• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys

    2015-03-01 08:07:25TuYiyouHuangLinghuiSunZhongyueZhouXuefengJiangJianqing

    Tu Yiyou  Huang Linghui  Sun Zhongyue  Zhou Xuefeng  Jiang Jianqing,2

    (1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)(2Nanjing University of Information Science and Technology, Nanjing 210044, China)

    ?

    Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys

    Tu Yiyou1Huang Linghui1Sun Zhongyue1Zhou Xuefeng1Jiang Jianqing1,2

    (1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)(2Nanjing University of Information Science and Technology, Nanjing 210044, China)

    Abstract:The effect of concurrent precipitation on recrystallization textures in AA 3003 aluminum alloys was investigated using X-ray diffraction and electron backscattering diffraction(EBSD) analyses. A weak recrystallization texture was observed in the AA 3003 alloy annealed at 783 K due to the high annealing temperature. Under the same conditions, extremely high P {011}〈111〉 recrystallization textures were detected in the AA 3003 alloy added with 0.39%Sc. Based on the EBSD results, no intensely preferential orientation nucleation of recrystallization grains was observed in the early stage of recrystallization for both alloys. However, concurrent precipitation strongly retarded the growth of recrystallization grains, except for P nucleation sites, thereby conferring an apparent initial growth advantage for P nucleation sites compared with other nucleation sites. Therefore, a sharp P {011}〈111〉 texture appeared in concurrently precipitated AA 3003 alloys.

    Key words:AA3003 alloy; concurrent precipitation; recrystallization texture

    Received 2015-04-16.

    Biography:Tu Yiyou(1978—), male, doctor, associate professor, tuyiyou@seu.edu.cn.

    Foundation items: The National Natural Science Foundation of China (No.51201031), the Natural Science Foundation of Jiangsu Province (No.BK2011615), the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2011024).

    Citation:Tu Yiyou, Huang Linghui, Sun Zhongyue, et al.Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys[J].Journal of Southeast University (English Edition),2015,31(4):501-505.[doi:10.3969/j.issn.1003-7985.2015.04.012]

    Recrystallization texture has been a subject of metallurgical research due to the fact that texture is one of the main factors responsible for the anisotropy of the mechanical properties of the final sheets[1-3]. The mechanisms of recrystallization textures in aluminum alloys are widely debated and generally interpreted using two theories[2,4-5]: 1) Oriented nucleation, in which the preferred formation of nuclei with special orientations determines the final recrystallization texture; and 2) Oriented growth, which originates from a random spectrum of nuclei and wherein structures with the optimal growth conditions dominate the recrystallization texture. However, discussion solely based on one of these two theories fails in most cases. Therefore, a combination of both theories has been proved to aid explanations of the recrystallization textures of aluminum alloys; this strategy is based on growth selection from a limited spectrum of preferentially formed nucleus orientations[2, 6-7].

    The recrystallization texture of most aluminum alloys is characterized by a cubic orientation with scattering along the rolling direction toward the Goss orientation. As-deformed supersaturated AA 3000 series aluminum alloys conventionally result in different recrystallization textures after recrystallization annealing because of the effect of concurrent precipitation[6, 8-11]. Nes et al.[9]found that concurrent precipitation results in the formation of relatively strong P{011} 〈455〉 and ND-rotated cubic {001} 〈310〉 textures in commercial alloys. Moreover, continuous cast AA 3015 alloys exhibit remarkably strong recrystallization textures[10-11]. The formation of the P texture strongly depends on the annealing temperature[11-13]. However, the relationship between the concurrent precipitation and composition of recrystallization textures has been rarely reported in the literature. The present work aims to examine the effect of concurrent precipitation on the nucleation and growth of recrystallization grains at a high annealing temperature of 783 K in as-rolled commercial AA 3003 alloys and recrystallization texture components.

