• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of signal reconstruction under different transforms

    2015-03-01 09:22:53LiuJieyuanWuJiasongLotfiSenhadjiShuHuazhong

    Liu Jieyuan  Wu Jiasong  Lotfi Senhadji  Shu Huazhong

    (1Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale, U1099, Rennes 35042, France)(3 Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35042, France)(4 Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    ?

    Comparison of signal reconstruction under different transforms

    Liu Jieyuan1,4Wu Jiasong1,2,3,4Lotfi Senhadji2,3,4Shu Huazhong1,4

    (1Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale, U1099, Rennes 35042, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35042, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    Abstract:A new algorithm, called MagnitudeCut, to recover a signal from its phase in the transform domain, is proposed. First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent (BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and two-dimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask (FTGM), the Cauchy wavelets transform (CWT), the Fourier transform with a binary random mask (FTBM) and the Gaussian random transform (GRT) are also comparatively analyzed. The analysis results reveal that the MagnitudeCut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.

    Key words:MagnitudeCut algorithm; signal reconstruction; different transforms; convex optimization; phase information

    Received 2015-03-19.

    Biographies:Liu Jieyuan (1990—), female, graduate; Shu Huazhong (1965—), male, doctor, professor, shu.list@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.61201344, 61271312, 11301074), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20110092110023, 20120092120036), the Program for Special Talents in Six Fields of Jiangsu Province (No.DZXX-031), the Natural Science Foundation of Jiangsu Province (No.BK2012329, BK2012743), the United Creative Foundation of Jiangsu Province (No.BY2014127-11), the “333” Project (No.BRA2015288).

    Citation:Liu Jieyuan, Wu Jiasong, Lotfi Senhadji, et al. Comparison of signal reconstruction under different transforms[J].Journal of Southeast University (English Edition),2015,31(4):474-478.[doi:10.3969/j.issn.1003-7985.2015.04.008]

    The problem of restoring a signal from its phase in complex transform has gained more and more attention. Generally, the phase and the magnitude of the signal in the transform domain are mutually independent, so the signal cannot be recovered only from the partial knowledge of either one. However, Hayes et al.[1]pointed out that it is possible to recover a signal from the phase-only information under certain concrete conditions. For example, exact or approximate prior information (positivity, asymmetry, sparsity, etc.) on the original signal. Many methods have been proposed to solve the above problem, including the iterative method, the statistical method, the alternating projections method[2], and the partial phase information approach[3]. Hua and Orchard[4]proposed a new image reconstruction algorithm with the simple geometrical model. Loveimi and Ahadi[5]reconstructed the speech signal via the least square error estimation and the overlap add methods. Recently, Boufounos[6]explored compressive sensing to recover sparse signals from phase information, where both the theoretical and experimental results suggest that the exact reconstruction is possible. These methods have been used in acoustical and optical hologram, electron microscopy, and X-ray crystallography. In this paper, we propose a novel approach to reconstruct signals with no assumption on the signals. Moreover, many experiments have been simulated with the phase of different matrix transforms, which are the Fourier transform with a Gaussian random mask (FTGM), the Cauchy wavelets transform (CWT), the Fourier transform with a binary random mask (FTBM), and the Gaussian random transform (GRT).

    We consider the signal reconstruction problem using only the phase information because most of the signal information contained in the phase is more important than that incorporated in the magnitude with the same number of signals[1]. Inspired by the two methods reported in Refs.[7-8], the authors propose a novel magnitude recovery method called MagnitudeCut. The authors cast the original problem as a new convex optimization[9]problem, and solve it by the block coordinate descent (BCD) algorithm and the interior point algorithm. It is well known that the phase information has been utilized in many applications such as image retrieval[10]and object recognition[11]. Hence, the authors expect to recover the signal by using a small amount of phase information rather than the magnitude information.

