• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation and performance analysis of organic Rankine cycle combined heat and power system

    2015-03-01 08:07:23LiuYulanCaoZhengChenJiufaXiongJian

    Liu Yulan  Cao Zheng  Chen Jiufa  Xiong Jian

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2Lotusland Renewable Energy Holdings Limited, Shanghai 200233, China)

    ?

    Simulation and performance analysis of organic Rankine cycle combined heat and power system

    Liu Yulan1Cao Zheng1Chen Jiufa1Xiong Jian2

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2Lotusland Renewable Energy Holdings Limited, Shanghai 200233, China)

    Abstract:To improve the overall thermal efficiency of the organic Rankine cycle (ORC), a simulation study was carried out for a combined heat and power (CHP) system, using the Redlich-Kuang-Soave (RKS) equation of state. In the system, R245fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency. Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures (80, 90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures (20, 25, 30, 35, 40, 45, 50, 55 ℃). Results show that in the ORC without an internal heat exchanger (IHE), the optimum cycle efficiencies are in the range of 7.0% to 7.3% when the temperature differences between the heat source and heat sink are in the range of 70 to 90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than 40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.

    Key words:organic Rankine cycle; combined heat and power; cycle efficiency; exergy efficiency; thermal efficiency

    Received 2015-03-25.

    Biographies:Liu Yulan(1990—), female, graduate; Chen Jiufa(corresponding author), male, doctor, professor, chen.jiufa@126.com.

    Foundation item:Special Fund for Industry, University and Research Cooperation (No.2011DFR61130).

    Citation:Liu Yulan, Cao Zheng, Chen Jiufa, et al.Simulation and performance analysis of organic Rankine cycle combined heat and power system[J].Journal of Southeast University (English Edition),2015,31(4):489-495.[doi:10.3969/j.issn.1003-7985.2015.04.010]

    With increasing scarcity of non-renewable energy, the development of new energy and recovery of waste heat is increasingly important. Using a low-temperature heat source to generate power with the ORC is one of the effective ways to solve this problem. So far, much research on ORC systems has been carried out, and the form of heat source can be solar[1], geothermal[2], biomass[3], industrial waste heat[4]and so on. However, what they are most concerned about is the power efficiency. Madhawa et al.[2]compared different refrigerants in the ORC system, such as ammonia, HCFC 123, n-pentane and PF5050, however, the maximum power efficiency is not more than 10%. Li et al.[5]obtained the highest efficiency of 7.98% in the regenerative ORC with 6 kW power output. Jradi et al.[6]employed HFE7100 in an ORC system, and the maximum electric power of 500 kW has been generated with a cycle efficiency of 5.7%. Zheng et al.[7]pointed out that the cycle efficiency is steady between 5% and 6% when the heat source temperature is 90 ℃. Pei et al.[8]designed and manufactured a specifical turbine to adapt the ORC system in order to improve cycle efficiency, and obtained a maximum efficiency of 6.8%. In summary, as stated in previously mentioned studies, the present thermal efficiency is relatively low in small-scale ORC systems, both under the theoretical and experimental conditions. This phenomenon may be due to two main reasons: the first is the limitations of the research projects themselves; the second is the application limit of the low-grade heat source, which is only used for output power.

    Therefore, to compensate for this inadequacy, the discharged heat is recycled in the condenser for domestic hot water by using the CHP technology, thus improving the overall thermal efficiency and reducing the exergy destruction. According to the civil architecture standard of domestic hot water, the temperature of cooling water at the condenser outlet,Tow, should be set in the range of 50 to 60 ℃. In addition, a simulation program is developed in this paper to study the ORC and optimized under different conditions. Therefore, it can provide technical support and a theoretical basis for calculating the overall system, and give guidance to the test bench in future research.

    1System Introduction

    1.1 Organic working fluids selection

    The selection of low boiling point organic working fluid is important for optimizing the ORC system. Apart from its environmental impacts, the thermophysical property of the working fluid should be considered. Qiu[9]pointed out that R245fa was one of the best working fluids in small-scale ORC systems by proposing some evaluation standards and methods; Aghahosseini et al.[10]proved that the performance indicators of the ORC were all in the most reasonable range by using R245fa under different conditions; Saleh et al.[11]pointed out that R245fa should be considered in order to obtain a high thermal efficiency in the reheated cycle. In view of the previous studies, R245fa was chosen in this paper for a small-scale ORC system with a low-temperature heat source.

