• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber

    2015-03-01 08:07:27JingHongyangTangMengruHanYongdianXuLianyongLiMin

    Jing Hongyang  Tang Mengru  Han Yongdian  Xu Lianyong  Li Min

    (School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China)(Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China)

    ?

    Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber

    Jing Hongyang Tang Mengru Han Yongdian Xu Lianyong Li Min

    (School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China)(Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China)

    Abstract:In order to improve the absorbing properties of M-type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD), a scanning electronic microscopy (SEM), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.

    Key words:M-type barium ferrite; graphene oxide; composite microwave absorber; magnetic property; microwave absorbing property

    Received 2015-03-20.

    Biography:Jing Hongyang (1966—), male, doctor, professor, hjing@tju.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51205282).

    Citation:Jing Hongyang, Tang Mengru, Han Yongdian, et al.Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber[J].Journal of Southeast University (English Edition),2015,31(4):511-515.[doi:10.3969/j.issn.1003-7985.2015.04.014]

    The increase in electromagnetic pollution due to the rapid development of gigahertz (GHz) electronic systems and telecommunications has resulted in a growing interest in electromagnetic absorption technology[1-3]. An ideal electromagnetic wave absorber should exhibit a thin matching thickness, low density, broad bandwidth, and strong electromagnetic absorption[4-6]. Nanostructured ferrite-based materials have attracted considerable attention from scientists and technologists. M-type barium hexagonal ferrites (BaFe12O19), also named magnetoplumbite, are one absorption of the mostly used ferrites with applications in permanent magnets, high density magnetic recording media and millimeter wave devices due to their low cost, suitable saturation magnetization, good chemical stability, high resistivity, high magnetic coercivity, etc[7-8]. However, ferrites, as conventional absorbing materials, have some disadvantages, such as a narrow absorbing band, low efficiency, high density and quality, etc, thus restricting their applications to a certain extent[9-10]. Therefore, it is necessary to synthesize composite microwave absorbing materials for widening the microwave absorbing band, increasing the absorption intensity and decreasing the absorbers’ density.

    To our best knowledge, much research on composite microwave absorbers has been reported. Zhan et al.[11] developed a simple, effective and reproducible solvothermal method for the self-assembly of magnetite nanoparticles along with carbon nanotunes (CNTs), which are believed to have potential applications in the microwave absorbing area. Ghasemi et al.[12] reported that the structural, magnetic, and reflection loss characteristics of barium ferrite/functionalized multi-walled carbon nanotube nanocomposites were evaluated. Wang et al.[13] also reported that SrFe12O19/multi-walled carbon nanotube composite exhibits good absorbing performance at a lower frequency (0 to 6 GHz) with good electromagnetic properties. Previous reports demonstrated that the composites of CNTs and magnetic materials would exhibit excellent microwave absorbing properties. Therefore, as a kind of new carbon material, graphene oxide may also be a potential microwave absorbing material similar to CNTs[14-16]. Wang et al.[17]found that the chemically reduced grapheme oxide shows enhanced microwave absorption compared with graphite and carbon nanotubes, and can be expected to display better absorption than high quality graphene, exhibiting a promising prospect as a microwave absorbing material. He et al.[18] demonstrated a simple and efficient chemical approach to prepare multifunctional nano sheets of grapheme/Fe3O4with scalable, cost-effective, highly reproducible, and well controllable properties.

    However, so far there are few reports on the absorbing properties of ferrite/graphene oxide composites in the field of electromagnetic wave absorbers. In this paper, M-type barium ferrite/graphene oxide composite microwave absorbers are synthesized by the sol-gel auto-combustion method. Then, the effects of doping different amounts of graphene oxide (0%, 3%, 5%, 7%, 9%) into the composites on the crystal structure, surface morphology, magnetic and absorbing properties of composites are investigated.

