• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    2015-03-01 09:21:45WangSiqiHuangXiaomingMaTaoZhuTanyongTangTaoLiuWanchen

    Wang Siqi  Huang Xiaoming  Ma Tao  Zhu Tanyong  Tang Tao  Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    Wang Siqi Huang Xiaoming Ma Tao Zhu Tanyong Tang Tao Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Abstract:In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with the fatigue results from fatigue models in FE-SAFE to calculate the mechanical response and fatigue lives of semi-rigid pavement structures under heavy traffic loads. Then the influences on fatigue lives caused by the changes in the thickness of layers in pavement structures are also evaluated. The numerical simulation results show that the aggregated base and the large stone porous mixture (LSPM) base have better anti-cracking performance than the conventional semi-rigid base. The appropriate thickness range for the aggregated layer in the aggregated base is 15 to 18 cm. The thickness of the LSPM layer in the LSPM base is recommended to be less than 15 cm.

    Key words:conventional semi-rigid base; aggregated base; large stone porous mixture; reflective cracking; fatigue life; numerical simulation

    Received 2015-06-23.

    Biographies:Wang Siqi (1991—), male, graduate; Huang Xiaoming(corresponding author), male, doctor, professor, huangxm@seu.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51378121).

    Citation:Wang Siqi, Huang Xiaoming, Ma Tao, et al.Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE[J].Journal of Southeast University (English Edition),2015,31(4):541-546.[doi:10.3969/j.issn.1003-7985.2015.04.019]

    Asphalt pavement structures with semi-rigid bases are vulnerable to reflective cracking and fatigue. It is necessary to investigate the propagation of reflective cracking in pavement structures, and the use of numerical simulating methods is proved to be valid. Predictions of the fatigue behavior under repeated uniaxial loading were conducted by coupling the viscoelastic continuum damage mechanics (VCDM) model with numerical models built in ABAQUS[1-2]. Three-dimensional finite element models were also utilized to confirm that the interlayer systems were effective in abating reflective cracking[3]. In China, in order to deal with the complex weather conditions and heavy loads, three types of semi-rigid asphalt pavement structures were utilized. The conventional semi-rigid base using stabilized materials was widely used due to its excellent anti-rutting performance and low-cost properties[4]. The stabilized materials in the conventional semi-rigid base were usually lime ash aggregate (LAA), lime ash soil (LAS) and cement treated base (CTB)[5]. The shrinkage and temperature contraction of LAA and LAS in this type of base limited their utilization[6]. Compared with LAA and LAS, CTB was a more stable alternative, but the stiffness, water content and cement content needed to be carefully calculated[7-8]. Wang et al.[9-10]made a new type of aggregated base by placing graded stones as a layer between the surface layer and the semi-rigid base. It is confirmed that by adding the graded stone layer, the distribution of stress in the aggregated base is changed, and therefore the anti-cracking property of the semi-rigid pavement structure is increased. Another method was introduced to modify the stabilized material base by placing the large stone porous mixture (LSPM) layer between the surface layer and the semi-rigid base. Guo[11]developed finite element models by using ANSYS to confirm that an appropriate choice of gradation when using open-graded large stone asphalt mixes (which was similar to LSPM) can dramatically enhance the anti-cracking performance of semi-rigid pavement structures.

    Unfortunately, the relationship between the thickness of layers and fatigue lives of pavement structures remains unclear, especially in those with an aggregated base or LSPM base. Field tests proved that the thickness of overlay mixtures is the major factor that influences the anti-cracking performance of asphalt overlays[12]. According to indoor experimental results[13], the reasonable thickness of stress absorbing layers (SAL) was 2 to 3 cm. However, the SAL only consisted of rock chips, sand and polymer modified asphalt. Wei[14]claimed that the bearing capacity and reflective-cracking resistance of the pavement structure cannot increase infinitely when increasing the thickness of graded stones layer. Wu[15]performed orthogonal tests and indicated that the thickness of the asphalt treated base in the semi-rigid base is crucial in resisting reflective cracking, but the suitable thickness needed to be carefully determined. Li[16]established finite element models and found that the position of layers, the frictional contact conditions and the thickness of layers were the most contributing parameters affecting the fatigue life of the whole semi-rigid pavement structure.

    This paper aims to analyze the impact of thickness of layers on the fatigue lives of different semi-rigid asphalt pavement structures by developing finite element models using ABAQUS and fatigue models using FE-SAFE (an accessory of ANSYS). Three semi-rigid pavement structures are the conventional semi-rigid base, aggregated base and LSPM base. ABAQUS models are first used to calculate the mechanical responses under heavy traffic loads. Then the output results of ABAQUS models are incorporated into FE-SAFE to simulate the fatigue performance of pavement structures. The fatigue lives of three pavement structures are also calculated. Finally, the influences on fatigue lives caused by the changes of the thickness of layers in pavement structures are evaluated.

