grade are dominating, while Group 5 is in contrast; in Groups 6 to 9, a certain quality grade of returns will dominate the group.

    The simulation model is established with ProModel ? software with the aim to obtain the bottleneck shifting property of the system under different parameters. The design of experiments and the results are shown in Tab.1.

    Tab.1 Experimental results of bottleneck shifting

    3.2 Analysis of experimental results

    3.2.1The impact of repair rater

    From Fig.2(a), we know that for returns of different quality grade proportions, the value ofβdepends mainly on the dispersion degree ofr. The higher the dispersion degree ofr, the higher the value ofβwill be, and vice versa. Thus, bottleneck shifting will be more obvious when the difference of repair rates in each grade is great. The repair rates of Groups C and D are both at a high level, and their dispersion degrees are 0.074 and 0, respectively. It is found that whenβis 0 or close to 0, there is a relatively fixed static bottleneck. For Group D, the repair rate is always 1, and the results show that each station in the system has similar probability to become a bottleneck station due to serious uncertainties of repair rate.

    From Fig.2(b), compared with other groups, Groups 2 and 4 have similar tendency, and theirβvalues remain high even when the repair rate is at a high level (C, D). By observing the quality grade proportion in both groups, process routes and the probabilities of each station becoming a bottleneck, it is found that returns at a high quality grade (i=1, 2) dominate the results, occupying 70% and 80% respectively. These two kinds of returns have similar routes, thus the process routes with the dominating grade will dominate the location of bottleneck stations, as shown in Tab.2.

    (a)

    (b)Fig.2 Relationship between dispersion degree of repair rate and bottleneck shifting. (a) Groups 1, 3, 5, 6, 8 and 9; (b) Groups 2, 4 and 7

    For different repair rate levels and dispersion degrees,βin Group 7 is 0 or approaching 0. The reason is that the returns with medium or high quality grade (i=2) are in the majority, thus the bottleneck location depends mainly on the process route of this grade.

    3.2.2The impact of quality grade proportionp

    In engineering practice, there are great differences in returns’ quality. Groups A and B are the situations where repair rates have a large degree of dispersion. As shown in Fig.3, for Groups 1 to 7, with the increase of the dispersion degree ofp, the value ofβwill decrease gradually. The results show that the higher the hybridization degree of returns, the more obvious the bottleneck shifting will be. The reason is that with the increase of the returns’ hybridization degree, the difference in each station’s utilization rate decreases, and the probability for each station to become bottleneck also increases, and thus leads to the decrease ofβ.

    Fig.3 demonstrates that the results of Groups 8 and 9 seem to be exceptions to the rules above. Groups 6 to 9 represent the situation where one grade of returns dominates and the other grades have the same dispersion degree in quality grades. The results show that when the majority of returns are those with medium or low quality grade (i.e.i=3 ori=4), the value ofβwill be at a high level. From Tab.3, when a certain grade of returns is in prominent place, the location of the bottleneck station will be closely related to the process route of the dominant grade returns. For instance, wheni=1,W5andW6are the bottleneck stations; whilei=2,W3is the bottleneck station. In Groups 8 and 9, the bottleneck station

    Tab.2 Relationship of returns’ quality and bottleneck shifting

    Fig.3 Relationship of p with bottleneck shifting

    shifts betweenW2,W4or amongW1,W2andW4, respectively, which will lead to a high level ofβ. When the returns are dominated by a low quality grade, they will flow through more stations and have more complicated process routes. This will increase the probability of each station becoming a bottleneck and result in the more serious phenomenon of bottleneck shifting.

    4Conclusion

    In this paper, the bottleneck is defined for a remanufacturing system by using an effective throughout time ratio, and the figure of bottleneck shifting is also given. A simulation approach considering grading quality is proposed. The impact of quality grade proportion, repair rate and uncertainties of process routes on the bottleneck shifting properties are studied by the means of simulation and design of experiments. The results demonstrate that the repair ratesrof returns have obvious influence on bottleneck stations. The higher the dispersion degree ofr, that is the greater the difference of the returns’ quality, the more obvious the bottleneck shifting will be. Furthermore, influenced by interaction of quality grade proportions, bottleneck shifting is also closely related to the process routes of dominant grade returns.

