• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction monitoring of lock head base plate using distributed optical fibre sensing technique

    2015-03-01 09:21:44SongZhanpuShiBinZhuHonghuShenMengfenZhangDanSunYijie

    Song Zhanpu Shi Bin Zhu Honghu Shen Mengfen Zhang Dan Sun Yijie

    (1School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China)(2Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA)

    ?

    Construction monitoring of lock head base plate using distributed optical fibre sensing technique

    Song Zhanpu1,2Shi Bin1Zhu Honghu1Shen Mengfen2Zhang Dan1Sun Yijie1

    (1School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China)(2Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA)

    Abstract:The concrete hydration heat release process of the base plate is monitored using Roman optical time domain reflectometry(ROTDR)sensing sensors. The monitoring data shows that the internal maximum temperature of the base plate is about 54 ℃ after the concrete was cured for 120 h. The fiber Bragg grating (FBG) temperature sensors are adopted to measure the surface temperature of the concrete and the temperature results are used to compensate the data measured by the pulse-prepump Brillouin optical time-domain analyzer(PPP-BOTDA) to obtain the real concrete surface strain of the base plate. The monitoring data is analyzed to obtain a clear understanding of the strain state of the base plate under the effect of concrete hydration heat release. The monitoring results demonstrate the potential of distributed optical fibre sensing techniques as a powerful tool in real-time construction monitoring, and also provide an important insight into the design, construction and maintenance of large hydraulic structures.

    Key words:construction monitoring; lock head base plate; optical fibre sensing; lock engineering; concrete

    Received 2015-03-17.

    Biographies:Song Zhanpu (1989—), male, graduate; Shi Bin (corresponding author), male, doctor, professor, shibin@nju.edu.cn.

    Foundation items:The National Key Technology R& D Program during the 12th Five-Year Plan Period (No.2012BAK10B05), the State Key Program of National Natural Science of China (No.41427801).

    Citation:Song Zhanpu, Shi Bin, Zhu Honghu, et al. Construction monitoring of a lock head base plate using distributed optical fibre sensing technique[J].Journal of Southeast University (English Edition),2015,31(4):535-540.[doi:10.3969/j.issn.1003-7985.2015.04.018]

    The safety of ship locks should be guaranteed to protect people and their properties downstream. Therefore, the health monitoring of ship lock structures is a critical issue[1]. The stress state of a ship lock structure depends on its type and structural complexity. In addition, the construction process and the control of hydration temperature have a significant influence on the structural quality. Thus, the monitoring of the structural temperature and strain during construction plays a significant role in ensuring the construction quality of ship locks[2].

    At present, the traditional monitoring techniques can hardly meet the requirements of modern structural monitoring due to the following deficiencies[3]. Most of the sensors are single-point sensors with a relatively low survival rate and can hardly perform in real-time or automatic monitoring. Single-point sensors are integrated into an organized monitoring system with difficulty. As a result, it is necessary to develop and apply the innovative technologies and methods to structural monitoring. In recent years, the distributed optical fibre sensing-based construction monitoring and health diagnosis methods have been developed and widely adopted in different structural monitoring systems[4-10]. A study in this research area was carried out by Shi et al[11]. They utilized the Brillion scattering-based sensing optical fibres to measure the strain distribution of a tunnel in Nanjing, China. Matta et al.[12]installed optical fibre on steel bars to measure the strain distribution of a bridge. However, both of them focused on built structure health monitoring. In this paper, we employ three distributed optical fibre sensing techniques including FBG, ROTDR and PPP-BOTDA to monitor the construction stage of a ship lock head base plate. The monitoring results are presented and analyzed, which provide an insight into the design, construction and maintenance of large hydraulic structures. Herein, the working principles of three distributed optical fibre sensing techniques are introduced.

    1Working Principles of Distributed Optical Fibre Sensing Techniques

    In the past few decades, several distributed optical fibre sensing techniques have been developed. FBG, ROTDR and PPP-BOTDA are the most frequently used distributed optical fibre sensing techniques. Tab.1 lists the features of the three techniques, and the structures of the sensors used in monitoring are shown in Fig.1. The ROTDR temperature sensing cable is only sensitive to temperature. The PPP-BOTDA strain sensing cable is cross sensitive to strain and temperature.