    1Materials and Experiments

    We studied two Al alloy samples: 1) AA 3003: Al-0.93%Mn-0.45%Fe-0.08%Si-0.06%Cu-0.02%Ti and 2) AA 3003+Sc: Al-0.90%Mn-0.39%Fe-0.10%Si-0.05%Cu-0.02%Ti-0.39%Sc (in mass fraction). The alloys were cast into 200 mm×150 mm×20 mm plates by using steel molds and then solution treated (ST) at 913 K for 72 h. The two types of ST plates were subsequently deformed into sheets by cold rolling with a true strain of 2.20. Finally, the rolled sheets were isothermally annealed at 783 K.

    The microstructures of the cold rolled and annealed samples were observed through anodization and optical microscopy under polarized light. All the micrographs were obtained from longitudinal sections, defined by rolling direction (RD) and normal direction (ND).

    The macro-texture measurements were performed using one-fourth thick cold-rolled sheets via X-ray diffraction (XRD). The (111), (200), and (220) pole figures were measured up to a maximum tilt angle of 75° by the Schulz back-reflection method with CuKαradiation. Orientation distribution functions (ODFs) were calculated from incomplete pole figures by using a series expansion method[14]. These ODFs are presented as plots of constantφ2sections with isointensity contours in the Euler space, which is defined by Euler angles, namely,φ1,Φ, andφ2. In addition, microtextures were monitored through electron backscatter diffraction (EBSD) analysis by using a field-emission scanning electron microscope (FEI Sirion).

    2Results and Discussion

    2.1 Microstructure and texture of the as-rolled sheets

    Fig.1 shows the microstructures and textures of the as-rolled AA 3003 and AA 3003+Sc alloys. Figs.1(a) and (b) illustrate that both alloys display a fibrous microstructure, which is a typical deformation structure. Figs.1(c) and (d) show that both the as-rolled alloys exhibit similar rolling texture, namely, copper {112} 〈111〉 textures, which is a typical rolling texture of aluminum alloys.

    (a) (b)

    (c) (d)

    2.2 Macro-recrystallization textures and recrystallization microstructures

    Fig.2 shows the recrystallization microstructures and macro-recrystallization texture of cold-rolled AA 3003 and AA 3003+Sc alloys after annealing at 783 K. The AA 3003 alloy annealed at 783 K for 1 h was fully recrystallized, showing fine, equiaxed grains with a mean diameter of approximately 10 μm (see Fig.2(a)). Recrystallization is not affected by the concurrent precipitation of Mn-bearing dispersoids. In principle, a high amount of stored deformation energy and a high density of microstructural heterogeneities for nucleation and precipitation are dispelled after recrystallization. This dispelling phenomenon tends to delay the precipitation of Mn-bearing dispersoids when the recrystallization occurs prior to precipitation. By contrast, the AA 3003+Sc alloy displayed coarse and elongated recrystallization grains along the RD/ND plane (see Fig.2(b)). The precipitation of Al3Sc particles precedes the recrystallization in the as-rolled AA 3003+Sc alloy annealed at 783 K. Moreover, the concurrent precipitation strongly affects the recrystallization behavior of the alloys due to the small nucleation barrier for the precipitation of Al3Sc particles[15]. In addition, the Al3Sc particles tend to precipitate at the grain boundaries, which are along the RD/TD plane in the deformed alloys. Consequently, the recrystallizing grains experience the highest drag in the direction normal to the rolling plane, leading to the pancake-like recrystallization of grains.

    Recrystallization textures significantly differed between AA 3003 alloys with and without Sc addition. The precipitation of Mn-bearing precipitates starts after the recrystallization in the AA 3003 alloy because of the high annealing temperature of 783 K[15]. Consequently, the recrystallization textures are comprised of cubic {001} 〈100〉, weak ND-rotated {001} 〈310〉 and P {011}〈111〉 components (see Fig.2(c)). However, the recrystallization texture of the AA 3003+Sc alloy shows an extremely sharp P {011}〈111〉 component (see Fig.2(d)), which is observed when the precipitation occurs prior to or simultaneously with recovery and recrystallization processes, i.e., concurrent precipitation[6].