    1.2 Basic ORC system

    The schematic diagram of a basic ORC is presented in Figs.1 and 2. The refrigerant enters the condenser as superheated vapor at state 1 and leaves as subcooled liquid at state 4, and the cooling water will take away the heat, which is rejected during this vapor-liquid phase change process at condensing pressurePd. Then, the refrigerant enters the pump and is compressed to the evaporating pressurePein an isentropic efficiency which is determined by the pump. Then, it enters the evaporator as compressed liquid at state 5 and leaves as superheated vapor at state 8 by absorbing heat from the heat carrier at constantPe. The superheated vapor enters the expander and expands in an isentropic efficiency which is determined by the expansion ratio, and produces work by rotating the shaft connected to a generator. The pressure and temperature of the vapor drop during this process to the initial state 1. Then the refrigerant reenters the condenser, completing the cycle[12]. During this cycle, work can be produced in the expansion process, which can be used for generating electricity. Meanwhile, the cooling water at an appropriate temperature can be obtained by controlling the condensing temperatureTd, thus improving the overall thermal efficiency. Furthermore, instead of water, thermal oil serves as the heat carrier.

    Fig.1 Schematic diagram of the ORC system

    Fig.2 T-S diagram of the ORC system

    1.3 ORC system with IHE

    Compared with the basic ORC, the thermal load of the condenser and the cooling load of the evaporator can be reduced by adding a counter-flow IHE between the expander and pump outlet pipes, thus improving thermal efficiency. The subcooled liquid refrigerant (at state 5) absorbs heat from the superheated vapor refrigerant (at state 1) in the IHE, then they leave the IHE at state 5i and 2i, respectively, as illustrated in Figs.3 and 4.

    Fig.3 Schematic diagram of the ORC system with IHE

    Fig.4 T-S diagram of the ORC system with IHE

    2ORC Model

    A program of the ORC model is developed in this paper, which is written in VB language. The main routine connects the subroutines of working fluid, the evaporator, expander, condenser, pump and IHE. This program is simulated under ideal conditions; i.e., the pressure drops in pipes, heat exchangers and other components are ignored.

    2.1 Working fluid subroutine

    The physical parameters of R245fa in one-phase and two-phase regions are calculated by using the RKS equation of state with an elaborated thermodynamic frame. In addition, the following basic parameters are needed: an eccentric factor, molecular weight, critical temperature, critical pressure, the heat capacity of the liquid, and the heat capacity of the ideal gas.

    In the superheated or subcooled region, the physical parameters of the working fluid, such as enthalpy, entropy, internal energy, density, can be calculated according to the temperature and pressure. While in the two-phase region, either temperature or pressure is enough for the calculation. For given temperature (or pressure), the fugacity coefficients of both the liquid phase and vapor phase are calculated and compared. If the deviation between those two fugacity coefficients is smaller than a given tolerance, the equilibrium state is reached, and the iterated pressure (or temperature) can be outputted; otherwise, a new iteration process will be repeated. In addition, other physical parameters can be calculated according to the temperature and pressure.

    In short, the physical parameters of the working fluid can be calculated in this working fluid subroutine, which provides a basis for the simulation of the entire program.

    2.2 Model of evaporator and condenser

    The aim of the subroutine of the evaporator model is to output the iterated evaporating temperatureTe, heat exchangeQeand other outlet parameters. This subroutine is to perform iterative calculation by controlling the deviation between the iterated heat transfer area and the actual area of the evaporator. When the system is equipped with IHE, the heat exchange is

    Qe=(h8-h5i)qm,r

    (1)

    and without IHE, it is

    Qe=(h8-h5)qm,r

    (2)

    whereqm,ris the mass flow rate of refrigerant;h8,h5i,h5are the enthalpy per unit mass of refrigerant at state 8, 5i, and 5, respectively.

    For the chevron plate heat exchanger, the empirical correlation of heat transfer coefficientkin the single-phase region can be calculated as[13]

    (3)

    whereλis the thermal conductivity;Deqis the equivalent diameter of the single channel in the plate heat exchanger;Reis the Reynolds number;Pris the Prandtl number;βis the angle of the herringbone plate heat exchanger.

    In the two-phase region, the precise heat transfer coefficient can be calculated as[14]

    (4)

    wherekrlis the heat transfer coefficient of the liquid refrigerant;Bois the Boiling number;Cois the convection number;Frlis the Froude number of the liquid refrigerant.