    1Establishment of ABAQUS and FE-SAFE Models for Three Structures

    Three semi-rigid pavement structures are shown in Tab.1. Structure 1 represents the conventional semi-rigid pavement structure. Structure 2 represents the pavement structure using the aggregated base by placing the aggregated layer between the surface asphalt layer and the semi-rigid base. Structure 3 represents the pavement structure using the LSPM base by placing the LSPM layer between the surface asphalt layer and the semi-rigid base.

    Tab.1 Typical pavement structures

    Notes: SMA—stone matrix asphalt; AC—asphalt concrete; GM—graded materials or graded stones.

    When defining boundary conditions, the bottom of the model was set to be completely constrained, and both sides were symmetrically constrained in the horizontal direction. The tire pressure was distributed in rectangular instead of circle. Each rectangular was 0.213 m×0.167 m in size to make sure that the loading contact patch was equal to the circular one. According to the static equivalent principle, the standard axle loading was converted to uniformly distributed pressureP(0.117 MPa) based on plane models in elasticity.

    The layer-divided model without remeshing[17]was developed to simulate the development of reflective cracking in each layer. This model was based on the following assumptions: 1) Reflective cracking developed from bottom to top; 2) Only the fatigue caused by symmetric loads was considered; and 3) The fatigue life of the whole structure was the sum of the fatigue life of each layer.

    The procedures of building a ABAQUS model for Structure 1 are given as follows: First, the model for completed sub-base using LAS was built and the fatigue life was calculated as shown in Fig.1(a); the fatigue life of the CTB layer was calculated using LAS layer with transverse crack; while the fatigue life of AC-25 was calculated using LAS and CTB layer with transverse crack; the sub-surface layer AC-20 was calculated by the model of LAS, CTB and AC-25 with transverse crack; and the fatigue life of the surface layer SMA-13 was calculated by the model of LAS, CTB, AC-20 and AC-25 with transverse crack, as shown in Fig.1(b). The ABAQUS models for Structure 2 and Structure 3 were built using the same procedures.

    (a)

    (c)Fig.1 Procedures of building ABAQUS model for Structure 1. (a) Calculation of the fatigue life of LAS; (b) Calculation of the fatigue life of SMA-13

    Then the results of ABAQUS were transferred into FE-SAFE for fatigue simulations. The SMA-13, AC-20, AC-25, CTB and LAS were put into the analysis group in FE-SAFE. Note that the GM in Structure 2 was removed from the analysis group because it had no contributions in the fatigue lives of pavement structures. In order to simulate the transition of stress at the center of the surface of the pavement, the loading pressure was transferred based on the following equation:

    P(t)=sin(10πt)0

    (1)

    where the amplitude is 1; the phase angle is -π/2; and the frequency is 10 Hz.

    After defining the properties of materials and the loading pressure in FE-SAFE, the calculations were operated in FE-SAFE to simulate the fatigue performance of pavement structures. Then the fatigue results in FE-SAFE were inputted into ABAQUS to obtain the isotherm graphs (see Fig.2(a)). In order to calculate the fatigue life of each layer, the ABAQUS models were separated along the centerline, as shown in Fig.2(b). Mark points were set in the center of each layer. Assume that the fatigue life of one particular mark point wasPk, then the elastic stress of this mark point can be calculated by

    (2)

    whereSPEandPFEare set by FE-SAFE according to the mechanical properties of materials in each layer. Then the fatigue life of each layer was calculated by repeating cycles under pressure defined previously according to the Miner theory. Finally, the logarithmic fatigue life of each layer from bottom to top was collected by calculating these mark points. This method was proved to be valid and had good correlations with indoor fatigue test results[18].

    (a)

    (c)Fig.2 Isotherm graphs from ABAQUS. (a) Before the separation of the model; (b) After the separation of the model

    2Comparisons of Fatigue Lives among Three Pavement Structures

    The results of fatigue life from the FE-SAFE model are shown in Tab.2, Tab.3 and Tab.4.

    Tab.2 Fatigue life of each layer in Structure 1

    Tab.3 Fatigue life of each layer in Structure 2

    Tab.4 Fatigue life of each layer in Structure 3

    From Tabs.2 to 4, it can be seen that in the semi-rigid pavement structures, the proportions in fatigue life of each structure can be considered as the loading times of the reflective cracking in this layer. Considering the fact that the surface asphalt layer has better anti-cracking performance than other layers, if the surface asphalt layer has a large proportion in the fatigue life, the whole semi-rigid pavement structure can have better anti-cracking performance. The surface asphalt layer has the least proportion in the fatigue life in Structure 1 (57.75%) compared with Structure 3 (69.8%) and Structure 2 (71.77%), which means that the use of the outstanding anti-cracking performance of the surface asphalt layer is not fully developed in Structure 1.