    1Experimental

    1.1 Sample preparation

    The M-type barium ferrite/graphene oxide composite microwave absorber was prepared by the sol-gel auto-combustion method. Ba(NO3)2and Fe(NO3)3were dissolved in deionized water with a molar ratio of 1∶12.Citric acid was used as a chelating agent to form the homogenous, steady and trans-parent sol solutions. The molar ratio of citric acid to metal nitrates was 2∶1. The graphene oxide was dissolved in alcoholic solution and then mixed homogenously for 1 h using an ultrasonic agitation machine. These three solutions were mixed and the pH value of the solution was adjusted to 7 by adding ammonia solution. The polyethylene glycol (PEG) was added to the mixed solution[19]. Then, the obtained solution was heated at 80 ℃ in a water bath for 4 h to form a sol. The obtained sol solutions were heated at 120 ℃ for 20 h for dehydration. During this process, the sol solutions firstly became viscous gels, and then gels were dried and finally a self-propagating combustion phenomenon was seen. When all the dry gels were completely burnt out, fluffy powders (called precursor powders) were obtained. The precursor powders were then fired at 850 ℃ for 3 h to obtain final prepared powders.

    1.2 Experimental techniques

    The phase structure of samples was examined by X-ray diffraction (XRD), which operates at 40 kV and uses Cu Kα radiation in the sweep range of 20° to 90°. Scanning electronic microscopy (SEM) examinations were performed using a Nova NanoSEM 430 under the accelerating voltage of 0.1 to 30 kV. The magnetic characteristics were measured with a physical properties measurement system (PPMS-9) at the external magnetic field of -2 to 2 T. The complex permeability and permittivity of the composite were measured in the frequency range of 1 to 18 GHz with an HP8722ES vector network analyzer. The sample thickness, test temperature, and environmental humidity are 2 mm, 0 ℃, 0%, respectively. The tangent of dialect, magnetic loss and the reflection loss curves were calculated and discussed.

    2Results and Discussion

    2.1 X-ray diffraction analysis

    Fig.1 shows the XRD patterns of M-type barium ferrite/graphene oxide composite microwave absorber, in which the mass fraction of graphene oxide was 0%, 3%, 5%, 7%, 9%, respectively. M-type barium ferrite phase was found to co-exist with a small amount of Fe2O3phase in all samples. Compared with pure M-type barium ferrite, the M-type barium ferrite doped graphene oxide had more characteristic peaks and the impure phases had stronger intensity. Moreover, the main phase was BaFe12O19and the impure phase was Fe2O3in all the five samples. Therefore, the doped graphene oxide and the amount of doped graphene oxide do not change the kinds of phase structure of the composite absorbing materials, but to some extent, increase the impure phase’s intensity.

    Fig.1 XRD patterns of M-type barium ferrite samples doped different contents of graphene oxide

    2.2 Morphology analysis

    The SEM photographs of M-type barium ferrite/graphene oxide composite microwave absorber, in which the mass fraction of graphene oxide was 0%, 3%, 5%, 7%, 9%, respectively, are shown in Fig.2. It can be observed from Fig.2(a) that the microstructure of pure M-type barium ferrite was irregular flakes, substantially uniform in size and distribution. Although there was a certain degree of agglomeration, agglomeration was not very serious. Figs.2(b) to (e) shows that the microstructures of the composites retained a flake structure, substantially uniform in size and distribution, but the agglomeration phenomenon was more obvious and the sizes of particles were larger compared with Fig.2(a). For M-type barium ferrite doped with 3% grapheme oxide, the agglomeration phenomenon was the lightest and the size was the most uniform. It can be seen that the amount of doped graphene oxide does not change the flake morphology of the composite.