    The simulation algorithm of the condenser model is similar to that of the evaporator. In the CHP system, the discharged heat in the condenser is collected for domestic hot water. When the system is equipped with IHE, the discharged heatQdis

    Qd=(h2i-h4)qm,r

    (5)

    and without IHE, it is

    Qd=(h1-h4)qm,r

    (6)

    whereh2i,h4,h1are the enthalpy per unit mass of refrigerant at state 2i, 4, and 1, respectively.

    The heat transfer coefficient of the two-phase fluid can be calculated as[13]

    (7)

    whereλlis the thermal conductivity of the liquid refrigerant;Reeqis the equivalent Reynolds number;Prlis the Prandtl number of the liquid refrigerant.

    2.3 Model of expander, pump and IHE

    For the selected scroll expander, the isentropic efficiency is maximum when the cycle pressure ratio matches the internal volume ratio of the expander, and it will be decreased in over- or under-expansion. The work outputWexpis

    Wexp=(h8-h1)qm,r

    (8)

    The working fluid pump is used for elevating the pressure of the liquid refrigerant fromPdtoPe, and its simulation algorithm is similar to that of the expander. The power consumption of the pumpWpis

    Wp=(h5-h4)qm,r

    (9)

    In the IHE, the high-pressure liquid refrigerant (at state 5) can be heated by absorbing heat from the low-pressure gas refrigerant (at state 1), and the heat transfer leads to a reduction in the thermal load of the condenser and cooling load of the evaporator, thus improving the cycle efficiency. The heat exchange in the IHEQIis

    QI=(h5i-h5)qm,r=(h1-h2i)qm,r

    (10)

    2.4 Cycle indicators

    The net work outputWnet, cycle efficiencyηcyc, exergy efficiencyηexand overall thermal efficiencyηoveare set to be the cycle indicators to evaluate the performance of the ORC system and select the optimal working conditions.

    Wnet=Wexp-Wp

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    whereQwis the heat absorbed by the cooling water;Tambis the ambient temperature;Towis the temperature of the cooling water at the condenser outlet;Ewis the exergy of the cooling water;Tiois the temperature of the thermal oil at the evaporator inlet;Qois the heat released from the thermal oil;Eois the exergy of the thermal oil.

    2.5 Main routine flowchart of system

    Fig.5 Main routine flowchart of the ORC system

    3Simulation Results

    Several graphs are plotted to show the influences ofTeandTdon cycle efficiency, exergy efficiency and overall thermal efficiency, and the effects of the CHP technology and the IHE on the basic ORC system, with a fixed flow rate of cooling water and thermal oil.

    3.1 Influences of heat source and heat sink temperatures on cycle performance

    For a non-CHP ORC without IHE, the isentropic efficiency, work output and cycle efficiency vs.Tioare plotted in Fig.6 at different condenser inlet temperatures of cooling water (Tiw).

    (a)

    (b)

    (c)Fig.6 Influences of Tio and Tiw on cycle performance. (a) Isentropic efficiency; (b) Work output; (c) Cycle efficiency

    For the selected scroll expander, its optimum isentropic efficiency appears whenTiwwell matchesTioas shown in Fig.6(a), and the cycle pressure ratio is about 2.5 under these conditions. As shown in Fig.6(b), the work output increases with the increase ofTio. As shown in Fig.6(c), whenTiwis less than 35 ℃, the cycle efficiency increases first and then decreases asTioincreases. It is mainly because the isentropic efficiency decreases rapidly with the continuous increase ofTio. Thus, the increments in work output and cycle efficiency are limited. While the cycle efficiency increases but the growth rate decreases asTioincreases whenTiwis larger than 40 ℃. The main reason is that the isentropic efficiency increases first and then decreases slowly.

    In summary, for the selected scroll expander, a better temperature match between the heat source and heat sink leads to larger isentropic efficiency, work output and cycle efficiency. Moreover, the optimum cycle efficiencies, in the range of 7.0% to 7.3%, are obtained when the temperature differences between the heat source and the heat sink are in the range of 70 to 90 ℃.

    3.2 Influences of CHP technology

    In order to improve the overall thermal efficiency and exergy efficiency, hot water can be obtained for the building by recycling the discharged heat in the condenser.