    Tab.3 Relationship of processing route and bottleneck shifting

    References

    [1]?stlin J, Sundin E, Bj?rkman M. Product life-cycle implications for remanufacturing strategies[J].JournalofCleanerProduction, 2009, 17(11):999-1009.

    [2]Souza G C, Ketzenberg M E, Guide V D R Jr. Capacitated remanufacturing with service level constraints[J].ProductionandOperationsManagement, 2002, 11(2):231-248.

    [3]Ferguson M, Guide V D R Jr, Eylem K, et al. The value of quality grading in remanufacturing [J].ProductionandOperationsManagement, 2009, 18(3):300-314.

    [4]Zikopoulos C, Tagaras G. Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation[J].EuropeanJournalofOperationalResearch, 2007, 182(1):205-225.

    [5]Aras N, Boyaci T, Verter V. The effect of categorizing returned products in remanufacturing[J].IIETransactions, 2004, 36(4):319-331.

    [6]Behret H, Korugan A. Performance analysis of a hybrid system under quality impact of returns[J].ComputersandIndustrialEngineering, 2009, 56(2):507-520.

    [7]Jin X N, Ni J, Koren Y. Optimal control of reassembly with variable quality returns in a product remanufacturing system[J].CIRPAnnals—ManufacturingTechnology, 2011, 60(1):25-28.

    [8]Watson K J, Blackstone J H, Gardine Stanley C. The evolution of a management philosophy: the theory of constraints[J].JournalofOperationsManagement, 2007, 25(2):387-402.

    [9]Scholz-Reiter B, Windt K, Liu H X. Modelling dynamic bottlenecks in production networks [J].InternationalJournalofComputerIntegratedManufacturing, 2011, 24(5):391-404.

    [10]Moss H K, Yu W B. Toward the estimation of bottleneck shiftiness in a manufacturing operation[J].ProductionandInventoryManagementJournal, 1999, 40(2):53-58.

    [11]Liu M Z, Tang J, Ge M G, et al. Dynamic prediction method of production logistics bottleneck based on bottleneck index[J].ChineseJournalofMechanicalEngineering, 2009, 22(5):710-716.

    [12]Li L, Chang Q, Xiao G X, et al. Throughput bottleneck prediction of manufacturing systems using time series analysis[J].JournalofManufacturingScienceandEngineering, 2011, 133(2):1-8.

    [13]Zhai Y N, Sun S D, Wang J Q, et al. Bottleneck detection method based on orthogonal experiment for job shop[J].ComputerIntegratedManufacturingSystem, 2010, 16(9):1945-1952. (in Chinese)

    [14]Lawrence S R, Buss A H. Shifting production bottlenecks: Causes, cures, and conundrums[J].ProductionandOperationsmanAgement, 1994, 3(1):21-37.

    [15]Zhang R, Wu C. Bottleneck machine identification method based on constraint transformation for job shop scheduling with genetic algorithm[J].InformationSciences, 2012, 188(1):236-252.