    1Phase-Only Signal Reconstruction

    The original problem is figureted as

    (1)

    We solve (1) by separating the magnitude and phase variables. Letting Ax=diag(u)b, where b∈Rndenotes the magnitude vector, and Rnis ann-dimensional real vector space. The original problem (1) can thus be written as

    (2)

    The minimization problem of figure (2) with respect to x is a standard least square problem and can be solved by setting x=A?diag(u)b, where (·)?is the pseudo-inverse operator. Therefore, figure (2) can be transformed equivalently to

    (3)

    The above figure can be rewritten as

    min bTMbs.t.b∈Rn

    (4)

    min Tr(BM)

    (5)

    After dropping the non-convex rank constraint, we obtain the following convex relaxation:

    min Tr(BM)s.t.B≥0

    (6)

    In order to solve the convex optimization problem (6), we use the BCD[12]to make figure (6) more conveniently solved. The proposed MagnitudeCut method is applied as the barrier version of MaxCut[13]to relax matrix B, so figure (6) becomes

    min Tr(BM)-μlogdet(B)μ>0

    (7)

    So, we obtain det(B)=det(P)det(b2-yTP-1y). Since both M and B belong to Hn, where Hnis the Hermitian matrices of dimensionn, we can figurete the complex program in Hnas the real programs[12], and obtain the following equation:

    Tr(Γ(B)Γ(M))=2Tr(BM)

    (8)

    Tr(Γ(B)Γ(M))=Tr(2(BRe(M)))

    (9)

    Hence, Eq.(7) becomes

    min Tr(BRe(M))-μlog{det(P)det(b2-yTP-1y)}

    (10)

    By using the BCD and setting Re(M)=R, figure (10) can be rewritten as

    (11)

    (12)

    (13)

    (14)

    Next, we use the second-order Tayler series expansion to express Eq.(13) and Eq.(14),

    (15)

    (16)

    Then, we define

    (17)

    (18)

    Hence, Eq.(15) and Eq.(16) are simplified as

    Qbi+gy′+Hy′Δy′=0, QTy′+kbi+LbiΔbi=0

    (19)

    Solving Eq.(19), we have

    (20)

    By updating Eq.(20), we obtain a better solution B as

    (21)

    2Simulations

    The simulations are implemented by Matlab. We implement the one-dimensional and two-dimensional signal reconstructions by the MagnitudeCut algorithm and compare the signal reconstruction results by four different kinds of transform matrices: FTGM, CWT, FTBM and GRT.

    2.1 One-dimensional signal

    Fig.1 The original signal

    (a)

    (b)

    (c)

    (d)Fig.2 Reconstruction results by four different transforms.

    So, on the one hand, in order to reconstruct the signal from a small amount of phase information under the sameE, we need to choose FTGM or GRT. On the other hand, in the same transform domain, we can choose a set of phase information to describe a signal whose number is double the length of the original signal when a more accurate result is required. For example, in the field of info-rmation encryption, we can use less phase information under FTGM to encrypt a signal.

    Fig.3 The reconstruction error with different transforms

    2.2 Two-dimensional signal

    In many cases, we need to deal with the two-dimensional signals. In this paper, three images are chosen. They are the moon’s surface, a clock and Lena, as shown in Fig.4. Supposing that the phase of each transform matrix is known, the reconstructed images withC=2 are shown in Fig.5 to Fig.7. The results reconstructed by the phase of FTGM and GRT are better than those by the phase of CWT and FTBM. Similarly, the reconstructed results withC=4 are shown in Fig.8 to Fig.10. It can be seen that with more sampling numbers, the results reconstructed by the phase of FTGM, CWT, FTBM and GRT are also better.