    Tab.1Features of three distributed optical fibre sensing techniques

    TechniqueFBGROTDRPPP-BOTDAMeasuringdistance/km2,4,6,825Spatialresolution1m5cmMeasurementaccuracy±0.2℃±0.2℃±7.5×10-6Measurementrange-40to200℃-40to120℃-0.03to0.04Young smodulus/GPa2000.331.1Stiffnesscoefficient/(MN·m-1)0.6186.6

    The sensing function of FBG was first discovered in the formation of photo-generated optical fibres by Hill et al[13].

    Fig.1 Structure of the sensors.(a) FBG sensor; (b) ROTDR sensing cable; (c) PPP-BOTDA sensing cable

    The Bragg grating is written into a segment of Ge-doped single-mode fibre, in which a periodic modulation of the core refractive index is formed by exposure to a spatial pattern of ultraviolet (UV) light[14]. According to Bragg’s law, when a broadband source of light has been injected into the fibre, FBG reflects a narrow spectral part of light at a certain wavelength[15]. FBG can accurately measure strain and temperature by use of its wavelength shift. FBG sensors with different wavelengths can be connected to construct a quasi-distributed sensing array.

    In the measurement process of ROTDR, an intense laser pulse is launched into a sensing fibre. Due to collision between photon and optical fibre molecules, the back scattering light is yielded. The back scattering light can be divided into Rayleigh scattering light, Raman scattering light and Brillouin scattering light[16]. The frequency spectrum characteristics of Rayleigh and Raman scattering lights are influenced by a variety of factors, such as strain, pressure, electric magnetic and so on. According to the frequency spectrum of Rayleigh scattering light, it can be divided into anti-Stokes light and Stoke light, as shown in Fig.2. ROTDR can measure the temperature distribution if the frequency spectrum of Rayleigh scattering light is captured.

    The PPP-BOTDA sensing technique is based on stimulated Brillouin backscattering. During measurement, the pulse laser (pump laser) and probe continuous wave are injected into an optical fibre from two ends. When the

    Fig.2 Scattering lights in a sensing optical fibre[16]

    frequency difference between the two lasers equals the Brillouin frequency shift, the Brillouin backscattering will be stimulated and the energy transfer will be generated between the two lasers[17]. As shown in Fig.3, a new method using a pre-pump pulse in front of a traditional laser pulse to enhance the accuracy and spatial resolution was introduced by Kishida et al.[18], which can enhance the accuracy and spatial resolution of the sensing technique.

    Fig.3 Working principle of PPP-BOTDA

    According to the linear relationship between the Brillouin frequency shift and the strain or temperature, the strain or temperature can be measured by detecting the frequency change of stimulated Brillouin scattering and the equation is given as[19]

    VB(T,ε)=Cεε+CTT

    whereCεandCTare the strain and temperature coefficients;νBis the Brillouin frequency shift;εandTare the strain variation and temperature variation, respectively. To accurately obtain the stress-strain field of the structure under load, we must correct the strain, which was affected by temperature. In this paper, the authors adopt the FBG temperature sensors to measure the surface temperature of the concrete and the temperature results are used to compensate the data measured by PPP-BOTDA to obtain the real concrete surface strain of the base plate.

    2Project Background

    The ship lock as a case study is located in Jiangsu province, China. The size of the lock head base plate is 53.8 m×29.2 m×3.0 m. In order to control the concrete hydration temperature of the base plate, two post-cast strips (width: 1 m) were used to separate the base plate into three blocks of a similar size, defined as base plate 1, 2, 3, respectively. The blocks were poured with concrete one by one and the construction process is shown in Fig.4.

    Fig.4 The construction process of the base plate

    The ROTDR distributed temperature optical fibre sensing cable was laid on the central parts of base plate 1, 2, 3 with a U-shaped distribution,as shown in Fig.5(a).