    (a) (b)

    (c) (d)

    (e)Fig.2 SEM photographs of M-type barium ferrite samples doped different contents of graphene oxide. (a) 0%; (b) 3%; (c) 5%; (d) 7%; (e) 9%

    2.3 Magnetic property analysis

    Fig.3 shows the hysteresis loops of M-type barium ferrite doped with different amounts of graphene oxide. Tab.1 shows the magnetic properties of M-type barium ferrite doped with different contents of graphene oxide. It is clearly shown that the saturation magnetization (Ms), residual magnetization (Mr) and coercive force (Hc) decreased compared with pure M-type barium ferrite. The decrease inMs,MrandHccould be most likely due to the existence of graphene oxide, which had no magnetism, reducing the magnetic moment. We can also see that the saturation magnetization, remnant magnetization and coercive force of all samples decreased with the increase in the mass fraction of doped graphene oxide; wherein the coercive force became gradually smaller, indicating that permeability was improved. For M-type barium ferrite doped with 3% grapheme oxide, the saturation magnetization, residual magnetization, and coercive force were 37.32 emu/g, 18.85 emu/g, 2 910 Oe, respectively, indicating that the magnetic property reached the best performance. According to the Stoner-Wohlfarth model,S=Mr/Msgradually deviated away from 0.5 with the increasing mass fraction of doped graphene oxide.

    Fig.3 Hysteresis loops of M-type barium ferrite samples doped different contents of graphene oxide

    Massfractionofgrapheneoxide/%Ms/(emu·g-1)ResidualmagnetizationMr/(emu·g-1)Hc/OeS=Mr/Ms058.0528.9733700.499337.3218.8529100.505531.2215.7720010.505719.929.4218230.473918.777.234540.385

    2.4Analysis of electromagnetic parameters and wave absorbing property

    Electromagnetic parameters (μ′,μ″,ε′,ε″) are the intrinsic features of absorbing materials. The dielectric loss tangent and magnetic loss tangent of the absorber medium are defined as tanδu(μ″/μ′) and tanδε(ε″/ε′), respectively. Figs.4 and 5 show the variations of dielectric loss tangent and magnetic loss tangent versus the frequency of M-type barium ferrite doped with different contents of graphene oxide.

    Fig.4 Dielectric loss tangent of different composites

    Fig.5 Magnetic loss tangent of different composites

    In this case, reflection loss depending on the loss tangent value can be evaluated by[20-21]

    (1)

    whereZinis the normalized input impedance.

    (2)

    whereurandεrare the relative permeability and permittivity, respectively, of the composite medium;cis the velocity of electromagnetic waves in free space;fis the frequency of microwaves;dis the thickness of the absorber.

    According to these equations, using the specific parameters of the composite, the relationship between reflection loss and frequency of the composite of 2 mm and 2 cm thick are obtained and shown in Figs.6 and 7. From Fig.6, the microwave absorbing properties of the samples had consistent trends. The reflection loss value for the sample of 3% graphene oxide gradually decreased in the range of 7 to 16 GHz, and reached minimum (-0.23 dB). From Fig.7, the microwave absorbing properties of the samples also had consistent trends. There were two absorbing peaks which were in the range of 3 to 5 GHz and 11 to 13 GHz, respectively, reaching-1.5 and -3.2 dB. The reflection loss value for the sample of 3% graphene oxide reached minimum (-3.2 dB) at 12 GHz. On the whole,

    Fig.6 Reflection loss of different composites in 2 mm thickness

    Fig.7 Reflection loss of different composites in 2 cm thickness

    the sample of 3% graphene oxide has the best absorbing properties among all the samples.

    Compared Fig.7 with Fig.6, it is found that as the thickness of samples increases, absorbing peaks shift to the left and the absorbing performance is improved significantly. M-type barium ferrite/graphene oxide composite absorbing materials not only widen the microwave absorbing band, but also increase the absorption intensity compared with pure M-type barium ferrite. This is caused by the following reasons: 1) Graphene oxide has a special two-dimensional sheet structure, high electrical and thermal conductivity, large specific surface area, light weight, which are beneficial to the absorption and attenuation of electromagnetic waves. 2) Absorption of electromagnetic waves of ferrite materials and graphene oxide are based on magnetic loss and dielectric loss. This makes the ferrite/graphene oxide composite absorbing materials absorb electromagnetic waves using two absorption mechanics to improve their absorbing properties. 3) The reflection loss of ferrites generally occurs in the lower frequency range (<10 GHz), and the reflection loss of graphene oxide usually occurs in the high frequency range (>10 GHz), so the composite of two materials is also beneficial for widening the band absorption.