    Fig.4 Original images. (a) Moon’s surface; (b) Clock; (c) Lena

    Fig.5 Reconstructed results of the moon’s surface by four different transforms with C=2. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    Fig.6 Reconstructed results of the clock by four different transforms with C=2. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    Fig.7 Reconstructed results of Lena by four different transforms with C=2. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    Fig.8 Reconstructed results of the moon’s surface by four different transforms with C=4. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    Fig.9 Reconstructed results of the clock by four different transforms with C=4. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    Fig.10 Reconstructed results of Lena by four different transforms with C=4. (a) FTGM; (b) CWT; (c) FTBM; (d) GRT

    The experimental results indicate that the two-dimensional images can also be recovered from the phase under the corresponding four transforms by the MagnitudeCut method. As a comparison, if one wants to recover a signal of sizepfrom the phase under FTGM or GRT, the sampling number should satisfyC≥2p. However, we find that good reconstruction performance can be realized withC≥3pafter observing a large number of simulation results when the transform is FTBM. In the case of CWT, we need the number of rows in the transform matrix to be equal to or larger than 4p. This not only proves the importance of phase information in the signal reconstruction process, but also explains the significance of research of the MagnitudeCut algorithm.

    3Conclusion

    We propose a new algorithm called MagnitudeCut to solve the problem of signal reconstruction from the phase-only information in different transform matrices, such as FTGM, CWT, FTBM and GRT. Experiments on the one-dimensional and two-dimensional signals are simulated to illustrate the feasibility of the algorithm. The merit of the proposed algorithm is that the original signal can be reconstructed with less amount of phase information than the PhaseCut algorithm. Furthermore, the results show that the phase with FTGM and GRT can obtain better results by the MagnitudeCut algorithm than the other two transforms. The phase information can preserve many more important features of a signal than the magnitude information. Therefore, if the phase information is used to describe the signal features, the requirements for the storage and the transmission bandwidth can be reduced. Since the PhaseCut algorithm is the basis of the scattering convolution networks, the proposed method shows that we can also construct a new convolution network by the phase.

    References

    [1]Hayes M, Lim J, Oppenheim A V. Signal reconstruction from phase or magnitude [J].IEEETransactionsonAcoustics,SpeechandSignalProcessing, 1980, 28(6):672-680.

    [2]Levi A, Stark H. Signal restoration from phase by projections onto convex sets [J].JournaloftheOpticalSocietyofAmerica, 1983, 73(6):810-822.

    [3]Behar J, Porat M, Zeevi Y. Image reconstruction from localized phase [J].IEEETransactionsonSignalProcessing, 1992, 40(4):736-743.

    [4]Hua G, Orchard M T. Image reconstruction from the phase or magnitude of its complex wavelet transform [C]//IEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing. Las Vegas, USA, 2008:3261-3264.

    [5]Loveimi E, Ahadi S M. Objective evaluation of magnitude and phase only spectrum based reconstruction of the speech signal [C]//Proceedingsofthe4thInternationalSymposiumonCommunications,ControlandSignalProcessing(ISCCSP). Limassol, Cyprus, 2010:1-4.

    [6]Boufounos P T. Sparse signal reconstruction from phase-only measurements [C]//Proceedingsofthe10thInternationalConferenceonSamplingTheoryandApplications. Bremen, Germany, 2013:1-5.

    [7]Candes E, Strohmer T, Voroninski V. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming [J].CommunicationsonPureandAppliedMathematics, 2013, 66(8):1241-1274.

    [8]Waldspurger I, Aspremont A D, Mallat S. Phase recovery, maxcut and complex semidefinite programming [J].MathematicalProgramming, 2015, 149(1/2):47-81.

    [9]Boyd S, Vandenberghe L.Convexoptimization[M]. Cambridge: Cambridge University Press, 2004.

    [10]Bartolini I, Ciaccia P, Patella M. Warp: accurate retrieval of shapes using phase of Fourier descriptors and time warping distance [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2005, 27(1):142-147.

    [11]Shao Z, Shu H, Wu J, et al. Double color image encryption using iterative phase retrieval algorithm in quaternion gyrator domain [J].OpticsExpress, 2014, 22(5):4932-4943.

    [12]Anjos M F, Lasserre J B.Handbookonsemidefinite,conicandpolynomialoptimization[M]. Dordrecht: Springer, 2011.