    Tab.3 shows that the existence of the GM layer changes the proportions of the fatigue life of Structure 2 dramatically. The proportion of the fatigue life of ATB is 34.48% in Structure 2. It is confirmed that the ATB layer combined with the GM layer is beneficial in resisting reflective cracking in Structure 2.

    Tab.4 shows that even though the proportion of the LSPM layer in Structure 3 is only 0.4%, it leads to the increase in the proportions of the fatigue life of the surface asphalt layer (SMA-13, AC-20 and AC-25) (69.39%) compared with that of Structure 2 (36.69%). This means that the utilization of the LSPM layer can make good use of anti-cracking performance of the surface asphalt layer in Structure 3.

    From Tabs.2 to 4, it can also be seen that Structure 1 has the largest thickness (74 cm) with the shortest fatigue life (1 322 034), while Structure 3 has the smallest thickness (68 cm) with the longest fatigue life (2 958 627). It can be concluded that the aggregated base (Structure 2) and the LSPM base (Structure 3) are more effective in resisting reflective cracking than the conventional semi-rigid base (Structure 1). Different combinations of layers such as the aggregated base and the LSPM have positive effects on prolonging the fatigue life if the thickness of these layers are determined carefully.

    3Effects of Layer Thickness on Fatigue Life of Three Pavement Structures

    Since the thickness of stress absorbing layers (SAL) is crucial in designing pavement structures to resist reflective cracking[13], it is necessary to investigate the effects of layer thickness on fatigue lives of three pavement structures. Wang[19]built a ABAQUS model and suggested that when the crushed stone base has a thickness in the range of 15 to 25 cm, the pavement structure has an outstanding anti-cracking performance. Zhang et al.[20]conducted simulations and field tests on anti-cracking performance of interface self absorbing composite (ISAC) and found that the ISAC can dissipate reflective cracking efficiently in a pavement structure.

    In this section, the thickness of each layer in the ABAQUS model was changed while performing calculations of the fatigue life of each layer in three pavement structures. The fatigue lives with respect to the thickness of each layer were given to determine the appropriate thickness when designing pavement structures.

    3.1 Effects of thickness of layers on fatigue life of Structure 1

    The effects of thickness of the surface layer and base on the fatigue life of Structure 1 are shown in Fig.3 and Fig.4, respectively.

    Fig.3 Correlation between thickness of surface layer and fatigue life

    Fig.4 Correlation between thickness of base and fatigue life

    Fig.4 shows that the fatigue life of Structure 1 increases as the thickness of semi-rigid base increases. However, if the thickness reaches 36 to 38 cm, the fatigue life decreases slightly as the thickness keeps increasing. This means that the increase in the thickness of the semi-rigid base cannot guarantee the increase of fatigue life in Structure 1. When the semi-rigid base is thin, the main stress in the base is tensile stress. However, the compressive stress starts to appear if the thickness goes beyond a threshold (36 cm in this case), and the stabilized materials in the semi-rigid base become unstable, begin to squeeze each other and change the mechanical property of the whole base. This process definitely sabotages the anti-cracking performance of the semi-rigid base.

    Meanwhile, the fatigue life increases steadily as the surface asphalt layer becomes thicker (see Fig.3). According to previous studies[21], the reflective cracking can be well mitigated by increasing the thickness of the surface asphalt layer. The surface asphalt layer has good anti-cracking performance.

    3.2 Effects of thickness of layers on fatigue life of Structure 2

    The effects of thickness of ATB and the GM layer on the fatigue life of Structure 2 are shown in Fig.5 and Fig.6, respectively.

    Fig.5 Correlation between thickness of ATB and fatigue life

    Fig.6 Correlation between thickness of GM and fatigue life

    Fig.5 and Fig.6 show clearly that the fatigue life increases when the thickness of the ATB layer increases. They also show that the fatigue life of Structure 2 increases dramatically if the thickness of the GM layer is less than 15 cm. The increase of fatigue life slows down as the thickness reaches 15 to 18 cm. The GM layer is the crucial part in Structure 2. It serves as the stress absorbing layer in this structure. Although it has no contributions in calculations of fatigue, it has an indirect impact on resisting reflective cracking from rapid propagation.