    3Conclusion

    M-type barium ferrite/graphene oxide composites have been synthesized using the sol-gel auto-combustion method. The doped graphene oxide did not change the kinds of phase structure and the flake morphology of M-type barium ferrite. Moreover, the magnetic properties of the composite absorbing material decreased with the increase in the amount of graphene oxide added. The absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with M-type barium ferrite, wherein the sample with the content of doped graphene oxide being 3% has the minimum reflectivity in 10 to 18 GHz frequencies, and at 12 GHz, its absorbing properties were increased by 20% compared with the M-type barium ferrite.

    References

    [1]Qi X S, Zhong W, Deng C Y, et al. Large-scale synthesis, electromagnetic and enhanced microwave absorption properties of low helicity carbon nanotubes/Fe nanoparticles hybrid [J].MaterialsLetters, 2013, 107(10):374-377.

    [2]Zhao B, Wang Q L, Zhang C R. Fabrication and electromagnetic characteristics of microwave absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers [J].JournalofMagnetism&MagneticMaterials, 2013, 345(8):249-254.

    [3]Ge H L, Chen Q, Wang X Q, et al. The research progress of barium ferrite absorbing materials [J].JournalofChinaJiliangUniversity,2006,17(3):182-187. (in Chinese)

    [4]Li Y, Zhao J L, Han J C, et al. New progress in the preparation process of ferrite powders [J].PowderMetallurgyTechnology, 2000, 18(1): 51-55. (in Chinese)

    [5]Zhu W C, Zhang D S, Pan F. The preparation and the research of dispersion of Zn0.5Ni0.5Fe2O4nano powder materials [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2003, 33(2):241-244. (in Chinese)

    [6]Yang A, Chen Y J, Chen Z H, et al. Magnetic and atomic structure parameters of Sc-doped barium hexagonal ferrites [J].JournalofAppliedPhysics, 2008, 103(7): 07E511.

    [7]Meshram M R, Agrawal N K, Sinha B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber [J].JournalofMagnetism&MagneticMaterials, 2004, 271(2-3):207-214.

    [8]Ghasemi A, Liu X, Morisako A. Magnetic and microwave absorption properties of BaFe12-x(Mn0.5Cu0.5Zr)x/2O19synthesized by sol-gel processing [J].JournalofMagnetismandMagneticMaterials, 2007, 316(2): e105-e108.

    [9]Huo J, Wang L, Yu H J. Polymeric nanocomposites for electromagnetic wave absorption [J].JournalofMaterialsScience, 2009, 44(15): 3917-3927.

    [10]Bi C, Zhu M F, Zhang Q H, et al. Electromagnetic wave absorption properties of multi-walled carbon nanotubes decorated with La-doped BaTiO3nanocrystals synthesized by a solvothermal method [J].MaterialsChemistry&Physics, 2011, 126(3):596-601.

    [11]Zhan Y Q, Zhao R, Lei Y J, et al. A novel carbon nanotubes/Fe3O4inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties [J].JournalofMagnetismandMagneticMaterials, 2011, 323(7): 1006-1010.

    [12]Ghasemi A, Shirsath S E, Liu X X, et al. Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites [J].JournalofAppliedPhysics, 2011, 109(7): 07A507.

    [13]Wang W T, Li Q L, Chang C B. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites [J].SyntheticMetals, 2011, 161(1-2): 44-50.

    [14]Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials [J].Small, 2010, 6(6):711-723.

    [15]Zhan Y Q, Meng F B, Lei Y J, et al. One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4hybrid material and its microwave electromagnetic properties [J].MaterialsLetters, 2011, 65(11): 1737-1740.

    [16]Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules [J].AppliedPhysicsLetters, 2006, 89(5): 053115-01-053115-03.

    [17]Wang C, Han X J, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [J].AppliedPhysicsLetters, 2011, 98(7):072906-01-072906-03.