    3.2.1Influence ofTioandTiwonTow

    Since the temperature rise of cooling water is limited in the condenser, the lowestTiwis required for obtaining hot water. The influences ofTioandTiwonToware shown in Fig.7.

    Fig.7 Influences of Tio and Tiw on Tow

    It can be seen thatTowincreases asTioincreases. WhenTiwis 35 ℃,Towis less than 50 ℃ continuously with a fixed flow rate of cooling water, and water less than 50 ℃ cannot be used for domestic hot water. WhenTiwis 40 ℃,Towcan meet the standard of domestic hot water only whenTioachieves 120 ℃. Besides, the higher theTiw, the lower the temperature requirement of the heat source. Therefore, to produce hot water,Tiwrequires a minimum value of 40 ℃.

    3.2.2Influence of CHP technology on exergy and overall thermal efficiency

    As is shown in Fig.8(a), the exergy efficiency decreases asTiwincreases in the non-CHP ORC system. It is mainly because the higher the temperature, the greater the ambient heat loss, without consideration of heat recovery from cooling water. However, the exergy efficiency increases along with the increasingTiwin the CHP ORC system, and it is 29% to 56% better than that in the non-CHP system. In addition, the overall thermal efficiency is equal to the cycle efficiency in the non-CHP system, but it reaches 90% or higher in the CHP system (see Fig.8(b)). Therefore, the use of CHP technology will further improve the utilization rate of low-temperature heat sources. However, under actual conditions, the higher the temperature, the greater the heat loss; therefore, the overall thermal efficiency will decline.

    (a)

    (b)Fig.8 Influence of CHP technology on efficiency. (a) Exergy efficiency; (b) Overall thermal efficiency

    3.3 Influence of IHE on cycle indicators

    For the CHP ORC systems with and without IHE, whenTiwis 45 ℃, the cycle indicators vs.Tioare plotted in Fig.9.

    (a)

    It can be seen from the simulation results that, as the heat source temperature increases, the trends of performance curves remain unchanged by adding an IHE, and the performance improves somewhat. The work output in a cycle with an IHE is 0.06 to 0.13 kW larger than that without an IHE, and the growth of exergy efficiency and cycle efficiency are only about 1.3% and 0.6%, respectively. Therefore, from the simulation results under ideal condition, IHE has little effect on the improvement of the performance parameters of the CHP ORC system. Besides, based on heat loss, cost, complexity and other factors, IHE is not strongly recommended for an actual ORC plant.

    4Conclusions

    1) For a non-CHP ORC without IHE, optimum cycle efficiency is related to the optimum pressure ratio. For the scroll expander selected in this paper, the optimum cycle efficiencies of 7.0% to 7.3% are obtained when the temperature difference between the heat source and the heat sink is in the range of 70 to 90 ℃.

    2) For a CHP ORC, to produce hot water, the heat sink inlet temperature requires a minimum value of 40 ℃. In contrast to the non-CHP system, the use of the CHP technology will improve exergy efficiency and overall thermal efficiency by 29% to 56% and 87% to 90%, respectively.

    3) The usage of the IHE will raise the exergy efficiency and cycle efficiency of only about 1.3% and 0.6%, respectively. Therefore, IHE has little effect on the improvement of the efficiencies of the CHP ORC system. Besides, based on heat loss, cost, complexity and other factors, IHE is not strongly recommended for an actual ORC plant.

    References

    [1]Manolakos D, Kosmadakis G, Kyritsis S. On site experimental evaluation of a low temperature solar organic Rankine cycle system for RO desalination[J].SolarEnergy, 2009, 83(5): 646-656.

    [2]Madhawa H H D, Golubovic M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources[J].Energy, 2007, 32(9): 1698-1706.

    [3]Liu H, Shao Y J, Li J X. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)-thermodynamic modeling studies[J].BiomassandBioenergy, 2011, 35(9): 3985-3994.

    [4]Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J].EnergyConversionandManagement, 2007, 48(4): 1113-1119.

    [5]Li M Q, Wang J F, He W F, et al. Construction and preliminary test of a low-temperature regenerative organic Rankine cycle (ORC) using R123[J].RenewableEnergy, 2013, 57(3): 216-222.

    [6]Jradi M, Li J X, Liu H, et al. Micro-scale ORC-based combined heat and power system using a novel scroll expander[J].InternationalJournalofLow-CarbonTechnologies, 2014, 9(2): 91-99.

    [7]Zheng N, Zhao L, Wang X D, et al. Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle[J].AppliedEnergy, 2013, 112(16): 1265-1274.