    (a) (b)

    (c) (d)

    2.3 Micro-recrystallization textures

    Fig.3 demonstrates the EBSD maps and orientation relationships of the recrystallization grains of AA 3003 and AA 3003+Sc alloys after annealing at 783 K. As shown in our previous work[15], the annealing temperatures are below the critical temperatureTCof the alloy and recrystallization grains are expected to be large and pancake-like. However, in the present study, the EBSD maps show the presence of several fine, equiaxed recrystallization grains with numerous fractions of approximately 1/10 (see Fig.3(a)).The crystallographic orientation of fine, equiaxed grains and large, pancake-like recrystallization grains are indicated by dash and solid lines, respectively, in the orientation relationship maps (see Fig.3(b)). The orientation relationship maps demonstrate that most of the large, pancake-like grains are P- and ND-rotated cubic grains, which are indicated by solid lines, whereas the fine, equiaxed grains are randomly oriented and stop growing after reaching an average size of approximately 15 μm.

    Fig.3 EBSD maps of AA 3003+Sc alloy after annealing at 783 K for 1 h. (a) EBSD orientation map; (b) Orientation relationship of grains in the (111) polar diagram

    3Discussions

    The mechanisms of recrystallization textures in Al alloys are intensely debated and generally considered to combine oriented nucleation and growth[2,4]. In the present work, a sharp P texture was observed in the AA 3003+Sc alloy, whereas a weak texture was detected in the AA 3003 alloy. Considering the origin of P texture components, researchers must determine whether P orientated grains have a nucleation or growth advantage over other randomly oriented grains.

    The EBSD maps show some nucleated recrystallization grains of AA 3003 (see Fig.4(a)) and AA 3003+Sc alloys (see Fig.4(b)) at the beginning of recrystallization, i.e., annealing at 783 K. However, the nature of the nucleation sites of these orientations has not yet been fully identified. The nucleation of recrystallization in the AA3003 alloy occurs along the constituent particles, and the EBSD map shows that the recrystallization grains are randomly orientated with a mean diameter of approximately 10 μm (see Fig.4(a)). Similarly, the number density of P- and ND-rotated cubic orientation grains shows the same order of magnitude as the randomly oriented grains in the AA 3003+Sc alloys (marked by the arrows in Fig.4(b)). However, the nucleated grains with P orientations are considerably larger than randomly oriented grains in the AA 3003+Sc alloy. The volume fraction of P-oriented grains is higher than that of randomly oriented grains. Therefore, the sharp P texture appears at the beginning of recrystallization in the AA 3003+Sc alloy.

    Fig.4 Orientation of nucleated recrystallization grains at the beginning of recrystallization. (a) AA 3003 alloy annealed at 783 K for 25 s; (b) AA3003+Sc alloy annealed at 783 K for 500 s

    Recrystallization is completed before the beginning of significant precipitation in the as-rolled AA3003 alloy annealed at 783 K[15]. However, the precipitation of Al3Sc always occurs prior to recrystallization in the AA3003 alloy added with 0.4% Sc, and the concurrent precipitation remarkably affects the recrystallization (see Fig.5). In the AA 3003 alloy, randomly oriented grains nucleate and grow uniformly. By contrast, the effective radii of grains with P- and ND-rotated cubic components typically develop to over 100 μm and are elongated in the RD/ND plane with an aspect ratio greater than 4.0. P nucleation sites have an initial growth advantage over other random nucleation sites because of their 40°-〈111〉 rotation relationship to the copper {112} 〈111〉 component[6]. The boundaries between such sites and the surrounding deformed matrix consist of 7-type interfaces and are minimally affected by precipitation and segregation. This situation results in precipitation-induced oriented growth. Moreover, precipitation tends to occur at the boundaries between the recrystallized deformation zones of random orientations and the copper deformation matrix, which present locally high supersaturation and low nucleation barriers. The large number of dense precipitates in the alloys provides sufficient Zener pinning and promptly terminates the growth of randomly oriented grains after nucleation. This phenomenon leads to the formation of fine, equiaxed recrystallization grains. Similarly, the P recrystallization texture in Al-Mn-Mg aluminum alloy is in excellent agreement with the oriented growth theory[5].