    [18]He H K, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4nanoparticles [J].ACSAppliedMaterials&Interfaces, 2010, 2(11): 3201-3210.

    [19]Jing H Y, Ding X, Li M, et al. Process optimization and magnetic properties of M-type barium ferrite [J].JournalofTianjinUniversity:ScienceandTechnology, 2014, 47(7): 641-646. (in Chinese)

    [20]Che R, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].AdvancedMaterials, 2004, 16(5): 401-405.

    [21]Xu P, Han X J, Wang C, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole [J].TheJournalofPhysicalChemistryB, 2008, 112(10): 2775-2781.

    doi:10.3969/j.issn.1003-7985.2015.04.014

    亚洲真实伦在线观看| 色5月婷婷丁香| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| 最近的中文字幕免费完整| 亚洲图色成人| 黄色配什么色好看| 亚洲成人中文字幕在线播放| 国产精品精品国产色婷婷| 国产成人影院久久av| 婷婷色av中文字幕| 一个人看视频在线观看www免费| 悠悠久久av| 国产精品一及| 亚洲最大成人手机在线| 日韩视频在线欧美| 一区二区三区高清视频在线| 91麻豆精品激情在线观看国产| 久久6这里有精品| a级毛色黄片| 亚洲丝袜综合中文字幕| 22中文网久久字幕| 欧美性猛交黑人性爽| 国产精品一区www在线观看| 国产又黄又爽又无遮挡在线| 精品熟女少妇av免费看| 爱豆传媒免费全集在线观看| 日本一二三区视频观看| 国产色婷婷99| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 少妇熟女欧美另类| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 99热网站在线观看| 男人和女人高潮做爰伦理| 丝袜喷水一区| av在线蜜桃| 97超视频在线观看视频| 亚洲国产精品成人久久小说 | 成年女人永久免费观看视频| 熟女人妻精品中文字幕| 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 亚洲自偷自拍三级| 午夜免费激情av| 级片在线观看| 我的老师免费观看完整版| 深夜精品福利| 一进一出抽搐动态| 免费一级毛片在线播放高清视频| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 亚洲四区av| 日本一本二区三区精品| 亚洲激情五月婷婷啪啪| 日韩成人av中文字幕在线观看| 在线免费十八禁| 精品国内亚洲2022精品成人| 悠悠久久av| 久久精品影院6| 午夜精品在线福利| av专区在线播放| 国产女主播在线喷水免费视频网站 | 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 亚洲精品成人久久久久久| 欧美一区二区亚洲| 日本三级黄在线观看| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 嫩草影院入口| 黄色欧美视频在线观看| 国产极品天堂在线| 欧美zozozo另类| 亚洲人成网站在线播| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 嫩草影院入口| 亚洲三级黄色毛片| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 国产久久久一区二区三区| 欧美最新免费一区二区三区| 国产av不卡久久| 在线免费十八禁| 久久这里有精品视频免费| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| 亚洲在久久综合| 欧美bdsm另类| 99久久精品国产国产毛片| 亚洲欧美日韩高清在线视频| 久久热精品热| 国产黄片视频在线免费观看| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 天堂√8在线中文| 精品人妻熟女av久视频| 伊人久久精品亚洲午夜| 久久久成人免费电影| 一本久久中文字幕| 日韩一区二区视频免费看| 日韩精品青青久久久久久| 一级二级三级毛片免费看| 成人二区视频| 日本成人三级电影网站| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 天堂中文最新版在线下载 | 又黄又爽又刺激的免费视频.