    [13]Goemans M X, Williamson D. Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming [C]//ProceedingsoftheThirty-ThirdAnnualACMSymposiumonTheoryofComputing. Hersonissos, Greece, 2001: 443-452.

    [14]Brauner T, Endlich S, Monin A, et al. General coordinate invariance in quantum many-body systems [J].PhysicalReviewD, 2014, 90(10): 105016.

    [15]Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J].Optik, 1972, 35:237-250.

    doi:10.3969/j.issn.1003-7985.2015.04.008

    国产亚洲精品久久久com| 一个人免费看片子| 日韩一区二区视频免费看| 色94色欧美一区二区| 中文天堂在线官网| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 国产精品久久久久久久久免| 国产成人freesex在线| 日产精品乱码卡一卡2卡三| 免费久久久久久久精品成人欧美视频 | 亚洲av国产av综合av卡| 色吧在线观看| 久久午夜福利片| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 亚洲欧美一区二区三区黑人 | 蜜臀久久99精品久久宅男| 啦啦啦在线观看免费高清www| 99九九在线精品视频| 中文字幕免费在线视频6| 亚洲久久久国产精品| av在线观看视频网站免费| 免费av中文字幕在线| 国内精品宾馆在线| 久久这里有精品视频免费| 大话2 男鬼变身卡| 亚洲欧洲日产国产| 丰满少妇做爰视频| 少妇精品久久久久久久| 两个人的视频大全免费| 男女高潮啪啪啪动态图| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 免费观看性生交大片5| 另类精品久久| 久久鲁丝午夜福利片| 大香蕉久久成人网| 久久久久久久精品精品| 免费黄网站久久成人精品| 亚洲国产日韩一区二区| 国产 一区精品| 美女xxoo啪啪120秒动态图| 亚洲精品第二区| 成人午夜精彩视频在线观看| 最新的欧美精品一区二区| 黑人猛操日本美女一级片| 亚洲国产色片| 97超碰精品成人国产| 一级,二级,三级黄色视频| 午夜久久久在线观看| 亚洲精品日本国产第一区| 18禁观看日本| 午夜精品国产一区二区电影| 精品一区在线观看国产| 黄片播放在线免费| av在线播放精品| 国产精品久久久久成人av| 久久久久久久大尺度免费视频| tube8黄色片| 亚洲国产日韩一区二区| 91午夜精品亚洲一区二区三区| 成人手机av| 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 欧美3d第一页| 国产av一区二区精品久久| 国产精品一区二区三区四区免费观看| 欧美精品一区二区大全| 国产永久视频网站| 少妇丰满av| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 久久国产精品男人的天堂亚洲 | 99久久精品一区二区三区| 在线观看人妻少妇| 日本欧美视频一区| 在线观看一区二区三区激情| 天天影视国产精品| 少妇的逼水好多| 亚洲精品美女久久av网站| 亚洲av日韩在线播放| 日本与韩国留学比较| 亚洲国产精品专区欧美| 国产亚洲最大av| 能在线免费看毛片的网站| 建设人人有责人人尽责人人享有的| 国产色爽女视频免费观看| 精品人妻熟女毛片av久久网站| 成年美女黄网站色视频大全免费 | 99热6这里只有精品| av在线app专区| 国产精品不卡视频一区二区| 国产av精品麻豆| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 综合色丁香网| 国产av国产精品国产| 毛片一级片免费看久久久久| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 蜜桃国产av成人99| 丝瓜视频免费看黄片| 免费黄频网站在线观看国产| 丁香六月天网| 亚洲欧美色中文字幕在线| 午夜福利,免费看| 蜜桃在线观看..