    doi:10.3969/j.issn.1003-7985.2015.04.015

    欧美日韩视频高清一区二区三区二| 免费在线观看日本一区| 精品少妇内射三级| 在现免费观看毛片| 中文字幕制服av| 天天躁夜夜躁狠狠躁躁| 亚洲第一av免费看| 国产精品熟女久久久久浪| 一级黄片播放器| 欧美日韩亚洲高清精品| 欧美97在线视频| 成人午夜精彩视频在线观看| 夫妻性生交免费视频一级片| 美女大奶头黄色视频| 日本午夜av视频| 欧美黄色淫秽网站| www.精华液| 色视频在线一区二区三区| 亚洲欧美日韩高清在线视频 | 亚洲中文字幕日韩| 巨乳人妻的诱惑在线观看| 亚洲成人免费av在线播放| 一区福利在线观看| 精品少妇黑人巨大在线播放| 大话2 男鬼变身卡| 女警被强在线播放| 久久影院123| 日日夜夜操网爽| av又黄又爽大尺度在线免费看| 国产日韩一区二区三区精品不卡| 女人爽到高潮嗷嗷叫在线视频| 欧美性长视频在线观看| 美女视频免费永久观看网站| h视频一区二区三区| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 在线观看免费日韩欧美大片| 中文精品一卡2卡3卡4更新| 狠狠精品人妻久久久久久综合| 十八禁高潮呻吟视频| 婷婷色麻豆天堂久久| 成人国语在线视频| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 亚洲九九香蕉| 人妻一区二区av| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 亚洲一区中文字幕在线| 日韩欧美一区视频在线观看| 十八禁人妻一区二区| 中国国产av一级| 亚洲精品日本国产第一区| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 亚洲精品一卡2卡三卡4卡5卡 | 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区大全| 成人影院久久| 亚洲精品日本国产第一区| 伊人久久大香线蕉亚洲五| 国产成人精品无人区| 日本色播在线视频| 91麻豆av在线| 久久99热这里只频精品6学生| 老司机深夜福利视频在线观看 | 国产在线免费精品| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 国产亚洲欧美在线一区二区| 极品人妻少妇av视频| 99久久综合免费| 伊人久久大香线蕉亚洲五| 久久久久视频综合| 黄色毛片三级朝国网站| 丰满少妇做爰视频| 97精品久久久久久久久久精品| 曰老女人黄片| 亚洲成人手机| 丁香六月欧美| 热re99久久国产66热| 少妇的丰满在线观看| 久久国产精品大桥未久av| 国产91精品成人一区二区三区 | 日韩一卡2卡3卡4卡2021年| 汤姆久久久久久久影院中文字幕| 国产精品偷伦视频观看了| 亚洲黑人精品在线| 久久久亚洲精品成人影院| 欧美激情高清一区二区三区| 最近中文字幕2019免费版| 久久性视频一级片| 欧美日韩视频精品一区| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 两个人免费观看高清视频| 成人亚洲精品一区在线观看| 亚洲av欧美aⅴ国产| 免费在线观看日本一区| 另类精品久久| 久久精品aⅴ一区二区三区四区| 女性生殖器流出的白浆| 久久精品亚洲av国产电影网| 涩涩av久久男人的天堂| av有码第一页| 永久免费av网站大全| 日本一区二区免费在线视频| av又黄又爽大尺度在线免费看| 黄色a级毛片大全视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品一卡2卡三卡4卡5卡 | 欧美人与性动交α欧美精品济南到| 国产伦人伦偷精品视频| 999精品在线视频| 午夜福利视频精品| 一级黄色大片毛片| 欧美在线黄色| 叶爱在线成人免费视频播放| 日韩伦理黄色片| 国产1区2区3区精品| 成人国产一区最新在线观看 | 国产成人影院久久av| 少妇的丰满在线观看| 中文乱码字字幕精品一区二区三区| tube8黄色片| 欧美激情高清一区二区三区| 国产视频首页在线观看| 99久久人妻综合| 亚洲成av片中文字幕在线观看| 大香蕉久久网| 亚洲av欧美aⅴ国产| 日韩伦理黄色片| 亚洲欧洲日产国产| 欧美人与性动交α欧美软件| 秋霞在线观看毛片| 午夜免费观看性视频| 黄色视频不卡| 国产色视频综合| 欧美精品av麻豆av| 热re99久久国产66热| 亚洲精品成人av观看孕妇| 久久精品国产a三级三级三级| 精品人妻在线不人妻| 视频区欧美日本亚洲| 亚洲激情五月婷婷啪啪| 亚洲精品久久午夜乱码| 国产成人系列免费观看| 一级片免费观看大全| 九色亚洲精品在线播放| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 91成人精品电影| 欧美精品一区二区大全| 亚洲成人手机| a级片在线免费高清观看视频| 国产精品偷伦视频观看了| 亚洲av成人不卡在线观看播放网 | av不卡在线播放| 久久久精品免费免费高清| 成年人黄色毛片网站| 99九九在线精品视频| 精品国产一区二区三区四区第35| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 久久av网站| 视频区图区小说| 日本欧美视频一区| 99精品久久久久人妻精品| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 婷婷色综合www| 国产不卡av网站在线观看| 99香蕉大伊视频| 我要看黄色一级片免费的| 蜜桃在线观看..