| av在线蜜桃| 成人特级av手机在线观看| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 国产精品一及| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区 | 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 国产精品一及| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 亚洲av.av天堂| 久久九九热精品免费| 国产激情偷乱视频一区二区| 91aial.com中文字幕在线观看| 99久久无色码亚洲精品果冻| 精品国内亚洲2022精品成人| 看非洲黑人一级黄片| 欧美xxxx黑人xx丫x性爽| 日本在线视频免费播放| 日韩av不卡免费在线播放| 欧美日韩乱码在线| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 色视频www国产| 亚洲最大成人中文| 日日撸夜夜添| 国产中年淑女户外野战色| 久久久久久久久久成人| 少妇丰满av| 我要看日韩黄色一级片| 毛片一级片免费看久久久久| 国产毛片a区久久久久| 国产午夜精品一二区理论片| 亚洲最大成人中文| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 夫妻性生交免费视频一级片| 日本成人三级电影网站| 人人妻人人澡欧美一区二区| 久久久久久伊人网av| 色哟哟·www| 亚洲国产色片| 精品久久久久久久久久久久久| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 天堂√8在线中文| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 欧美zozozo另类| 国内精品久久久久精免费| 国产亚洲5aaaaa淫片| 性插视频无遮挡在线免费观看| 成人美女网站在线观看视频| 亚洲欧美精品专区久久| 久久午夜亚洲精品久久| 亚洲国产日韩欧美精品在线观看| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 午夜老司机福利剧场| 国产在线男女| 99热网站在线观看| 久久草成人影院| 亚洲中文字幕日韩| 69人妻影院| 又黄又爽又刺激的免费视频.| 2022亚洲国产成人精品| 禁无遮挡网站| 婷婷亚洲欧美| av在线天堂中文字幕| 亚洲图色成人| 国产真实伦视频高清在线观看| 禁无遮挡网站| 在线观看66精品国产| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 国产亚洲av片在线观看秒播厂 | 久久精品国产99精品国产亚洲性色| 一个人看的www免费观看视频| 国产亚洲91精品色在线| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 久久综合国产亚洲精品| 久久人妻av系列| 精品人妻偷拍中文字幕| 久久午夜福利片| 在线国产一区二区在线| 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人爽人人夜夜 | 亚洲av中文av极速乱| 国产精品久久久久久av不卡| 小蜜桃在线观看免费完整版高清| 亚州av有码| 免费看av在线观看网站| 日本黄大片高清| av视频在线观看入口| av专区在线播放| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 一级黄片播放器| 一级二级三级毛片免费看| 老司机影院成人| 国产高清三级在线| 尾随美女入室| 日产精品乱码卡一卡2卡三| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂 | 91久久精品国产一区二区成人| 精品久久久久久久久久免费视频| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 美女高潮的动态| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 久99久视频精品免费| 99久久人妻综合| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 久久精品国产99精品国产亚洲性色| 波野结衣二区三区在线| 国产av不卡久久| 国产单亲对白刺激| 久久久久免费精品人妻一区二区| 日日啪夜夜撸| 免费观看人在逋| 中文在线观看免费www的网站| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 免费观看在线日韩| 综合色av麻豆| 精品日产1卡2卡| 欧美最新免费一区二区三区| 97在线视频观看| 校园春色视频在线观看| 大香蕉久久网| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 中文欧美无线码| 日本爱情动作片www.