    Fig.5 TEM images showing the precipitation of a large number of Al3Sc particles in the subgrains of the as-rolled AA3003+Sc alloy annealed at 783 K for 500 s

    4Conclusion

    In this study, the effect of concurrent precipitation on recrystallization textures in Al-Mn alloys was investigated. Concurrent precipitation strongly affected the recrystallization behavior of the alloys, leading to strong orientation densities close to the P {011} 〈111〉 recrystallization textures. However, no intensely preferential orientation nucleation of recrystallization grains was observed. P nucleation sites show an evident initial growth advantage over other nucleation sites because of their 40°-〈111〉 rotation relationship to the copper {112} 〈111〉 component of the typical rolling textures of aluminum alloys. In addition, the sharp P {011}〈111〉 texture appeared at the beginning of recrystallization.

    References

    [1]Mishin O V, Jensen D J, Hansen N. Evolution of microstructure and texture during annealing of aluminum AA1050 cold rolled to high and ultrahigh strains [J].MetallurgicalandMaterialsTransactionsA, 2010, 41(11):2936-2948.

    [2]Engler O, Yang P, Kong X W. On the formation of recrystallization textures in binary Al-1.3%Mn investigated by means of local texture analysis [J].ActaMaterialia, 1996, 44(8):3349-3369.

    [3]Mishin O V, Godfrey A, Jensen D J, et al. Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain [J].ActaMaterialia, 2013, 61(14):5354-5364.

    [4]Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture [J].ActaMaterialia, 1997, 45(11):4593-4602.

    [5]Ma M, Wang W, Zhang J, et al. The role of oriented growth in p texture development in Al-Mn-Mg aluminum alloy [J].JournalofMaterialEngineeringandPerformance, 2014, 23(9):3257-3265.

    [6]Tangen S, Sjolstad K, Furu T, et al. Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy [J].MetallurgicalandMaterialsTransactionsA, 2010, 41(11):2970-2983.

    [7]Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: experimental study and modeling [J].InternationalJournalofPlasticity, 2015, 66(3):119-137.

    [8]Liu W C, Morris J G. Recrystallization textures of the M{113}〈110〉 and P{011} 〈455〉 orientations in a supersaturated Al-Mn alloy [J].ScriptaMaterialia, 2007, 56(3):217-220.

    [9]Daaland O, Nes E. Recrystallization texture development in commercial Al-Mn-Mg alloys [J].ActaMaterialia, 1996, 44(4):1413-1435.

    [10]Liu W C, Morris J G. Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys [J].MaterialsScienceandEngineeringA, 2003, 339(1/2):183-193.

    [11]Liu W C, Morris J G. Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2005, 36(10):2829-2848.

    [12]Huang K, Engler O, Li Y J, et al. Evolution in microstructure and properties during non-isothermal annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states [J].MaterialsScienceandEngineeringA, 2015, 628(3):216-229.

    [13]Liu W, Ma M, Yang F. Effect of the heat treatment on the cube recrystallization texture of Al-Mn-Mg aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2013, 44(6):2857-2868.

    [14]Bunge H J.Textureanalysisinmaterialsscience:mathematicalmethods[M]. Butterworths, 1982.