    Fig.5 Layout of the distributed optical fibre sensing system(unit:dm).(a) ROTDR temperature measurement; (b) FBG/PPP-BOTDA strain measurement; (c) Work filed ROTDR temperature measurement; (d) Work field monitoring station

    According to the structural characteristics of the ship lock, distributed optical fibre sensing cable based on PPP-BOTDA was laid to real-time monitor the concrete strain and six FBG temperature sensors were installed along with the PPP-BOTDA sensing cable to monitor its temperature, as shown in Fig.5(b). The distance from the cable to the base plate surface is 10 cm. Fig.5(c) shows the layout of the ROTDR sensing cable in the work field. The construction of the three blocks of the base plate and the monitoring station are shown in Fig.5(d).

    3Real-Time Monitoring Results

    Base plate 2 was poured with concrete on March 9, 2012. The internal concrete temperature of the base plate was real-time monitored by the ROTDR technique and the monitoring data of the base plate geometric centre temperature is shown in Fig.6. It can be seen that the concrete hydration of base plate 2 produced a violent reaction and the peak temperature of the internal concrete block reached 53.7 ℃ after the concrete had been cured for 120 h. The change process of the concrete temperature can be divided into four stages: ① 0 to 20 h is defined as the beginning stage of the concrete hydration, in the end of which the concrete pouring was completed; ② From 20 to 55 h, the hydration was energetic and the concrete temperature of the base plate increased rapidly and the rate of the hydration exothermic reached a maximum in the 30th hour, which was marked as pointAin the figure; ③ From 55 to 120 h, the hydration reaction and the heat dissipation from the base plate surface reached a dynamic balance and the internal temperature of the base plate was affected by rain; ④ after 120 h, the hydration reaction was substantially completed and the internal concrete temperature began to decrease, as a result of dissipating heat from the base plate surface.

    Fig.6 The temperature vs. time of base plate 2

    The central temperature of the three base plates is shown in Fig.7. The internal concrete temperature of three base plates reached a maximum on the 5th day and all of them were approximately 54 ℃. Overall, the change trend in the central temperature of the three base plates is similar.

    Fig.7 The center temperature change trends of three base plates

    The concrete internal temperature of base plate 2 was monitored by the ROTDR sensing cable and the upper/lower surface temperatures were monitored by FBG thermometers. The monitoring results are shown in Fig.8, which indicate that the temperature of the internal and upper surface of the base plate reached a maximum almost at the same time (5 d after the concrete poured) and the maximum central temperature was 54 ℃. The temperature of the lower surface reached a maximal value of 46.3 ℃. The temperature of the lower surface changed slowly after reached the peak value. This can be attributed to the energetic hydration, which led to the rapid increase of the internal temperature. The hydration reaction essentially completed after 7 d, and the internal temperature gradually decreased and tended towards stability. Due to the better cooling condition near the upper surface, the temperature difference between the internal and the upper surface was much higher than the lower surface temperature. It suggests that the hydration heat of the base plate mainly dissipated through the upper surface.

    Fig.8 The concrete temperature of base plate 2

    The PPP-BOTDA technique was employed to monitore the concrete surface strain of three base plates after each of them was poured. The concrete surface temperature, monitored by the FBG sensors, was used to compensate the strain values obtained by Eq.(1). The corrected concrete strain monitoring results are shown in Fig.9.

    Fig.9 The strain of three base plates.(a) The upper surface strain; (b) The lower surface strain

    It can be seen from Fig.9 that, 2 d after the concrete pouring (2012-03-10), the upper and lower surfaces of concrete of base plate 2 were subjected to tensile strain, and both of their strains were about 170×10-6. This was mainly because the concrete hydration heat was being released and the structure of the base plate was affected by thermal stress. Then, the concrete hydration heat was weakened and the temperature of the surface concrete decreased 8 d after the concrete pouring. At the same time, the thermal stress decreased and the concrete strain of the upper surface was reduced to about 50×10-6, as shown in Fig.9(a). However, the concrete strain of the lower surface was maintained at approximately 90×10-6, as shown in Fig.8(b). This was mainly because the lower surface concrete was based on the foundation and its temperature dropped more slowly than that of the upper surface. Therefore, the effect of thermal stress on the internal concrete was much greater than that of the upper surface concrete. In addition, the upper surface concrete strain of base plate 1 had an irregular distribution 2 d after the concrete pouring, as shown in Fig.9(a). The authors considered the monitoring data to be an instrumental error. On March 26, 2012, 18 d after the concrete had been poured, the concrete heat hydration had finished and the base plate was weakly affected by the structural thermal stress. The concrete strains of the upper and lower surface were reduced to zero. Compared with the concrete strain of base plates 1 and 3, similar trends were observed. Thus, it can be concluded that the base plate structure is mainly affected by the thermal stress of the concrete hydration heat release at the early construction stage.