| 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 亚洲久久久国产精品| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 国产91精品成人一区二区三区 | 两性夫妻黄色片| 欧美乱码精品一区二区三区| h视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 日本欧美视频一区| 在线观看免费日韩欧美大片| 亚洲精品日本国产第一区| 在线精品无人区一区二区三| 国产男人的电影天堂91| 亚洲专区中文字幕在线| 亚洲一区二区三区欧美精品| 一区二区三区乱码不卡18| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 91九色精品人成在线观看| 午夜福利一区二区在线看| 美女主播在线视频| 一级黄片播放器| 老司机影院毛片| 国产激情久久老熟女| 亚洲国产欧美日韩在线播放| 电影成人av| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 国产一区二区在线观看av| 欧美日韩精品网址| 99国产综合亚洲精品| 久久久精品94久久精品| 久久久国产欧美日韩av| 观看av在线不卡| 亚洲午夜精品一区,二区,三区| 久久亚洲国产成人精品v| 精品国产一区二区久久| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 亚洲成色77777| 免费av中文字幕在线| 999久久久国产精品视频| 免费久久久久久久精品成人欧美视频| 美女国产高潮福利片在线看| 高潮久久久久久久久久久不卡| 涩涩av久久男人的天堂| 亚洲人成电影免费在线| 秋霞在线观看毛片| 久久人妻福利社区极品人妻图片 | 视频区欧美日本亚洲| 啦啦啦在线观看免费高清www| 亚洲中文日韩欧美视频| 999久久久国产精品视频| 岛国毛片在线播放| 女人精品久久久久毛片| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 国产精品亚洲av一区麻豆| 啦啦啦啦在线视频资源| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 大陆偷拍与自拍| 伦理电影免费视频| 成人免费观看视频高清| 男女高潮啪啪啪动态图| 日本欧美视频一区| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 亚洲熟女毛片儿| 波多野结衣一区麻豆| av不卡在线播放| 国产精品九九99| 黑人猛操日本美女一级片| 久久久久久久国产电影| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 久久综合国产亚洲精品| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 丝袜在线中文字幕| 久久久亚洲精品成人影院| 一本综合久久免费| 美女高潮到喷水免费观看| 欧美另类一区| 亚洲成人免费av在线播放| 一区在线观看完整版| 亚洲精品一卡2卡三卡4卡5卡 | 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 高清不卡的av网站| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| h视频一区二区三区| 国产精品偷伦视频观看了| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 久热这里只有精品99| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 少妇被粗大的猛进出69影院| 精品一区二区三区四区五区乱码 | 亚洲精品在线美女| 夫妻性生交免费视频一级片| 国产97色在线日韩免费| 超碰成人久久| 日韩视频在线欧美| 国产精品偷伦视频观看了| 亚洲,一卡二卡三卡| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 久久久国产一区二区| 久久精品国产a三级三级三级| 亚洲色图 男人天堂 中文字幕| 97精品久久久久久久久久精品| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| 欧美中文综合在线视频| 