    However, the increase in the thickness of the GM layer can increase the fatigue life of Structure 2, which can lead to large fatigue strain in the ATB layer due to the relatively small modulus of the GM layer. This is the reason why the fatigue life of Structure 2 stops increasing when the thickness range of the GM is 15 to 18 cm. Hence, the recommended thickness for the GM layer is from 15 to 18 cm.

    3.3 Effects of thickness of LSPM on fatigue life of Structure 3

    The effect of thickness of the LSPM layer on fatigue life of Structure 3 is shown in Fig.7.

    Fig.7 Correlation between thickness of LSPM and fatigue life

    It can be seen from Fig.7 that the fatigue life of Structure 3 increases when the thick LSPM layer is utilized. This is similar to the trends of the GM in Structure 2. However, when the thickness of the LSPM reaches 15 cm, the increase of the fatigue life of Structure 3 slows down.

    The LSPM layer is the stress absorbing layer in Structure 3. The relatively low modulus leads to the increase of fatigue lives in other layers which come into contact with the LSPM layer. Even though the contribution of the LSPM layer itself in the fatigue life of Structure 3 is insignificant (0.4%), it results in the dramatic increase in proportions of fatigue lives of the surface asphalt layer (69.39%) and sub-base (LAS) (7.41%) in Structure 3 compared with that in Structure 1 (57.75% and 1.46%, respectively). This phenomenon can be explained in two aspects: as for the whole pavement structure, the compress stress from top to bottom and tensile stress from bottom to top can be disseminated when passing through the LSPM layer, as the GM layer does. As for the stress concentration, the reflective cracking needs more time and path to propagate through the LSPM layer due to the inconsistence at the edge of cracking. This can indirectly prolong the fatigue life of Structure 3.

    Unfortunately, determining the appropriate thickness range of the LSPM still remains unsettled. Although increasing the thickness of the LSPM layer is beneficial for resisting reflective cracking, it leads to the degeneration in anti-rutting performance of pavement structures. It is suggested from Fig.7 that the thickness of the LSPM in Structure 3 should be no more than 15 cm.

    4Conclusions

    1) The finite element models using ABAQUS and the fatigue models using FE-SAFE for three semi-rigid pavement structures are established in this paper. The impacts of the thickness of layers on the fatigue lives of three pavement structures are compared by calculating the fatigue lives by FE-SAFE.

    2) The comparisons of the fatigue lives of three semi-rigid pavement structures suggest that the aggregated base and the LSPM base are more beneficial than the conventional semi-rigid base in resisting reflective cracking if they are properly deployed. The thickness of these layers need to be carefully determined.

    3) The numerical simulation results show that the appropriate thickness range of the aggregated layer in the aggregated base is 15 to 18 cm, while the thickness of the LSPM layer in the LSPM base should be no more than 15 cm.

    References

    [1]Kim Y R, Baek C, Underwood B S, et al. Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements [J].KSCEJournalofCivilEngineering, 2008, 12(2): 109-120.

    [2]Arshadi A, Bahia H. Coupling of viscoelastic continuum damage mechanics and finite element modeling to predict asphalt mastic fatigue behavior [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-3321-1-15-3321-15.

    [3]Baek J, Al-Qadi I L. Finite element modeling of reflective cracking under moving vehicular loading: investigation of the mechanism of reflective cracking in hot-mix asphalt overlays reinforced with interlayer systems[C]//ProceedingsofASCE’s2008AirportandHighwayPavementsConference. Washington, DC, USA, 2008: 74-85.

    [4]Huang X M, Wang S J.Analysistheoryandpracticeofmodernasphaltpavementstructure[M]. Beijing: Science Press, 2013. (in Chinese)

    [5]Chen Z D, Wu J M, Zhang X R, et al. Investigation of the typical structure of trunk road asphalt pavement [J].JournalofHighwayandTransportationResearchandDevelopment, 2001, 18(2): 9-12. (in Chinese)

    [6]Jiang Y H, Huang X M, Liao G Y. Fracture mechanics analysis of pavement structure with a sandwich layer of unbound graded aggregate [J].JournalofHefeiUniversityofTechnology, 2009, 32(4): 511-514. (in Chinese)

    [7]Wang Y, Ni F J, Li Z X. Test and estimate control on temperature shrinkage performance of cement-treated macadam [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2008, 38(2):260-264. (in Chinese)

    [8]Wu P, Houben L J M, Scarpas A, et al. Stiffness modulus and fatigue properties of cement stabilized sand with use of a synthetic modified-zeolite additive [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington DC, USA, 2015:15-2880-1-15-2880-12.