    4Conclusion

    The concrete hydration heat temperature of the ship lock base plate was real-time monitored by the ROTDR technique. The results show that the central temperature of the base plate reached a maximum after the concrete had cured for 120 h and the maximum was about 54 ℃.

    According to the monitoring data of the PPP-BOTDA and FBG sensors, the concrete of the base plate showed tensile stress during its construction and the base plate structure is mainly affected by temperature stress of the concrete hydration heat release in the early construction stage.

    These monitoring results indicate above that the distributed optical fibre sensing technique used in this paper is a powerful and useful tool to real-time monitor the base plate construction of a ship lock structure. The distributed optical fibre sensing can be applied to infrastructural engineering construction monitoring.

    References

    [1]Song Z P, Zhang D, Shi B, et al. A study on distributed measurement in ship lock structural construction monitoring using fibre optic sensing [C]//GlobalViewofEngineeringGeologyandtheEnvironmentTechnologies. Beijing, 2012: 605-610.

    [3]Shi B, Xu H Z, Zhang D, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering [J].ChineseJournalofRockMechanics&Engineering, 2004, 23(3): 493-499. (in Chinese)

    [4]Zhang D, Shi B, Wu Z S, et al. Distributed optical fibre sensor based on BOTDR and its application to structural health monitoring [J].ChinaCivilEngineeringJournal, 2005, 36(11): 83-87. (in Chinese)

    [5]Bastianini F, Matta F, Galati N, et al. A Brillouin smart FRP material and a strain data post processing software for structural health monitoring through laboratory testing and field application on a highway bridge[C]//ProcSPIE. San Diego, CA, USA, 2005, 5765: 600-611.

    [6]Bao X Y, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brollouin scattering [J].LightwaveTechnology, 1995, 13(7):1340-1348.

    [7]Wu Z S, Shi B, Harada T, et al. An experimental study on the measuring characteristics of BOTDR for structure health monitoring [J].ChinaCivilEngineeringJournal, 2005, 6(11): 83-87. (in Chinese)

    [8]Zhu H H, Yin J H, Zhang L, et al. Monitoring internal displacements of a model dam using FBG sensing bars [J].AdvancesinStructuralEngineering, 2010, 13(2): 249-261.

    [9]Zhu H H, Yin J H, Jin W, et al. Health monitoring of foundations using fibre Bragg grating sensing technology [J].ChinaCivilEngineeringJournal, 2010, 43(6): 109-115. (in Chinese)

    [10]Fei B, Shi B, Zhu H H, et al. Study on the temperature field reconstruction for mass concrete based on DTS-GS method [C]//NewFrontiersinGeotechnicalEngineering. Shanghai, 2014: 150-159.

    [11]Shi B, Xu H Z, Chen B, et al. A feasibility study on the application of fibre-optic distributed sensors for strain measurement in the Taiwan strait tunnel project [J].MarineGeoresources&Geotechnology, 2003, 21(3/4): 333-343.

    [12]Matta F, Bastianini F, Galati N, et al. Distributed strain measurement in steel bridge with fibre optic sensors: validation through diagnostic load test [J].JournalofPerformanceofConstructedFacilities, 2008, 22(4): 264-273.

    [13]Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication [J].ApplPhysLett, 1978, 32(10): 647-649.

    [14]Zhu H H, Ho A L, Yin J H, et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope [J].SmartStructures&Systems, 2012, 9(5): 393-410.