搡老岳熟女国产| 后天国语完整版免费观看| 精品少妇内射三级| 黄色视频不卡| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 日本五十路高清| 69精品国产乱码久久久| 午夜视频精品福利| 电影成人av| 免费在线观看视频国产中文字幕亚洲 | 在现免费观看毛片| 久久精品国产亚洲av高清一级| 99九九在线精品视频| 五月开心婷婷网| 黄色a级毛片大全视频| 91麻豆精品激情在线观看国产 | 亚洲专区国产一区二区| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 91精品三级在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看性视频| 日韩大片免费观看网站| 亚洲国产欧美日韩在线播放| 午夜福利免费观看在线| 日本猛色少妇xxxxx猛交久久| 亚洲精品在线美女| 亚洲人成电影观看| 国产视频一区二区在线看| 欧美精品一区二区大全| 国产精品99久久99久久久不卡| 久久99一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲成色77777| 国产免费视频播放在线视频| 亚洲成色77777| 真人做人爱边吃奶动态| 亚洲av电影在线进入| 91精品国产国语对白视频| 久久精品国产亚洲av涩爱| 精品一区二区三区av网在线观看 | 另类精品久久| 91国产中文字幕| 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看| 黄网站色视频无遮挡免费观看| 婷婷色麻豆天堂久久| 国产精品免费视频内射| 亚洲一区二区三区欧美精品| 久热爱精品视频在线9| 久久免费观看电影| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 日韩人妻精品一区2区三区| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 女性被躁到高潮视频| 亚洲九九香蕉| 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区91| 五月天丁香电影| 天堂中文最新版在线下载| 2021少妇久久久久久久久久久| 51午夜福利影视在线观看| 超碰成人久久| 老鸭窝网址在线观看| 亚洲午夜精品一区,二区,三区| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 最近最新中文字幕大全免费视频 | 超色免费av| 侵犯人妻中文字幕一二三四区| 亚洲精品国产一区二区精华液| 成年av动漫网址| 精品国产一区二区久久| 波多野结衣av一区二区av| av又黄又爽大尺度在线免费看| 精品一区二区三卡| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 国产成人一区二区在线| 国产国语露脸激情在线看| 99国产精品一区二区三区| 国产主播在线观看一区二区 | 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 国产精品一区二区在线不卡| 91成人精品电影| 大香蕉久久成人网| 99国产精品一区二区三区| 亚洲国产日韩一区二区| 男女高潮啪啪啪动态图| 一个人免费看片子| 一区在线观看完整版| 久久久久国产精品人妻一区二区| 亚洲av美国av| 亚洲综合色网址| 亚洲 国产 在线| 亚洲激情五月婷婷啪啪| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| av一本久久久久| 久久国产精品男人的天堂亚洲| 观看av在线不卡| 国产日韩欧美视频二区| 免费观看人在逋| 久久 成人 亚洲| 久久毛片免费看一区二区三区| 久久久久精品国产欧美久久久 | 国产精品av久久久久免费| 老司机深夜福利视频在线观看 | 欧美少妇被猛烈插入视频| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 免费在线观看完整版高清| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 国产精品免费视频内射| 香蕉国产在线看| 男人爽女人下面视频在线观看| 亚洲av国产av综合av卡| 黄色 视频免费看| 极品人妻少妇av视频| 国产日韩欧美在线精品| 在线观看国产h片| 国产成人系列免费观看| 黑人猛操日本美女一级片| 深夜精品福利| 91精品伊人久久大香线蕉| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀 | 亚洲av欧美aⅴ国产| 国产精品国产三级国产专区5o| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 欧美日韩一级在线毛片| 亚洲 国产 在线| 美女主播在线视频| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 