    [8]Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J].Energy, 2011, 36(5): 3215-3223.

    [9]Qiu G Q. Selection of working fluids for micro-CHP systems with ORC[J].RenewableEnergy, 2012, 48(6): 565-570.

    [10]Aghahosseini S, Dincer I. Comparative performance analysis of low-temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids[J].AppliedThermalEngineering, 2013, 54(1): 35-42.

    [11]Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J].Energy, 2007, 32(7): 1210-1221.

    [12]Onkar Singh.Appliedthermodynamics[M]. New Delhi, India: Mechanical Engineering Department, Harcourt Butler Technological Institute, 2009.

    [13]García-Cascales J R, Vera-García F, Corberán-Salvador J M, et al. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers[J].InternationalJournalofRefrigeration, 2007, 30(6): 1029-1041.

    [14]Quoilin S. Sustainable energy conversion through the use of organic Rankine cycles for waste heat recovery and solar applications[D]. Liège, Belgium: University of Liège, 2011.

    doi:10.3969/j.issn.1003-7985.2015.04.010

    国产欧美日韩一区二区三 | 国产一区二区三区av在线| 大香蕉久久网| 自线自在国产av| 欧美乱码精品一区二区三区| 男女边摸边吃奶| 日本精品一区二区三区蜜桃| 亚洲精品粉嫩美女一区| 国产男女超爽视频在线观看| 亚洲性夜色夜夜综合| 最近中文字幕2019免费版| 中国美女看黄片| 嫁个100分男人电影在线观看| av网站免费在线观看视频| 十八禁人妻一区二区| 色老头精品视频在线观看| 一区二区三区激情视频| 亚洲少妇的诱惑av| 他把我摸到了高潮在线观看 | 国产欧美日韩综合在线一区二区| 满18在线观看网站| 久久免费观看电影| 男人操女人黄网站| 最黄视频免费看| 国产成人av教育| 国产97色在线日韩免费| 成人三级做爰电影| 一级毛片电影观看| 91大片在线观看| 亚洲欧洲日产国产| 国产精品 欧美亚洲| 日本wwww免费看| 亚洲五月婷婷丁香| 一级片免费观看大全| 人成视频在线观看免费观看| 久久精品亚洲av国产电影网| 极品人妻少妇av视频| 亚洲欧洲日产国产| 中文字幕av电影在线播放| 五月天丁香电影| 老熟妇仑乱视频hdxx| avwww免费| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 99热全是精品| 韩国精品一区二区三区| 他把我摸到了高潮在线观看 | 天天操日日干夜夜撸| 日本vs欧美在线观看视频| av在线播放精品| 欧美日韩精品网址| 丝瓜视频免费看黄片| 欧美激情 高清一区二区三区| 午夜福利,免费看| 在线天堂中文资源库| 亚洲精品久久久久久婷婷小说| 精品欧美一区二区三区在线| 9色porny在线观看| 咕卡用的链子| 中文字幕精品免费在线观看视频| 国产成人a∨麻豆精品| 99精品久久久久人妻精品| 欧美人与性动交α欧美精品济南到| 午夜老司机福利片| 777米奇影视久久| 啦啦啦视频在线资源免费观看| 97人妻天天添夜夜摸| 国产精品影院久久| 日韩精品免费视频一区二区三区| 91精品三级在线观看| 欧美日韩亚洲综合一区二区三区_| 午夜福利在线免费观看网站| 欧美激情高清一区二区三区| 久久香蕉激情| 久久ye,这里只有精品| 免费在线观看视频国产中文字幕亚洲 | 黄色视频在线播放观看不卡| 亚洲精品国产av蜜桃| 另类亚洲欧美激情| 久久99一区二区三区| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 在线观看舔阴道视频| 欧美 日韩 精品 国产| 国产xxxxx性猛交| 俄罗斯特黄特色一大片| 两性夫妻黄色片| 国产亚洲午夜精品一区二区久久| 我要看黄色一级片免费的| 成年av动漫网址| 黄片小视频在线播放| 中国美女看黄片| 夫妻午夜视频| 王馨瑶露胸无遮挡在线观看| 免费一级毛片在线播放高清视频 | 欧美日韩黄片免| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频 | 国产精品1区2区在线观看. | av在线老鸭窝| 