在线观看| 国产单亲对白刺激| av天堂中文字幕网| 久久久久久久午夜电影| 人妻久久中文字幕网| 亚洲第一区二区三区不卡| 乱人视频在线观看| 色尼玛亚洲综合影院| 日韩av不卡免费在线播放| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看| 我要看日韩黄色一级片| 欧美成人精品欧美一级黄| 亚洲av二区三区四区| 色吧在线观看| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 黑人高潮一二区| 国产美女午夜福利| 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 欧美xxxx性猛交bbbb| 伦精品一区二区三区| 亚洲18禁久久av| 国产视频内射| 久久久久久久久久久免费av| 国产男人的电影天堂91| 成人亚洲精品av一区二区| 熟女电影av网| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 12—13女人毛片做爰片一| 日韩av在线大香蕉| 久久这里有精品视频免费| 久久精品国产自在天天线| 成人av在线播放网站| 黄色配什么色好看| 99在线人妻在线中文字幕| 成人鲁丝片一二三区免费| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 12—13女人毛片做爰片一| 校园人妻丝袜中文字幕| 老女人水多毛片| 男人舔奶头视频| 久久午夜福利片| av专区在线播放| 亚洲激情五月婷婷啪啪| 深爱激情五月婷婷| 国产91av在线免费观看| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 久久久国产成人免费| 亚洲精品456在线播放app| 国产成人一区二区在线| 男人舔奶头视频| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 在线a可以看的网站| 天堂√8在线中文| 婷婷色av中文字幕| 久久久久久久久久成人| 亚洲欧美精品专区久久| 一本精品99久久精品77| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 性欧美人与动物交配| 国产精品.久久久| 波多野结衣高清作品| 又爽又黄无遮挡网站| 寂寞人妻少妇视频99o| 国产高清视频在线观看网站| 亚洲久久久久久中文字幕| 亚洲电影在线观看av| or卡值多少钱| 亚洲精品456在线播放app| 22中文网久久字幕| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区 | 亚洲欧洲国产日韩| 精品人妻熟女av久视频| 岛国毛片在线播放| 麻豆国产97在线/欧美| 国产乱人偷精品视频| 2022亚洲国产成人精品| 日本欧美国产在线视频| av在线亚洲专区| 变态另类丝袜制服| 日本在线视频免费播放| 国产精品福利在线免费观看| 欧美成人一区二区免费高清观看| 日韩成人伦理影院| 黑人高潮一二区| 国产91av在线免费观看| 自拍偷自拍亚洲精品老妇| 男插女下体视频免费在线播放| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 日韩一区二区三区影片| av.在线天堂| 噜噜噜噜噜久久久久久91| 亚洲天堂国产精品一区在线| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频 | av在线观看视频网站免费| 一夜夜www| 久久久欧美国产精品| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 中国美白少妇内射xxxbb| 美女黄网站色视频| 亚洲精品乱码久久久v下载方式| 人人妻人人澡欧美一区二区| 久久精品夜色国产| 亚洲欧美精品自产自拍| 好男人视频免费观看在线| 岛国毛片在线播放| 嫩草影院新地址| av在线亚洲专区| 少妇的逼好多水| av黄色大香蕉| 日韩一本色道免费dvd| 亚洲五月天丁香| 99精品在免费线老司机午夜| 亚洲成人精品中文字幕电影| 好男人视频免费观看在线| 天堂av国产一区二区熟女人妻| 男女下面进入的视频免费午夜| 国产真实乱freesex| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 97热精品久久久久久| 麻豆成人av视频| 色哟哟·www| 日本一本二区三区精品| 午夜a级毛片| 99热全是精品| 不卡一级毛片| 好男人视频免费观看在线| 91狼人影院| 国产一区二区亚洲精品在线观看| 国产亚洲av片在线观看秒播厂 | 欧美性感艳星| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 久久6这里有精品| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| av在线观看视频网站免费| 熟女人妻精品中文字幕| av福利片在线观看| 校园人妻丝袜中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲欧洲日产国产| 国产 一区 欧美 日韩| 高清午夜精品一区二区三区 | 免费看日本二区| 又粗又爽又猛毛片免费看| 97热精品久久久久久| www.av在线官网国产| 偷拍熟女少妇极品色| 欧美变态另类bdsm刘玥| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 欧美精品一区二区大全| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 高清在线视频一区二区三区 | 