    [15]Tu Y, Qian H, Zhou X, et al. Effect of scandium on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2014, 45(4):1883-1891.

    doi:10.3969/j.issn.1003-7985.2015.04.012

    美女脱内裤让男人舔精品视频| 最新的欧美精品一区二区| 国产欧美亚洲国产| 国产在线视频一区二区| 国产淫语在线视频| 欧美精品高潮呻吟av久久| 欧美成人精品欧美一级黄| 最近2019中文字幕mv第一页| 国产黄色视频一区二区在线观看| 欧美精品亚洲一区二区| 夜夜骑夜夜射夜夜干| 在线观看免费日韩欧美大片| 波多野结衣一区麻豆| 日韩不卡一区二区三区视频在线| 国产极品天堂在线| 国产精品国产三级国产专区5o| 国产亚洲午夜精品一区二区久久| 色吧在线观看| 久久久久国产一级毛片高清牌| 国产一区二区 视频在线| 亚洲av免费高清在线观看| 婷婷色av中文字幕| 久久久国产欧美日韩av| 18禁动态无遮挡网站| 涩涩av久久男人的天堂| 尾随美女入室| 精品国产乱码久久久久久男人| 一级毛片黄色毛片免费观看视频| 亚洲第一区二区三区不卡| 免费人妻精品一区二区三区视频| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久噜噜老黄| 亚洲国产欧美在线一区| 少妇人妻久久综合中文| 十分钟在线观看高清视频www| 精品午夜福利在线看| 国产片内射在线| av国产精品久久久久影院| 国产精品久久久久久精品电影小说| 韩国高清视频一区二区三区| 免费黄频网站在线观看国产| 国产午夜精品一二区理论片| 99国产综合亚洲精品| 五月伊人婷婷丁香| 欧美精品国产亚洲| 久久热在线av| 在现免费观看毛片| 18禁动态无遮挡网站| 国产午夜精品一二区理论片| 色94色欧美一区二区| 中文字幕另类日韩欧美亚洲嫩草| 日本午夜av视频| 少妇的丰满在线观看| 男男h啪啪无遮挡| 在线免费观看不下载黄p国产| 国产精品久久久久久精品古装| 青春草国产在线视频| 亚洲伊人色综图| 少妇被粗大的猛进出69影院| 不卡视频在线观看欧美| 国产av码专区亚洲av| 亚洲精品aⅴ在线观看| 观看av在线不卡| 精品一区二区三区四区五区乱码 | 少妇的丰满在线观看| 夫妻午夜视频| 成人影院久久| 五月伊人婷婷丁香| √禁漫天堂资源中文www| 欧美精品av麻豆av| 亚洲国产欧美在线一区| 大话2 男鬼变身卡| 天天操日日干夜夜撸| 黄片无遮挡物在线观看| 日本色播在线视频| 女人精品久久久久毛片| 9色porny在线观看| 亚洲欧美一区二区三区久久| 日韩一区二区三区影片| 久久久国产欧美日韩av| 伦精品一区二区三区| 永久网站在线| 欧美日韩一级在线毛片| 有码 亚洲区| 色播在线永久视频| 久久久久精品性色| 久久亚洲国产成人精品v| 只有这里有精品99| 久久人人爽av亚洲精品天堂| 国产在线一区二区三区精| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 欧美黄色片欧美黄色片| 久久久久久伊人网av| 色播在线永久视频| 免费看不卡的av| 久久久精品区二区三区| 亚洲精品乱久久久久久| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 亚洲欧美精品综合一区二区三区 | 婷婷成人精品国产| 老熟女久久久| 在线天堂中文资源库| av在线观看视频网站免费| 亚洲av福利一区| 亚洲欧美一区二区三区久久| 免费看av在线观看网站| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 亚洲经典国产精华液单| 久久精品国产自在天天线| 精品久久蜜臀av无| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 老汉色∧v一级毛片| 精品视频人人做人人爽| 久久久久久久久久人人人人人人| freevideosex欧美| 街头女战士在线观看网站| 成年女人毛片免费观看观看9 | 人妻人人澡人人爽人人| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 观看美女的网站| 久久久久久人妻| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 18禁动态无遮挡网站| 国产在线视频一区二区| av在线观看视频网站免费| 人人澡人人妻人| 热99国产精品久久久久久7| 乱人伦中国视频| 大话2 男鬼变身卡| 两个人看的免费小视频| av在线app专区| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 国产人伦9x9x在线观看 | 七月丁香在线播放| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 99热网站在线观看| 一边摸一边做爽爽视频免费| 欧美日韩综合久久久久久| 熟女少妇亚洲综合色aaa.