九色亚洲精品在线播放| 精品国内亚洲2022精品成人 | 亚洲七黄色美女视频| 黄色片一级片一级黄色片| 欧美日韩亚洲国产一区二区在线观看 | 久久青草综合色| 亚洲精品国产av成人精品| 另类精品久久| 午夜福利乱码中文字幕| 亚洲中文av在线| 久久精品人人爽人人爽视色| 久久99一区二区三区| 久久精品成人免费网站| 色综合欧美亚洲国产小说| 超碰成人久久| 乱人伦中国视频| 久久久国产精品麻豆| 黄片大片在线免费观看| 婷婷丁香在线五月| 美国免费a级毛片| 国产精品影院久久| 90打野战视频偷拍视频| 欧美成狂野欧美在线观看| av又黄又爽大尺度在线免费看| 国产在视频线精品| 涩涩av久久男人的天堂| 女人久久www免费人成看片| 成人黄色视频免费在线看| 国产高清videossex| 久久国产亚洲av麻豆专区| 老司机影院成人| 亚洲熟女毛片儿| 美女高潮喷水抽搐中文字幕| 考比视频在线观看| 国产男女超爽视频在线观看| 视频在线观看一区二区三区| 丝袜人妻中文字幕| 成人国语在线视频| 久久久久久久精品精品| 亚洲专区字幕在线| 12—13女人毛片做爰片一| 国产日韩欧美亚洲二区| 一区二区三区激情视频| 久久狼人影院| 少妇裸体淫交视频免费看高清 | 亚洲第一欧美日韩一区二区三区 | 老熟妇仑乱视频hdxx| 黑人巨大精品欧美一区二区蜜桃| 亚洲成人国产一区在线观看| 亚洲性夜色夜夜综合| 色精品久久人妻99蜜桃| 日本wwww免费看| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 欧美成人午夜精品| 不卡一级毛片| 一区二区三区激情视频| 日本欧美视频一区| 99国产精品免费福利视频| 亚洲国产欧美一区二区综合| 老司机午夜十八禁免费视频| 制服人妻中文乱码| 亚洲自偷自拍图片 自拍| netflix在线观看网站| 国产成人av教育| 极品少妇高潮喷水抽搐| 12—13女人毛片做爰片一| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品国产av在线观看| 久久女婷五月综合色啪小说| 中国美女看黄片| 黄片播放在线免费| 国产精品久久久久久精品古装| 91精品三级在线观看| 别揉我奶头~嗯~啊~动态视频 | 国产xxxxx性猛交| a级毛片在线看网站| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 亚洲国产成人一精品久久久| 亚洲精品一二三| 中国美女看黄片| 欧美黄色淫秽网站| 午夜日韩欧美国产| 天堂俺去俺来也www色官网| 一区二区日韩欧美中文字幕| 日本a在线网址| 欧美一级毛片孕妇| 国产亚洲精品一区二区www | 久久久久国产一级毛片高清牌| 一级毛片女人18水好多| 91国产中文字幕| a级毛片在线看网站| av又黄又爽大尺度在线免费看| 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品九九99| 国产区一区二久久| av免费在线观看网站| 99re6热这里在线精品视频| 日本wwww免费看| 五月天丁香电影| 国产日韩欧美在线精品| 69av精品久久久久久 | 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 国产又爽黄色视频| 天天操日日干夜夜撸| 老司机福利观看| 老司机亚洲免费影院| av欧美777| 免费高清在线观看视频在线观看| 亚洲国产欧美在线一区| 亚洲成人手机| 亚洲成人免费电影在线观看| 午夜福利一区二区在线看| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 19禁男女啪啪无遮挡网站| 91国产中文字幕| 国内毛片毛片毛片毛片毛片| 他把我摸到了高潮在线观看 | 一级片免费观看大全| 夫妻午夜视频| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看视频在线观看| 免费在线观看日本一区| 亚洲av成人不卡在线观看播放网 | 看免费av毛片| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡 | 天天添夜夜摸| 男女无遮挡免费网站观看| 欧美成人午夜精品| 欧美精品高潮呻吟av久久| 国产一区二区三区在线臀色熟女 | 热99re8久久精品国产| xxxhd国产人妻xxx| 欧美成人午夜精品| 91麻豆精品激情在线观看国产 | av福利片在线| 免费一级毛片在线播放高清视频 | 又黄又粗又硬又大视频| 天天影视国产精品| 午夜福利在线观看吧| 国产高清videossex| 一区二区三区激情视频| 亚洲国产日韩一区二区| 一区二区av电影网| 亚洲av片天天在线观看| 精品亚洲成a人片在线观看| 亚洲七黄色美女视频| 国产精品免费大片| 天堂俺去俺来也www色官网| 亚洲精品国产精品久久久不卡| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华精| 国产男人的电影天堂91| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 淫妇啪啪啪对白视频 | 午夜精品国产一区二区电影| 国产精品二区激情视频| 免费观看a级毛片全部| 日日夜夜操网爽| 嫩草影视91久久| 麻豆av在线久日| 国产免费视频播放在线视频| 