    [15]Morey W W, Meltz G, Glenn W H. Fibre optic Bragg grating sensors [J].ProceedingsofSPIE, 1989, 1169(96): 98-107.

    [16]Grattan K T V, Sun T. Fiber optic sensor technology: an overview [J].Sensors&Actuators, 2000, 82(1):40-61.

    [17]Horiguchi T, Tateda M. BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory [J].JournalofLightwaveTechnology, 1989, 7(8): 1170-1176.

    [18]Kishida K, Li C H. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system [J].StructuralHealthMonitoringandIntelligentInfrastructure, 2005, 5855: 471-477.

    [19]Bernini R, Minardo A, Zeni L. Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors [J].OpticalEngineering, 2002, 41(9): 2186-2194.

    doi:10.3969/j.issn.1003-7985.2015.04.018

    人人妻人人澡人人看| 久久免费观看电影| 人人妻人人澡人人爽人人夜夜| 99久久精品国产亚洲精品| 亚洲人成电影观看| 成人手机av| 久久久久国内视频| av线在线观看网站| 久久久久久久国产电影| 亚洲全国av大片| 色在线成人网| 国产在线视频一区二区| 国产精品av久久久久免费| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 欧美精品av麻豆av| 脱女人内裤的视频| 在线 av 中文字幕| 黄网站色视频无遮挡免费观看| 午夜视频精品福利| 日韩 欧美 亚洲 中文字幕| h视频一区二区三区| 精品人妻在线不人妻| 在线观看免费视频网站a站| 1024香蕉在线观看| 久久久水蜜桃国产精品网| 成在线人永久免费视频| 日本a在线网址| 午夜福利在线观看吧| 欧美人与性动交α欧美精品济南到| 人人妻人人澡人人看| 欧美另类亚洲清纯唯美| 9色porny在线观看| 精品久久久精品久久久| 侵犯人妻中文字幕一二三四区| 狠狠精品人妻久久久久久综合| 国产在线观看jvid| www.999成人在线观看| 日本a在线网址| 一本色道久久久久久精品综合| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 人成视频在线观看免费观看| 久久这里只有精品19| 多毛熟女@视频| 黄色丝袜av网址大全| 一区二区三区乱码不卡18| 久久婷婷成人综合色麻豆| 高清视频免费观看一区二区| 免费人妻精品一区二区三区视频| 国产欧美日韩综合在线一区二区| 免费人妻精品一区二区三区视频| 人妻久久中文字幕网| 精品国产国语对白av| 亚洲精品成人av观看孕妇| 波多野结衣av一区二区av| 亚洲第一青青草原| 国内毛片毛片毛片毛片毛片| 国产精品成人在线| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 国产精品久久久久久精品古装| 久久久国产欧美日韩av| 日韩三级视频一区二区三区| 亚洲av国产av综合av卡| 亚洲免费av在线视频| 一区二区三区乱码不卡18| 丁香六月天网| 亚洲一码二码三码区别大吗| 人妻久久中文字幕网| 色老头精品视频在线观看| 国产成人系列免费观看| 一边摸一边抽搐一进一小说 | 欧美精品av麻豆av| 12—13女人毛片做爰片一| 国产一区二区三区综合在线观看| 国产精品美女特级片免费视频播放器 | 成人特级黄色片久久久久久久 | 亚洲av第一区精品v没综合| 欧美在线一区亚洲| 国产国语露脸激情在线看| av网站在线播放免费| 精品国产国语对白av| 国产精品98久久久久久宅男小说| 久久久精品区二区三区| av天堂在线播放| 久久中文看片网| 久久中文字幕一级| 又大又爽又粗| 亚洲人成伊人成综合网2020| 国产aⅴ精品一区二区三区波| 精品国产国语对白av| 天堂俺去俺来也www色官网| 国产亚洲精品第一综合不卡| 一本一本久久a久久精品综合妖精| 国产亚洲精品久久久久5区| 美女主播在线视频| 黄色丝袜av网址大全| 色老头精品视频在线观看| 亚洲 国产 在线| 考比视频在线观看| 伦理电影免费视频| 精品国产一区二区三区四区第35| 亚洲第一青青草原| 国产精品 国内视频| 亚洲第一欧美日韩一区二区三区 | 婷婷成人精品国产| 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 国产精品免费视频内射| 美女高潮到喷水免费观看| 亚洲国产av新网站| 无限看片的www在线观看| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 久久国产亚洲av麻豆专区| 亚洲伊人色综图| 一夜夜www| 法律面前人人平等表现在哪些方面| 久热爱精品视频在线9| 日韩欧美三级三区| 在线av久久热| 日本黄色视频三级网站网址 | 