| 黄网站色视频无遮挡免费观看| 伦理电影大哥的女人| 少妇的丰满在线观看| 免费黄色在线免费观看| 午夜福利在线免费观看网站| 国产男女内射视频| 丝袜在线中文字幕| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 精品人妻在线不人妻| 黄片无遮挡物在线观看| 午夜福利影视在线免费观看| 伦精品一区二区三区| 亚洲国产av影院在线观看| 男人爽女人下面视频在线观看| 亚洲国产精品999| 一区二区av电影网| 国产精品久久久久久精品电影小说| 亚洲国产精品999| 日本wwww免费看| 女性被躁到高潮视频| 国产毛片在线视频| 桃花免费在线播放| 国产一级毛片在线| 边亲边吃奶的免费视频| 高清不卡的av网站| 赤兔流量卡办理| 免费在线观看黄色视频的| 99久国产av精品国产电影| 宅男免费午夜| 日本vs欧美在线观看视频| 人妻少妇偷人精品九色| 五月开心婷婷网| 在线观看三级黄色| 国产爽快片一区二区三区| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 成年动漫av网址| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| a级片在线免费高清观看视频| 欧美日韩一级在线毛片| a 毛片基地| 久久久久国产网址| 伦理电影免费视频| videos熟女内射| 最新的欧美精品一区二区| 亚洲成人手机| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看 | 最近中文字幕2019免费版| www.熟女人妻精品国产| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到 | 999久久久国产精品视频| 久久99一区二区三区| 天堂8中文在线网| 精品人妻一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 精品卡一卡二卡四卡免费| 少妇被粗大的猛进出69影院| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 欧美激情高清一区二区三区 | 国产日韩欧美视频二区| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 最新的欧美精品一区二区| 9191精品国产免费久久| 精品人妻熟女毛片av久久网站| 精品久久蜜臀av无| 午夜精品国产一区二区电影| 国产成人av激情在线播放| 丁香六月天网| 国产一区二区三区av在线| 欧美日韩国产mv在线观看视频| 91成人精品电影| 精品福利永久在线观看| 欧美日韩一级在线毛片| 人妻 亚洲 视频| 黄片无遮挡物在线观看| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 永久网站在线| 多毛熟女@视频| 人妻少妇偷人精品九色| 成人午夜精彩视频在线观看| 母亲3免费完整高清在线观看 | 成人漫画全彩无遮挡| 下体分泌物呈黄色| 国产av一区二区精品久久| 婷婷色麻豆天堂久久| 在线观看国产h片| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久小说| 免费观看无遮挡的男女| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线| 欧美精品国产亚洲| 亚洲欧美精品综合一区二区三区 | 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 乱人伦中国视频| 免费观看在线日韩| 9191精品国产免费久久| 国产成人精品福利久久| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 国产毛片在线视频| 一区福利在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 超色免费av| 国产综合精华液| 欧美亚洲日本最大视频资源| 精品一品国产午夜福利视频| 在线亚洲精品国产二区图片欧美| 不卡视频在线观看欧美| 国产精品无大码| 亚洲国产精品一区三区| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 欧美日韩一级在线毛片| 亚洲成人手机| 国产精品久久久av美女十八| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频| 三级国产精品片| 亚洲久久久国产精品| 日韩中字成人| 黄色毛片三级朝国网站| av在线app专区| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看 | 精品第一国产精品| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 