人妻 亚洲 视频| 一区二区av电影网| 久热爱精品视频在线9| 青草久久国产| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 中国美女看黄片| 久久综合国产亚洲精品| 999精品在线视频| 香蕉丝袜av| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 中国美女看黄片| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 天堂中文最新版在线下载| 淫妇啪啪啪对白视频 | 男女之事视频高清在线观看| 伦理电影免费视频| 91字幕亚洲| 久久久久久久久久久久大奶| 一级毛片电影观看| 欧美日韩黄片免| 国产不卡av网站在线观看| av电影中文网址| 涩涩av久久男人的天堂| 美女大奶头黄色视频| 久久国产精品人妻蜜桃| 黄色 视频免费看| 久久久久精品人妻al黑| 中文字幕人妻熟女乱码| 久久 成人 亚洲| av在线app专区| 最近最新免费中文字幕在线| 午夜免费鲁丝| 亚洲av成人不卡在线观看播放网 | 亚洲国产中文字幕在线视频| 亚洲欧美日韩另类电影网站| 国产精品九九99| 大码成人一级视频| 久久久精品区二区三区| 日韩熟女老妇一区二区性免费视频| 桃花免费在线播放| 老司机亚洲免费影院| 亚洲av美国av| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 美女视频免费永久观看网站| tube8黄色片| 丝袜人妻中文字幕| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 亚洲av成人一区二区三| 国产一卡二卡三卡精品| 热99re8久久精品国产| 97精品久久久久久久久久精品| 久久久水蜜桃国产精品网| 成人国语在线视频| 999久久久精品免费观看国产| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 亚洲av美国av| svipshipincom国产片| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| a 毛片基地| 国产精品自产拍在线观看55亚洲 | 午夜免费观看性视频| 亚洲欧美成人综合另类久久久| 国产日韩欧美视频二区| 精品免费久久久久久久清纯 | 欧美激情高清一区二区三区| 国产片内射在线| 丝瓜视频免费看黄片| 国产精品自产拍在线观看55亚洲 | bbb黄色大片| 亚洲自偷自拍图片 自拍| 久久久精品免费免费高清| 最黄视频免费看| 久久久久网色| 欧美黄色片欧美黄色片| 桃花免费在线播放| 亚洲国产成人一精品久久久| 国产一区二区三区av在线| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 91精品国产国语对白视频| 在线精品无人区一区二区三| 午夜成年电影在线免费观看| 99国产极品粉嫩在线观看| 国产色视频综合| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| av网站在线播放免费| 狠狠精品人妻久久久久久综合| 黄片大片在线免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 叶爱在线成人免费视频播放| 亚洲国产精品一区三区| 天天影视国产精品| 免费看十八禁软件| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 日韩制服骚丝袜av| 亚洲熟女毛片儿| 国产免费福利视频在线观看| 亚洲色图综合在线观看| 啦啦啦免费观看视频1| 91国产中文字幕| 欧美精品啪啪一区二区三区 | 黄色片一级片一级黄色片| 久热爱精品视频在线9| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 久久中文字幕一级| xxxhd国产人妻xxx| 国产主播在线观看一区二区| 亚洲av男天堂| 欧美 日韩 精品 国产| 中国美女看黄片| 不卡av一区二区三区| 成人免费观看视频高清| 9色porny在线观看| 久久久精品免费免费高清| 亚洲免费av在线视频| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 亚洲精品国产精品久久久不卡| www.熟女人妻精品国产| 少妇精品久久久久久久| 一区二区三区精品91| 欧美成人午夜精品| 亚洲欧美精品自产自拍| 男女高潮啪啪啪动态图| 多毛熟女@视频| 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 在线亚洲精品国产二区图片欧美| 母亲3免费完整高清在线观看| 一本综合久久免费| 日韩,欧美,国产一区二区三区| 精品一区二区三区av网在线观看 | 悠悠久久av| 欧美人与性动交α欧美精品济南到| 午夜两性在线视频| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡 | 日本av手机在线免费观看| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 婷婷成人精品国产| 青草久久国产| 亚洲精品在线美女| 麻豆国产av国片精品| 亚洲精品国产区一区二| 亚洲精品自拍成人| 亚洲专区字幕在线| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 亚洲国产看品久久| 日韩大片免费观看网站| www.