最黄视频免费看| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 成人手机av| 丁香六月欧美| av在线播放免费不卡| 这个男人来自地球电影免费观看| 99精品在免费线老司机午夜| 丝袜喷水一区| 国产色视频综合| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 一边摸一边抽搐一进一小说 | 久久久久久久国产电影| 纵有疾风起免费观看全集完整版| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 丝袜人妻中文字幕| 国产精品电影一区二区三区 | 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品古装| 91成年电影在线观看| 首页视频小说图片口味搜索| 亚洲中文字幕日韩| 精品国产乱码久久久久久男人| 国产精品久久电影中文字幕 | 国产日韩欧美亚洲二区| 国内毛片毛片毛片毛片毛片| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 自线自在国产av| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 精品久久蜜臀av无| 欧美日韩亚洲高清精品| 99国产精品一区二区蜜桃av | 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 法律面前人人平等表现在哪些方面| 999精品在线视频| 亚洲性夜色夜夜综合| 高清av免费在线| 天堂俺去俺来也www色官网| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说 | 人人妻,人人澡人人爽秒播| 欧美精品人与动牲交sv欧美| 亚洲av片天天在线观看| 黄片小视频在线播放| bbb黄色大片| 成年人午夜在线观看视频| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 欧美黄色片欧美黄色片| 777米奇影视久久| 精品国产超薄肉色丝袜足j| 精品国产一区二区三区久久久樱花| 午夜成年电影在线免费观看| videos熟女内射| 中国美女看黄片| 午夜福利视频精品| 久久av网站| 桃花免费在线播放| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 国产一区二区在线观看av| 国产精品1区2区在线观看. | 亚洲男人天堂网一区| 国产黄频视频在线观看| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 999久久久精品免费观看国产| 国产午夜精品久久久久久| 欧美精品一区二区免费开放| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 在线av久久热| 伊人久久大香线蕉亚洲五| 69av精品久久久久久 | 久久天堂一区二区三区四区| a级毛片在线看网站| 人妻久久中文字幕网| 一本久久精品| 精品亚洲乱码少妇综合久久| 视频区欧美日本亚洲| 麻豆国产av国片精品| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 人成视频在线观看免费观看| 国产精品欧美亚洲77777| 手机成人av网站| 午夜福利一区二区在线看| 精品福利永久在线观看| 夫妻午夜视频| 一级黄色大片毛片| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 在线 av 中文字幕| 亚洲精品国产精品久久久不卡| 国产亚洲欧美精品永久| 少妇粗大呻吟视频| 欧美精品一区二区大全| 日日摸夜夜添夜夜添小说| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 侵犯人妻中文字幕一二三四区| 天天添夜夜摸| 国产av国产精品国产| 考比视频在线观看| 一级片'在线观看视频| 亚洲全国av大片| 日韩大码丰满熟妇| 黄色视频在线播放观看不卡| 性色av乱码一区二区三区2| 国产精品电影一区二区三区 | 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕 | 久久毛片免费看一区二区三区| 亚洲伊人久久精品综合| 不卡一级毛片| 欧美日韩成人在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 国产一卡二卡三卡精品| 男女高潮啪啪啪动态图| av在线播放免费不卡| 免费不卡黄色视频| 飞空精品影院首页| 久久九九热精品免费| 久久久久网色| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 捣出白浆h1v1| 淫妇啪啪啪对白视频| 男女无遮挡免费网站观看| 欧美日韩福利视频一区二区| 久久婷婷成人综合色麻豆| 久久精品91无色码中文字幕| 国产精品国产高清国产av | 色婷婷av一区二区三区视频| av一本久久久久| 少妇 在线观看| 国产伦人伦偷精品视频| 啦啦啦视频在线资源免费观看| 黄片小视频在线播放| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 久9热在线精品视频| 亚洲色图av天堂| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 亚洲男人天堂网一区| 欧美国产精品一级二级三级| 一个人免费看片子| 国产成人免费观看mmmm| 成年女人毛片免费观看观看9 | 