亚洲,欧美,日韩| 国产麻豆69| 男人爽女人下面视频在线观看| 久久精品aⅴ一区二区三区四区 | 91久久精品国产一区二区三区| 欧美亚洲日本最大视频资源| 国产熟女欧美一区二区| 欧美少妇被猛烈插入视频| 晚上一个人看的免费电影| 色网站视频免费| 免费观看性生交大片5| 国产午夜精品一二区理论片| 男女高潮啪啪啪动态图| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 哪个播放器可以免费观看大片| 99热全是精品| 1024视频免费在线观看| 9热在线视频观看99| 久久人妻熟女aⅴ| 99久久综合免费| 黄色一级大片看看| 国产成人免费无遮挡视频| 久久av网站| 国产片内射在线| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站 | 伊人久久国产一区二区| 少妇人妻久久综合中文| 精品人妻一区二区三区麻豆| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 欧美xxⅹ黑人| 亚洲综合精品二区| 人体艺术视频欧美日本| av电影中文网址| 色网站视频免费| 毛片一级片免费看久久久久| 国产一区二区激情短视频 | 久久久久久久久久人人人人人人| 午夜日韩欧美国产| 老司机影院毛片| 男男h啪啪无遮挡| www.av在线官网国产| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 国产综合精华液| 欧美黄色片欧美黄色片| 两个人看的免费小视频| 在线精品无人区一区二区三| 国产综合精华液| 免费在线观看完整版高清| www.熟女人妻精品国产| kizo精华| 国产成人av激情在线播放| 黄片小视频在线播放| 国产人伦9x9x在线观看 | 黄色怎么调成土黄色| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 亚洲精品美女久久av网站| 综合色丁香网| 黄色一级大片看看| 91精品伊人久久大香线蕉| 岛国毛片在线播放| 91精品伊人久久大香线蕉| av有码第一页| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 欧美激情高清一区二区三区 | 久久久a久久爽久久v久久| 一区二区av电影网| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 最黄视频免费看| 中文字幕制服av| 最黄视频免费看| 超碰97精品在线观看| 午夜av观看不卡| 999精品在线视频| 一区在线观看完整版| 18禁动态无遮挡网站| 精品国产乱码久久久久久小说| 999久久久国产精品视频| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 26uuu在线亚洲综合色| 天天躁夜夜躁狠狠躁躁| 极品人妻少妇av视频| 国产日韩欧美亚洲二区| 亚洲综合色网址| 精品一品国产午夜福利视频| 青春草亚洲视频在线观看| 免费在线观看完整版高清| 国产日韩一区二区三区精品不卡| 老汉色av国产亚洲站长工具| 精品少妇内射三级| 免费观看在线日韩| 亚洲欧美一区二区三区国产| 欧美精品一区二区免费开放| 自线自在国产av| 亚洲综合色惰| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 亚洲男人天堂网一区| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 精品福利永久在线观看| 日韩中文字幕欧美一区二区 | 18在线观看网站| 精品国产超薄肉色丝袜足j| av免费观看日本| 久久人人97超碰香蕉20202| 久久久久久伊人网av| 亚洲欧美色中文字幕在线| 国产精品免费大片| 国产毛片在线视频| av卡一久久| 免费观看av网站的网址| 午夜激情av网站| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 国产麻豆69| 欧美av亚洲av综合av国产av | 秋霞在线观看毛片| av福利片在线| 久久久国产欧美日韩av| 国产精品 欧美亚洲| 亚洲国产精品999| av在线播放精品| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 1024视频免费在线观看| 国产精品蜜桃在线观看| 中国三级夫妇交换| 亚洲人成网站在线观看播放| 一区二区三区四区激情视频| 中文字幕人妻丝袜制服| 亚洲精品第二区| 波多野结衣一区麻豆| 老熟女久久久| 亚洲内射少妇av| 久久av网站| 久久韩国三级中文字幕| 在线看a的网站| 韩国av在线不卡| 国产精品一国产av| 精品亚洲成a人片在线观看| 最新的欧美精品一区二区| 精品久久久精品久久久| 岛国毛片在线播放| 中文字幕最新亚洲高清| 久久婷婷青草| 一级毛片 在线播放| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| 蜜桃在线观看..| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人aa在线观看| 天堂中文最新版在线下载| 在线观看国产h片| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 男女国产视频网站| 亚洲图色成人| 久久精品久久久久久噜噜老黄| 三级国产精品片| 大话2 男鬼变身卡| videossex国产| 日韩熟女老妇一区二区性免费视频| 国产一区二区 视频在线| 赤兔流量卡办理| 丰满乱子伦码专区| 久久久精品免费免费高清| 国产男女内射视频| 日韩电影二区| 午夜激情久久久久久久| 天天影视国产精品| 可以免费在线观看a视频的电影网站 | 人妻人人澡人人爽人人| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| www.av在线官网国产| 黄色毛片三级朝国网站| 九草在线视频观看| 中文字幕av电影在线播放| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| 日本av手机在线免费观看| 亚洲精品美女久久久久99蜜臀 | 亚洲色图综合在线观看| 中文字幕人妻丝袜制服| 国产日韩欧美视频二区| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 中文字幕人妻丝袜制服| 国产乱来视频区| 亚洲伊人久久精品综合| 午夜福利一区二区在线看| 中文字幕av电影在线播放| 国产福利在线免费观看视频| 蜜桃国产av成人99| 日韩三级伦理在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久人妻| av.在线天堂| 午夜av观看不卡| www.自偷自拍.com| 精品一区二区三区四区五区乱码 | 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 美女大奶头黄色视频| 人妻系列 视频| 亚洲精品自拍成人| 在线观看www视频免费| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 免费观看在线日韩| 不卡av一区二区三区| 国产免费福利视频在线观看| a级毛片黄视频| 18在线观看网站| 纯流量卡能插随身wifi吗| 各种免费的搞黄视频| 国产精品久久久av美女十八| av又黄又爽大尺度在线免费看| 老女人水多毛片| 成人国产av品久久久| 丝袜美足系列| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 欧美黄色片欧美黄色片| 综合色丁香网| 国产成人精品在线电影| 美女福利国产在线| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区| 久久久久久伊人网av| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级| 亚洲精品一二三| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 日韩免费高清中文字幕av| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影小说| 一级片免费观看大全| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 伊人久久国产一区二区| 精品午夜福利在线看| 一区二区日韩欧美中文字幕| 伦理电影免费视频| 人妻一区二区av| 亚洲国产最新在线播放| 欧美日韩一区二区视频在线观看视频在线| videossex国产| 亚洲精品aⅴ在线观看| 国产黄色视频一区二区在线观看| 国产极品天堂在线| 男人舔女人的私密视频| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 激情五月婷婷亚洲| 国产探花极品一区二区| 国产精品久久久久久av不卡| 欧美人与善性xxx| av电影中文网址| freevideosex欧美| 久久精品久久久久久久性| 成人国产麻豆网| 国产日韩欧美亚洲二区| 午夜久久久在线观看| 精品人妻熟女毛片av久久网站| 中文字幕精品免费在线观看视频| 欧美精品一区二区大全| 日韩一区二区三区影片| 国产免费福利视频在线观看| 亚洲成人一二三区av| 大话2 男鬼变身卡| 少妇人妻精品综合一区二区| 青草久久国产| 妹子高潮喷水视频| 七月丁香在线播放| 亚洲,欧美精品.| 亚洲,一卡二卡三卡| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 久久久久久人人人人人| 18禁裸乳无遮挡动漫免费视频| 日韩在线高清观看一区二区三区| 亚洲成人手机| 国产成人欧美| 国产成人精品无人区| 精品少妇一区二区三区视频日本电影 | 国产成人a∨麻豆精品| 免费高清在线观看日韩| av在线播放精品|