自偷自拍.com| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 久久九九热精品免费| 首页视频小说图片口味搜索| 老司机福利观看| 免费日韩欧美在线观看| 国产男女超爽视频在线观看| 丁香六月欧美| 欧美激情极品国产一区二区三区| 亚洲精品乱久久久久久| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 欧美精品人与动牲交sv欧美| 国产精品一区二区精品视频观看| 免费看十八禁软件| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 国产视频一区二区在线看| 青草久久国产| 飞空精品影院首页| 国产国语露脸激情在线看| 韩国精品一区二区三区| 热99re8久久精品国产| 国产精品影院久久| 精品一区二区三区四区五区乱码| 久久人人97超碰香蕉20202| 国产成人影院久久av| 一边摸一边抽搐一进一出视频| 永久免费av网站大全| 国产精品1区2区在线观看. | 日日爽夜夜爽网站| 国产欧美亚洲国产| 我的亚洲天堂| kizo精华| 久久久久精品国产欧美久久久 | 国产黄色免费在线视频| 成年人午夜在线观看视频| 国产av精品麻豆| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频 | av天堂在线播放| 日韩制服骚丝袜av| 精品人妻1区二区| 亚洲av男天堂| 国产野战对白在线观看| 女人精品久久久久毛片| 男女午夜视频在线观看| e午夜精品久久久久久久| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 91成人精品电影| 亚洲成国产人片在线观看| 国产日韩欧美在线精品| 成人三级做爰电影| 国产主播在线观看一区二区| 久久久精品94久久精品| 欧美午夜高清在线| 青春草亚洲视频在线观看| 蜜桃在线观看..| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 国产99久久九九免费精品| 亚洲精品国产精品久久久不卡| 啦啦啦视频在线资源免费观看| 成人免费观看视频高清| 亚洲av成人一区二区三| 亚洲九九香蕉| 国产精品久久久久成人av| 狠狠狠狠99中文字幕| 性色av一级| 桃花免费在线播放| 午夜福利,免费看| 无限看片的www在线观看| 老鸭窝网址在线观看| 亚洲精品第二区| 两性夫妻黄色片| 丝袜在线中文字幕| 精品国产乱码久久久久久小说| 性色av一级| 操出白浆在线播放| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 美国免费a级毛片| 国产一区有黄有色的免费视频| 超色免费av| 久久国产精品影院| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 亚洲国产欧美在线一区| 日韩欧美一区二区三区在线观看 | 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 久久精品人人爽人人爽视色| 免费日韩欧美在线观看| 永久免费av网站大全| 亚洲欧美日韩另类电影网站| 后天国语完整版免费观看| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 国产又爽黄色视频| av一本久久久久| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 亚洲av日韩精品久久久久久密| 我要看黄色一级片免费的| 汤姆久久久久久久影院中文字幕| 久久久久久久大尺度免费视频| 色婷婷av一区二区三区视频| 久久精品aⅴ一区二区三区四区| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区三区在线| 亚洲伊人久久精品综合| 国产xxxxx性猛交| 91大片在线观看| 国产成人精品在线电影| 欧美精品啪啪一区二区三区 | 午夜福利视频精品| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 多毛熟女@视频| 精品少妇黑人巨大在线播放| 女人爽到高潮嗷嗷叫在线视频| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 日韩一卡2卡3卡4卡2021年| 国产精品久久久av美女十八| 男女国产视频网站| 女人被躁到高潮嗷嗷叫费观| 1024香蕉在线观看| 我的亚洲天堂| 黄色视频,在线免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲伊人久久精品综合| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频| 涩涩av久久男人的天堂| 搡老乐熟女国产| 国产精品一区二区在线观看99| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 日韩欧美国产一区二区入口| 一本色道久久久久久精品综合| 考比视频在线观看| 国产免费视频播放在线视频| 满18在线观看网站| 老汉色∧v一级毛片|