亚洲av日韩精品久久久久久密 | 国产精品一国产av| 一边摸一边抽搐一进一出视频| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 久久国产精品男人的天堂亚洲| 久9热在线精品视频| 亚洲熟女毛片儿| 18在线观看网站| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 18在线观看网站| 狂野欧美激情性bbbbbb| 男女下面插进去视频免费观看| 超碰成人久久| 精品免费久久久久久久清纯 | 亚洲少妇的诱惑av| 观看av在线不卡| 悠悠久久av| 麻豆国产av国片精品| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 99热全是精品| 亚洲精品自拍成人| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 啦啦啦啦在线视频资源| 首页视频小说图片口味搜索 | 丁香六月欧美| 大型av网站在线播放| 国产日韩欧美视频二区| 性少妇av在线| 成人午夜精彩视频在线观看| 国产成人免费无遮挡视频| 久久精品国产亚洲av高清一级| 国产精品一二三区在线看| 亚洲国产av影院在线观看| 一区福利在线观看| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 亚洲精品中文字幕在线视频| 爱豆传媒免费全集在线观看| 国产成人一区二区在线| 最近手机中文字幕大全| 国产精品偷伦视频观看了| 亚洲伊人色综图| 国产精品免费大片| 国产一区二区激情短视频 | 欧美黑人精品巨大| 脱女人内裤的视频| 国产精品偷伦视频观看了| av线在线观看网站| 国产片内射在线| 午夜福利免费观看在线| 亚洲欧美精品综合一区二区三区| 亚洲欧洲国产日韩| 一区福利在线观看| videos熟女内射| 久久ye,这里只有精品| 国产在线免费精品| 午夜激情av网站| 又大又黄又爽视频免费| 久久久精品免费免费高清| 91精品国产国语对白视频| 亚洲黑人精品在线| 久久人人97超碰香蕉20202| 国产激情久久老熟女| 大香蕉久久网| 九色亚洲精品在线播放| 国产精品一区二区精品视频观看| 国产欧美日韩综合在线一区二区| 国产主播在线观看一区二区 | 欧美在线一区亚洲| 国产成人av激情在线播放| 大陆偷拍与自拍| 日韩一区二区三区影片| 菩萨蛮人人尽说江南好唐韦庄| 国产主播在线观看一区二区 | cao死你这个sao货| 飞空精品影院首页| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频 | 午夜免费观看性视频| 午夜福利视频精品| 亚洲av国产av综合av卡| 国产野战对白在线观看| 久久久久久久久免费视频了| 51午夜福利影视在线观看| 国产精品久久久久久精品古装| 国产精品人妻久久久影院| 久久久久精品人妻al黑| 国产精品熟女久久久久浪| 香蕉国产在线看| 美女午夜性视频免费| 免费在线观看日本一区| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 欧美中文综合在线视频| 波野结衣二区三区在线| 一区二区三区激情视频| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 男人爽女人下面视频在线观看| 中文字幕高清在线视频| 亚洲精品自拍成人| 精品亚洲成a人片在线观看| 黄片播放在线免费| 久久人妻熟女aⅴ| 欧美日韩亚洲高清精品| svipshipincom国产片| videosex国产| 亚洲熟女毛片儿| 久久久久国产一级毛片高清牌| 黄色视频不卡| 亚洲精品第二区| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻丝袜一区二区| 亚洲一区中文字幕在线| 国产精品秋霞免费鲁丝片| 亚洲第一青青草原| 色婷婷久久久亚洲欧美| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| av电影中文网址| 婷婷色综合大香蕉| 久久亚洲精品不卡| 欧美乱码精品一区二区三区| 亚洲熟女精品中文字幕| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美一区二区综合| 极品少妇高潮喷水抽搐| 亚洲情色 制服丝袜| 国产女主播在线喷水免费视频网站| 国产深夜福利视频在线观看| 久久影院123| 国产成人精品无人区| 18禁观看日本| 国产高清videossex| 黄频高清免费视频| 欧美 日韩 精品 国产| 久久久久精品国产欧美久久久 | 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| av线在线观看网站| 黄色怎么调成土黄色| 亚洲激情五月婷婷啪啪| 国产精品麻豆人妻色哟哟久久| 国产1区2区3区精品| 亚洲五月婷婷丁香| av欧美777| 最近手机中文字幕大全| 99热国产这里只有精品6| 亚洲,欧美精品.| 老司机在亚洲福利影院|