天天影视国产精品| 国产97色在线日韩免费| 成人国产一区最新在线观看| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 午夜福利在线观看吧| 在线 av 中文字幕| 国产成人精品无人区| 真人做人爱边吃奶动态| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 国产淫语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 国产在视频线精品| 国产一卡二卡三卡精品| 国产成人av教育| 女性被躁到高潮视频| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 欧美国产精品va在线观看不卡| www.999成人在线观看| 人人妻人人澡人人看| 岛国在线观看网站| 亚洲精品久久成人aⅴ小说| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| h视频一区二区三区| 可以免费在线观看a视频的电影网站| 国产深夜福利视频在线观看| 久久这里只有精品19| 97人妻天天添夜夜摸| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 十八禁网站免费在线| 久久人妻av系列| 国产精品久久久人人做人人爽| 亚洲综合色网址| 精品亚洲成国产av| 国产97色在线日韩免费| 国产一区有黄有色的免费视频| 久久这里只有精品19| 大型黄色视频在线免费观看| 国产麻豆69| 久久久久久久国产电影| 热99re8久久精品国产| 午夜视频精品福利| 热99re8久久精品国产| 亚洲专区中文字幕在线| 三级毛片av免费| 日韩免费av在线播放| 99精品久久久久人妻精品| 天堂俺去俺来也www色官网| 免费看十八禁软件| 久久久精品区二区三区| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 免费在线观看黄色视频的| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 亚洲专区中文字幕在线| 精品久久久久久电影网| 免费黄频网站在线观看国产| 老司机福利观看| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 两个人免费观看高清视频| 色尼玛亚洲综合影院| 两个人免费观看高清视频| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 国产精品国产av在线观看| 老司机午夜福利在线观看视频 | 国产伦理片在线播放av一区| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 考比视频在线观看| 国产成人一区二区三区免费视频网站| 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| av又黄又爽大尺度在线免费看| 黄色 视频免费看| 男女之事视频高清在线观看| 精品第一国产精品| av天堂在线播放| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 十八禁网站免费在线| www.精华液| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 久久久久网色| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全电影3 | 脱女人内裤的视频| 午夜福利在线免费观看网站| 国产精品久久久久成人av| 亚洲av日韩在线播放| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 又紧又爽又黄一区二区| 久久性视频一级片| 日韩免费av在线播放| 日本wwww免费看| 午夜免费成人在线视频| 亚洲国产欧美在线一区| av视频免费观看在线观看| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 99久久99久久久精品蜜桃| 日韩欧美免费精品| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 亚洲国产欧美日韩在线播放| 亚洲国产av新网站| 日韩视频在线欧美| 搡老乐熟女国产| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边抽搐一进一出视频| 中国美女看黄片| 妹子高潮喷水视频| 黄色片一级片一级黄色片| 男女午夜视频在线观看| 国产男女内射视频| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久 | 免费日韩欧美在线观看| 一级片免费观看大全| 在线观看免费视频日本深夜| 午夜精品久久久久久毛片777| 自线自在国产av| 极品人妻少妇av视频| 精品亚洲成国产av| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 757午夜福利合集在线观看| 久久精品91无色码中文字幕| 狠狠婷婷综合久久久久久88av| 老司机亚洲免费影院| 视频在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久久久久亚洲精品国产蜜桃av| 午夜福利乱码中文字幕| 久久久久久久久免费视频了| 一个人免费在线观看的高清视频| a级毛片黄视频| 18在线观看网站| 午夜视频精品福利| 