    [9]Wang L, Feng D C. Methods for improving using performance of graded broken stone base [J].ChinaJournalofHighwayandTransport, 2006, 19(4): 40-45. (in Chinese)

    [10]Wang H, Li M Y. Evaluation of flexible pavement performance due to variations in aggregate base layer properties [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-4877-1-15-4877-22.

    [11]Guo H B. Research on anti-cracking mechanism of open-graded large stone asphalt mixes of asphalt pavement [D].Xi’an: School of Highway of Chang’an University, 2013. (in Chinese)

    [12]Loria L, Hajj Y E, Sebaaly P E. Assessment of reflective cracking models for asphalt pavements [C]//ProceedingsofRoadPavementandMaterialCharacterization,Modeling,andMaintenance. Changsha, China, 2011:72-79.

    [13]Li Z Z, Chen S F, Cheng Y, et al. Fatigue test of composite pavement on stress absorbing layers for reflective cracking [C]//ThirdInternationalConferenceonTransportationEngineering(ICTE). Chengdu, China, 2011:1390-1395.

    [14]Wei D X. Distress mode and structure optimization of asphalt pavement with semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [15]Wu J T. The rational position and thickness of semi-rigid base in asphalt pavement [D]. Xi’an: School of Highway of Chang’an University, 2009. (in Chinese)

    [16]Li H B. Study of asphalt pavement structure based on adaptability of semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [17]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J].InternationalJournalforNumericalMethodsinEngineering, 1999, 46(1):131-150.

    [18]Liu W C. Numerical simulation of fatigue cracks in typical asphalt pavement [D]. Nanjing: School of Transportation of Southeast University, 2014. (in Chinese)

    [19]Wang H C. Research on surface and reflective crack propagation and fatigue life of graded crushed stone based asphalt pavement [C]//Proceedingsof11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3103-3114.

    [20]Zhang F, Zhang Y H, Qian H T, et al. Analysis and test study on reflective cracking prevention based on interface self-absorbing composite intermediate layer in semi-rigid asphalt pavement [C]//Proceedingsofthe11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3359-3367.

    [21]Abou-Jaoude G, Ghauch Z. Numerical investigation of design strategies to achieve perpetual pavements [C/D]//TRB91stAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2012:12-1979-1-12-1979-16.