| 美女脱内裤让男人舔精品视频| 蜜臀久久99精品久久宅男| 最近最新中文字幕免费大全7| 人人澡人人妻人| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 日韩欧美一区视频在线观看| 国产高清不卡午夜福利| 男的添女的下面高潮视频| 两个人的视频大全免费| 国产免费一级a男人的天堂| 在线天堂最新版资源| 久久久久久久久久久免费av| av有码第一页| 午夜福利在线观看免费完整高清在| 日韩人妻高清精品专区| 久久久久久久久大av| 啦啦啦中文免费视频观看日本| 亚洲国产精品成人久久小说| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 成年美女黄网站色视频大全免费 | 妹子高潮喷水视频| 成人综合一区亚洲| 性高湖久久久久久久久免费观看| 男女啪啪激烈高潮av片| 少妇人妻久久综合中文| 观看美女的网站| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 亚洲成人av在线免费| 日本wwww免费看| a级毛片免费高清观看在线播放| 久久99精品国语久久久| 国产欧美另类精品又又久久亚洲欧美| 久久久久人妻精品一区果冻| 一本久久精品| 热re99久久精品国产66热6| 日韩电影二区| 久久国产精品大桥未久av| 亚洲精品aⅴ在线观看| 国产欧美日韩综合在线一区二区| 高清av免费在线| 亚洲国产精品一区三区| 一本大道久久a久久精品| 韩国av在线不卡| 免费看av在线观看网站| 在线观看一区二区三区激情| 伦理电影大哥的女人| 成人手机av| 日韩av免费高清视频| 99久久综合免费| 国产精品蜜桃在线观看| 天天影视国产精品| 中文字幕人妻丝袜制服| 亚洲欧洲国产日韩| 日韩中文字幕视频在线看片| 久久久久久久精品精品| 少妇 在线观看| 精品亚洲乱码少妇综合久久| 精品人妻在线不人妻| 久久女婷五月综合色啪小说| 日韩av在线免费看完整版不卡| 欧美日韩精品成人综合77777| 日韩三级伦理在线观看| 国产av国产精品国产| 久久精品夜色国产| 国产色婷婷99| 插逼视频在线观看| 男女边摸边吃奶| 五月玫瑰六月丁香| 大片免费播放器 马上看| 亚洲国产成人一精品久久久| 午夜福利,免费看| 五月开心婷婷网| 3wmmmm亚洲av在线观看| 国产高清国产精品国产三级| 欧美精品亚洲一区二区| 久久婷婷青草| 国产成人freesex在线| 人成视频在线观看免费观看| 日韩制服骚丝袜av| 18禁在线播放成人免费| 能在线免费看毛片的网站| 国产无遮挡羞羞视频在线观看| 一级爰片在线观看| 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 日韩大片免费观看网站| videossex国产| 蜜桃国产av成人99| 久久久久久久亚洲中文字幕| 日本黄色日本黄色录像| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 国产精品国产av在线观看| 永久网站在线| 人人妻人人澡人人看| 亚洲国产精品一区三区| 亚洲人与动物交配视频| 免费少妇av软件| 久久精品人人爽人人爽视色| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 黄色毛片三级朝国网站| 久久人人爽人人片av| 成年女人在线观看亚洲视频| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 午夜免费鲁丝| 国产精品久久久久久精品古装| 久久亚洲国产成人精品v| 街头女战士在线观看网站| av一本久久久久| 99久久精品国产国产毛片| 伦精品一区二区三区| 久久人妻熟女aⅴ| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 51国产日韩欧美| 久久久久久久亚洲中文字幕| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 日日爽夜夜爽网站| 欧美日韩亚洲高清精品| 午夜福利,免费看| 久久99蜜桃精品久久| 国产高清国产精品国产三级| av女优亚洲男人天堂| 一级毛片aaaaaa免费看小| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 中文字幕精品免费在线观看视频 | 熟女人妻精品中文字幕| 久久精品熟女亚洲av麻豆精品| 国产成人精品在线电影| 日韩精品有码人妻一区| 亚洲色图综合在线观看| 香蕉精品网在线| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到 | 在现免费观看毛片| 国产色婷婷99| 美女大奶头黄色视频| 精品久久国产蜜桃| av女优亚洲男人天堂| 黄色欧美视频在线观看| 99视频精品全部免费 在线| 日日撸夜夜添| 一本久久精品| 丝袜喷水一区| 日本黄大片高清| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说| 成人综合一区亚洲| 亚洲av欧美aⅴ国产| 亚洲精品国产色婷婷电影| 亚洲人与动物交配视频| av视频免费观看在线观看| freevideosex欧美| 免费av中文字幕在线| 日本黄色片子视频| 