狂野欧美激情性xxxx| 人妻 亚洲 视频| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 中文字幕精品免费在线观看视频| 五月开心婷婷网| 精品国内亚洲2022精品成人 | 亚洲七黄色美女视频| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 亚洲人成伊人成综合网2020| 建设人人有责人人尽责人人享有的| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 十八禁网站免费在线| 91大片在线观看| 热99久久久久精品小说推荐| 免费久久久久久久精品成人欧美视频| 国产成人系列免费观看| 99久久精品国产亚洲精品| 乱人伦中国视频| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 欧美日韩视频精品一区| 热re99久久精品国产66热6| 久久天躁狠狠躁夜夜2o2o| a级毛片黄视频| 国产福利在线免费观看视频| 亚洲自偷自拍图片 自拍| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 日韩熟女老妇一区二区性免费视频| av国产精品久久久久影院| 高清视频免费观看一区二区| 久久久久久久久免费视频了| 免费在线观看完整版高清| 搡老乐熟女国产| 日本精品一区二区三区蜜桃| 我的亚洲天堂| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 日韩欧美一区二区三区在线观看 | 一进一出抽搐动态| 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 999精品在线视频| 欧美乱妇无乱码| 超碰97精品在线观看| 国产av又大| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到| 美女视频免费永久观看网站| 香蕉国产在线看| 久久婷婷成人综合色麻豆| 欧美日韩视频精品一区| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 老熟妇仑乱视频hdxx| 精品熟女少妇八av免费久了| 亚洲全国av大片| 久久久久久亚洲精品国产蜜桃av| 国产又色又爽无遮挡免费看| 搡老乐熟女国产| 国产精品九九99| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 国产亚洲av高清不卡| 欧美日韩福利视频一区二区| 丁香六月天网| 午夜久久久在线观看| 亚洲,欧美精品.| 91精品国产国语对白视频| 中文字幕另类日韩欧美亚洲嫩草| 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 久久精品国产亚洲av香蕉五月 | av国产精品久久久久影院| 美女高潮到喷水免费观看| 精品卡一卡二卡四卡免费| 香蕉丝袜av| 757午夜福利合集在线观看| 天天操日日干夜夜撸| 9热在线视频观看99| 免费看十八禁软件| 激情视频va一区二区三区| 久9热在线精品视频| 丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 午夜久久久在线观看| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产在线免费精品| 亚洲国产欧美网| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 久久免费观看电影| 国产欧美日韩一区二区三区在线| www.精华液| 90打野战视频偷拍视频| 国产日韩欧美视频二区| 国产区一区二久久| 高清视频免费观看一区二区| 五月天丁香电影| 精品国产乱码久久久久久小说| 一区二区日韩欧美中文字幕| 99九九在线精品视频| 一区二区三区精品91| 波多野结衣av一区二区av| 亚洲欧美日韩高清在线视频 | 老汉色∧v一级毛片| 亚洲综合色网址| 女性生殖器流出的白浆| 一边摸一边做爽爽视频免费| 少妇的丰满在线观看| 十八禁网站网址无遮挡| 9热在线视频观看99| 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 99精品久久久久人妻精品| 人妻 亚洲 视频| 丰满少妇做爰视频| 后天国语完整版免费观看| 成年动漫av网址| 丝袜美足系列| 成人手机av| 国产淫语在线视频| 精品卡一卡二卡四卡免费| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 亚洲色图 男人天堂 中文字幕| 国产高清视频在线播放一区| 国产欧美日韩综合在线一区二区| 精品亚洲成国产av| 成人18禁在线播放| 国产在线视频一区二区| 黑人操中国人逼视频| 精品免费久久久久久久清纯 | 久久久久久人人人人人| 午夜激情久久久久久久| 午夜福利在线免费观看网站| 久久久久久免费高清国产稀缺| 777米奇影视久久| 人人妻人人澡人人爽人人夜夜| 激情视频va一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 亚洲成人手机| 日本av免费视频播放| 久久久精品免费免费高清| 久久精品亚洲精品国产色婷小说| 美女主播在线视频| 1024香蕉在线观看| 757午夜福利合集在线观看| 亚洲国产av新网站| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久精品电影小说| 日本vs欧美在线观看视频|