    doi:10.3969/j.issn.1003-7985.2015.04.019

    久久人妻熟女aⅴ| 色综合婷婷激情| 欧美成狂野欧美在线观看| 欧美激情极品国产一区二区三区| 他把我摸到了高潮在线观看| 午夜a级毛片| 久久久久久人人人人人| 精品福利观看| 在线观看免费视频日本深夜| 国产一区二区三区视频了| 12—13女人毛片做爰片一| 亚洲熟女毛片儿| 美女国产高潮福利片在线看| 欧美国产精品va在线观看不卡| 麻豆一二三区av精品| 国产伦一二天堂av在线观看| www日本在线高清视频| 一级黄色大片毛片| 亚洲专区国产一区二区| 老汉色∧v一级毛片| 在线观看www视频免费| 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 韩国精品一区二区三区| 日韩成人在线观看一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲精品久久成人aⅴ小说| 一区福利在线观看| 国产精品精品国产色婷婷| 99久久国产精品久久久| 亚洲国产欧美网| 99国产精品一区二区三区| 精品一区二区三区视频在线观看免费| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 亚洲天堂国产精品一区在线| 亚洲国产日韩欧美精品在线观看 | 又紧又爽又黄一区二区| 色精品久久人妻99蜜桃| 天堂动漫精品| 国内毛片毛片毛片毛片毛片| 麻豆av在线久日| 真人一进一出gif抽搐免费| 99久久国产精品久久久| 精品久久久久久成人av| 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| 亚洲午夜理论影院| 老司机深夜福利视频在线观看| 成人特级黄色片久久久久久久| 精品国产美女av久久久久小说| av超薄肉色丝袜交足视频| 校园春色视频在线观看| 国产亚洲av高清不卡| 日韩欧美一区二区三区在线观看| 午夜福利视频1000在线观看 | 欧美+亚洲+日韩+国产| 亚洲成人久久性| 少妇被粗大的猛进出69影院| а√天堂www在线а√下载| e午夜精品久久久久久久| 亚洲国产欧美网| 亚洲伊人色综图| 久久久精品欧美日韩精品| x7x7x7水蜜桃| 国产免费男女视频| 久久婷婷人人爽人人干人人爱 | 一区二区三区高清视频在线| or卡值多少钱| 精品午夜福利视频在线观看一区| 久热爱精品视频在线9| 亚洲国产看品久久| 国产精品九九99| 88av欧美| 露出奶头的视频| 人成视频在线观看免费观看| 中国美女看黄片| 99久久精品国产亚洲精品| 老司机午夜十八禁免费视频| 老司机午夜福利在线观看视频| 久久午夜综合久久蜜桃| 国产精品野战在线观看| 97人妻天天添夜夜摸| 国产视频一区二区在线看| 久久国产乱子伦精品免费另类| 国产av一区二区精品久久| 亚洲精品在线观看二区| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 成人精品一区二区免费| 国产不卡一卡二| av超薄肉色丝袜交足视频| 欧美大码av| 国产99白浆流出| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 757午夜福利合集在线观看| 欧美黑人精品巨大| 91国产中文字幕| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| 国产精品 国内视频| 久久午夜综合久久蜜桃| 麻豆久久精品国产亚洲av| 啦啦啦 在线观看视频| 国产麻豆69| 午夜福利影视在线免费观看| 美女午夜性视频免费| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 最好的美女福利视频网| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区激情短视频| 午夜亚洲福利在线播放| 无人区码免费观看不卡| 我的亚洲天堂| 亚洲熟女毛片儿| 黄色女人牲交| 制服丝袜大香蕉在线| 香蕉国产在线看| 午夜老司机福利片| 中文字幕色久视频| 日韩欧美国产在线观看| 国产成人免费无遮挡视频| 色综合婷婷激情| 欧美日韩精品网址| 久久婷婷成人综合色麻豆| 村上凉子中文字幕在线| 午夜福利一区二区在线看| 亚洲性夜色夜夜综合| 一级片免费观看大全| 黄色片一级片一级黄色片| 国产区一区二久久| 午夜成年电影在线免费观看| 91在线观看av| 亚洲五月色婷婷综合| 啦啦啦免费观看视频1| 国产三级黄色录像| 啪啪无遮挡十八禁网站| 久久久久国产一级毛片高清牌| 久久久久精品国产欧美久久久| 91九色精品人成在线观看| 老汉色∧v一级毛片| 美女午夜性视频免费| 久久中文字幕人妻熟女| 真人一进一出gif抽搐免费| 中文字幕最新亚洲高清| 亚洲一区中文字幕在线| 精品不卡国产一区二区三区| 国产麻豆成人av免费视频| 黄色视频,在线免费观看| 欧美日韩亚洲综合一区二区三区_| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸| 91麻豆av在线| 精品电影一区二区在线| 男女下面插进去视频免费观看| 91大片在线观看| ponron亚洲| 欧美日韩乱码在线| 午夜免费鲁丝| 男人舔女人下体高潮全视频| bbb黄色大片| 亚洲最大成人中文| 亚洲熟妇熟女久久| 国产精品永久免费网站| av天堂在线播放| 免费搜索国产男女视频| 高潮久久久久久久久久久不卡| 国产精品久久久久久亚洲av鲁大| 国产成人影院久久av| 免费一级毛片在线播放高清视频 | 嫁个100分男人电影在线观看| 国产精品野战在线观看| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 久久天堂一区二区三区四区| 欧美中文日本在线观看视频| 亚洲精品在线美女| 日韩欧美免费精品| 国产99久久九九免费精品| 亚洲欧美日韩无卡精品| 久9热在线精品视频| 香蕉久久夜色| 长腿黑丝高跟| 高清在线国产一区| 精品久久久久久,| 大香蕉久久成人网| 美女国产高潮福利片在线看| 成在线人永久免费视频| 中文字幕久久专区| 久久精品aⅴ一区二区三区四区| 麻豆国产av国片精品| 美国免费a级毛片| 国产欧美日韩一区二区三| 99久久国产精品久久久| 精品国产亚洲在线| or卡值多少钱| 日韩大尺度精品在线看网址 | 久久影院123| 日本五十路高清| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 久久久久久人人人人人| 黄片大片在线免费观看| 激情在线观看视频在线高清| 大陆偷拍与自拍| 