亚洲精品亚洲一区二区| 一本久久中文字幕| 免费av不卡在线播放| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 99热网站在线观看| 直男gayav资源| 精品人妻视频免费看| 在线免费观看不下载黄p国产| 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看| 国产亚洲精品久久久久久毛片| 久久6这里有精品| 国产精品99久久久久久久久| 97超视频在线观看视频| 午夜精品一区二区三区免费看| 久久99热这里只有精品18| 欧美成人免费av一区二区三区| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 51国产日韩欧美| 亚洲国产精品成人久久小说 | 欧美性猛交黑人性爽| 日韩一区二区视频免费看| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 日韩中字成人| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 欧美最新免费一区二区三区| 一区二区三区免费毛片| 国产伦在线观看视频一区| 97在线视频观看| 亚洲丝袜综合中文字幕| 有码 亚洲区| 看黄色毛片网站| 18禁在线播放成人免费| 在线国产一区二区在线| a级毛片a级免费在线| 在线播放无遮挡| 国产一区二区激情短视频| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人与动物交配视频| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 99久久无色码亚洲精品果冻| 少妇高潮的动态图| 中文字幕熟女人妻在线| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| 亚洲在线观看片| 长腿黑丝高跟| 日韩视频在线欧美| 国产av不卡久久| 啦啦啦韩国在线观看视频| 国产成人精品婷婷| 国产成人精品一,二区 | 国产亚洲av片在线观看秒播厂 | 在线播放国产精品三级| 久久亚洲精品不卡| 亚洲精品乱码久久久v下载方式| 国产高清激情床上av| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 色尼玛亚洲综合影院| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 亚洲最大成人av| 一级黄色大片毛片| 久久久久性生活片| 丰满的人妻完整版| 18+在线观看网站| 国产成人a∨麻豆精品| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 久久精品综合一区二区三区| .国产精品久久| 少妇人妻精品综合一区二区 | 亚洲精品456在线播放app| av又黄又爽大尺度在线免费看 | 国产精品久久久久久久电影| 麻豆乱淫一区二区| 国产私拍福利视频在线观看| 亚洲欧美成人精品一区二区| 国模一区二区三区四区视频| 只有这里有精品99| 国产久久久一区二区三区| 欧美性猛交黑人性爽| av福利片在线观看| 青春草国产在线视频 | 精品日产1卡2卡| 少妇的逼好多水| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久噜噜老黄 | 日韩人妻高清精品专区| 精品久久久久久成人av| 国产一区二区激情短视频| 一个人看的www免费观看视频| 乱系列少妇在线播放| 久久这里只有精品中国| 91精品一卡2卡3卡4卡| 春色校园在线视频观看| 97人妻精品一区二区三区麻豆| 久久久精品大字幕| av视频在线观看入口| 天天躁夜夜躁狠狠久久av| 国产精品永久免费网站| 狂野欧美激情性xxxx在线观看| 插逼视频在线观看| 国产精品伦人一区二区| 精品久久久久久久久av| 人人妻人人澡人人爽人人夜夜 | 欧美性感艳星| 日本黄大片高清| 中文字幕免费在线视频6| a级毛片免费高清观看在线播放| 在线a可以看的网站| 啦啦啦啦在线视频资源| АⅤ资源中文在线天堂| 国产精品一区二区在线观看99 | 日本爱情动作片www.在线观看| 12—13女人毛片做爰片一| 蜜桃久久精品国产亚洲av| a级毛片a级免费在线| 亚洲国产高清在线一区二区三| 如何舔出高潮| 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 成人二区视频| 男女边吃奶边做爰视频| 插逼视频在线观看| 亚洲欧美精品综合久久99| 一级毛片电影观看 | 亚洲精品亚洲一区二区| 最近最新中文字幕大全电影3| 日本av手机在线免费观看| 成人毛片a级毛片在线播放| 国产av一区在线观看免费| av在线天堂中文字幕| 欧美三级亚洲精品| 亚洲欧美精品综合久久99| 亚洲无线在线观看| 精品熟女少妇av免费看| 亚洲人成网站在线播| 听说在线观看完整版免费高清| 日本黄大片高清| 日本在线视频免费播放| 少妇裸体淫交视频免费看高清| 国产爱豆传媒在线观看| 国产亚洲av片在线观看秒播厂 | 99久久精品热视频| 中文资源天堂在线| 国产老妇伦熟女老妇高清| 久久亚洲精品不卡| 麻豆成人av视频| 可以在线观看的亚洲视频| 久久中文看片网| 老熟妇乱子伦视频在线观看| 久久99热6这里只有精品| 国产成人福利小说|