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| av网站免费在线观看视频| 一级毛片高清免费大全| 宅男免费午夜| 国产精品久久电影中文字幕| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 亚洲五月色婷婷综合| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 日本欧美视频一区| 国内精品久久久久久久电影| 老汉色∧v一级毛片| 大型av网站在线播放| 国产激情欧美一区二区| 18禁国产床啪视频网站| 法律面前人人平等表现在哪些方面| 韩国精品一区二区三区| 久9热在线精品视频| 免费无遮挡裸体视频| av有码第一页| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 多毛熟女@视频| 国产精品久久久久久亚洲av鲁大| 后天国语完整版免费观看| 日韩精品中文字幕看吧| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 一个人观看的视频www高清免费观看 | 久久欧美精品欧美久久欧美| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 国产高清有码在线观看视频 | 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 亚洲aⅴ乱码一区二区在线播放 | 色播在线永久视频| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 精品人妻1区二区| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 51午夜福利影视在线观看| 日日夜夜操网爽| 国产蜜桃级精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 久久人人97超碰香蕉20202| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女| 看免费av毛片| 亚洲av成人av| 国产精品 欧美亚洲| 涩涩av久久男人的天堂| 三级毛片av免费| 不卡一级毛片| 禁无遮挡网站| 日本黄色视频三级网站网址| 中国美女看黄片| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 91在线观看av| 日韩视频一区二区在线观看| 窝窝影院91人妻| 亚洲第一青青草原| 日本在线视频免费播放| 精品人妻在线不人妻| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 国产真人三级小视频在线观看| 国产成年人精品一区二区| 99香蕉大伊视频| 熟女少妇亚洲综合色aaa.| 激情在线观看视频在线高清| 一进一出好大好爽视频| 日本一区二区免费在线视频| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 久久精品成人免费网站| 黄片播放在线免费| 国产精品影院久久| 国产精品 国内视频| 人人澡人人妻人| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 岛国在线观看网站| 精品国产美女av久久久久小说| 国产亚洲av高清不卡| 免费在线观看完整版高清| 精品熟女少妇八av免费久了| 国产亚洲精品一区二区www| 在线观看一区二区三区| 免费搜索国产男女视频| 国内精品久久久久精免费| 国产成人欧美| 丝袜美腿诱惑在线| 国产av一区在线观看免费| 精品电影一区二区在线| 日本a在线网址| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 色播亚洲综合网| 在线十欧美十亚洲十日本专区| 久久人妻福利社区极品人妻图片| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲男人的天堂狠狠| 亚洲欧美激情在线| or卡值多少钱| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 久久久久久国产a免费观看| 亚洲 欧美一区二区三区| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 欧美激情 高清一区二区三区| 亚洲国产精品久久男人天堂| 欧美午夜高清在线| 九色国产91popny在线| 国产一卡二卡三卡精品| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 两个人看的免费小视频| 国产成年人精品一区二区| 久久人人爽av亚洲精品天堂| 国产一区在线观看成人免费| bbb黄色大片| 一区二区三区激情视频| 欧美绝顶高潮抽搐喷水| 精品电影一区二区在线| 日日干狠狠操夜夜爽| 免费在线观看日本一区| 精品一品国产午夜福利视频| 久久久精品国产亚洲av高清涩受| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 国产在线观看jvid| 大香蕉久久成人网| 国产精品一区二区免费欧美| 无遮挡黄片免费观看| 中国美女看黄片| 日日夜夜操网爽| 国产主播在线观看一区二区| 麻豆国产av国片精品| 免费无遮挡裸体视频| or卡值多少钱| www.熟女人妻精品国产| 久久精品亚洲熟妇少妇任你| 久久精品国产清高在天天线| 无人区码免费观看不卡| 国产熟女xx| 宅男免费午夜| 国产区一区二久久| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 国产成人精品在线电影| 国产伦一二天堂av在线观看| 男女下面插进去视频免费观看| 9热在线视频观看99| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女 | 亚洲av五月六月丁香网| 久久久久九九精品影院| 日本黄色视频三级网站网址| 别揉我奶头~嗯~啊~动态视频| 精品电影一区二区在线| 久久久久久亚洲精品国产蜜桃av| 国产真人三级小视频在线观看| 国产亚洲欧美精品永久| 在线永久观看黄色视频| 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久| 国产1区2区3区精品| 露出奶头的视频| 精品久久久精品久久久| 久久久久久久精品吃奶| 午夜两性在线视频| 日韩有码中文字幕| 国产野战对白在线观看| 午夜久久久在线观看| 免费av毛片视频| 欧美久久黑人一区二区| 免费高清视频大片| 久久久久久久久中文| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| av网站免费在线观看视频| 国产亚洲av高清不卡| 国产av又大| www.自偷自拍.com| 精品午夜福利视频在线观看一区| 亚洲视频免费观看视频| 国产激情欧美一区二区| 精品国产乱码久久久久久男人| 亚洲国产精品合色在线| 日韩大码丰满熟妇| 国产精品综合久久久久久久免费 | 国内精品久久久久精免费| 国产欧美日韩一区二区三| 91老司机精品| 国产精品爽爽va在线观看网站 | 亚洲 欧美 日韩 在线 免费| 99精品久久久久人妻精品| 午夜免费成人在线视频| 亚洲av电影不卡..在线观看| 欧美老熟妇乱子伦牲交| 精品久久久久久久人妻蜜臀av | 级片在线观看| 91成人精品电影| 热99re8久久精品国产| 999精品在线视频| 国产午夜福利久久久久久| 日韩欧美免费精品| 国产精品野战在线观看| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 嫩草影视91久久| 久久久久久久精品吃奶| 亚洲第一青青草原| 国产亚洲欧美精品永久| 美女大奶头视频| av片东京热男人的天堂| 在线观看www视频免费| 视频在线观看一区二区三区| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 悠悠久久av| 一边摸一边抽搐一进一小说| 一区二区三区激情视频| 一区二区三区精品91| 国产精品亚洲一级av第二区| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| av免费在线观看网站| 欧美色视频一区免费| 最好的美女福利视频网| 亚洲国产中文字幕在线视频| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 免费看美女性在线毛片视频| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 亚洲国产中文字幕在线视频| 91精品三级在线观看| 黑人操中国人逼视频| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 性少妇av在线| 久热这里只有精品99| 精品国内亚洲2022精品成人| 欧美日韩亚洲综合一区二区三区_| 777久久人妻少妇嫩草av网站| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 亚洲天堂国产精品一区在线| 亚洲av日韩精品久久久久久密| 色婷婷久久久亚洲欧美| 亚洲五月婷婷丁香| 免费在线观看影片大全网站| 欧美色视频一区免费| 午夜福利高清视频| 国产熟女午夜一区二区三区| 国产成人欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 色哟哟哟哟哟哟| 如日韩欧美国产精品一区二区三区| 成人特级黄色片久久久久久久| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片 | 丝袜美足系列| 免费人成视频x8x8入口观看| 老司机靠b影院| 久久久国产成人精品二区| 国产欧美日韩一区二区三| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 成人av一区二区三区在线看| 狂野欧美激情性xxxx| 亚洲av美国av| av电影中文网址| 99riav亚洲国产免费| 人人妻,人人澡人人爽秒播| 国产精品永久免费网站| 欧美日韩中文字幕国产精品一区二区三区 | 最好的美女福利视频网| 国产高清videossex| 久久久久久大精品| av免费在线观看网站| 无人区码免费观看不卡| 国产av一区二区精品久久| 成人精品一区二区免费| av超薄肉色丝袜交足视频| 好男人电影高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产黄a三级三级三级人| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 天天躁狠狠躁夜夜躁狠狠躁| 国产日韩一区二区三区精品不卡| 久久中文字幕一级| 在线观看www视频免费| www国产在线视频色| 91精品三级在线观看| 国产精品乱码一区二三区的特点 | 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 欧美日韩乱码在线| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 天堂√8在线中文| 岛国在线观看网站| 操出白浆在线播放| 黄色女人牲交| 在线观看舔阴道视频| 又大又爽又粗| 亚洲自拍偷在线| 精品久久久久久久久久免费视频| 亚洲七黄色美女视频| 久久久久久人人人人人| √禁漫天堂资源中文www| 亚洲久久久国产精品| 中文字幕高清在线视频| 18禁美女被吸乳视频| 亚洲av五月六月丁香网| 国产av精品麻豆| 天天一区二区日本电影三级 | 变态另类成人亚洲欧美熟女 | 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 成人三级做爰电影| 午夜免费观看网址| 可以在线观看毛片的网站| av在线天堂中文字幕| 亚洲午夜精品一区,二区,三区| 波多野结衣一区麻豆| 亚洲国产看品久久| 在线国产一区二区在线| 午夜福利视频1000在线观看 | 夜夜躁狠狠躁天天躁| 欧美在线一区亚洲| 亚洲精品在线观看二区| 人人澡人人妻人| 欧美在线一区亚洲| 午夜免费成人在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品成人综合色| 神马国产精品三级电影在线观看 | 国产精品永久免费网站| 叶爱在线成人免费视频播放| 黄色 视频免费看| svipshipincom国产片| 久久中文字幕一级| 久久久久久人人人人人| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久5区| 日韩免费av在线播放| 制服人妻中文乱码| 欧美成人性av电影在线观看| 久久欧美精品欧美久久欧美| 精品久久久久久久久久免费视频| 啪啪无遮挡十八禁网站| 女人高潮潮喷娇喘18禁视频| 免费在线观看日本一区| 麻豆av在线久日| 搡老岳熟女国产| 丝袜美足系列| 后天国语完整版免费观看| 黄色女人牲交| 国产免费男女视频| 99久久国产精品久久久| 深夜精品福利| 国产精品98久久久久久宅男小说| 亚洲一区高清亚洲精品|