91精品三级在线观看| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 亚洲在久久综合| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 欧美激情 高清一区二区三区| 视频区图区小说| 99久久精品国产国产毛片| 18+在线观看网站| 精品国产乱码久久久久久小说| 久久国内精品自在自线图片| av专区在线播放| 日韩精品有码人妻一区| 女性被躁到高潮视频| 亚洲久久久国产精品| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 欧美激情极品国产一区二区三区 | 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 精品人妻熟女av久视频| 尾随美女入室| 亚洲国产av影院在线观看| 久久久久网色| av视频免费观看在线观看| av免费观看日本| 午夜老司机福利剧场| 成年女人在线观看亚洲视频| 国产成人精品久久久久久| 日韩三级伦理在线观看| 久久久久精品性色| 中国美白少妇内射xxxbb| 日韩中字成人| 精品久久久精品久久久| 另类亚洲欧美激情| 成人黄色视频免费在线看| 热re99久久国产66热| 在线观看免费视频网站a站| 成人手机av| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 国产熟女午夜一区二区三区 | 久久久久久久久久久免费av| 亚洲内射少妇av| 美女视频免费永久观看网站| 免费av不卡在线播放| 亚洲内射少妇av| 91精品国产九色| 寂寞人妻少妇视频99o| 欧美日韩视频高清一区二区三区二| 高清在线视频一区二区三区| 久久免费观看电影| 91在线精品国自产拍蜜月| 免费黄频网站在线观看国产| 一级,二级,三级黄色视频| 亚洲成人手机| 亚洲人成网站在线观看播放| 欧美bdsm另类| 一本大道久久a久久精品| 午夜福利,免费看| 成人国语在线视频| 成人二区视频| 制服丝袜香蕉在线| 一级二级三级毛片免费看| 极品少妇高潮喷水抽搐| 久久热精品热| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| av播播在线观看一区| 精品卡一卡二卡四卡免费| 午夜免费观看性视频| 五月伊人婷婷丁香| 一本一本综合久久| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 99热这里只有是精品在线观看| 久久国产精品大桥未久av| 男女高潮啪啪啪动态图| 成年av动漫网址| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 九草在线视频观看| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 夜夜看夜夜爽夜夜摸| 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 哪个播放器可以免费观看大片| 夜夜骑夜夜射夜夜干| 熟女av电影| 日韩中文字幕视频在线看片| 嘟嘟电影网在线观看| 母亲3免费完整高清在线观看 | av视频免费观看在线观看| 美女国产视频在线观看| 99热这里只有是精品在线观看| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 日韩成人伦理影院| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 欧美日韩在线观看h| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 制服诱惑二区| 国产 精品1| 国产av精品麻豆| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 国产极品天堂在线| 日本欧美国产在线视频| 亚洲成色77777| 久久久久人妻精品一区果冻| 欧美精品高潮呻吟av久久| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 最近最新中文字幕免费大全7| 国产无遮挡羞羞视频在线观看| 人妻夜夜爽99麻豆av| 久久午夜福利片| 国产精品99久久久久久久久| av免费观看日本| 亚洲精品第二区| 国产女主播在线喷水免费视频网站| 午夜老司机福利剧场| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 国产精品久久久久久精品古装| av网站免费在线观看视频| 成人无遮挡网站| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 不卡视频在线观看欧美| 欧美另类一区| 天天影视国产精品| 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 黄片播放在线免费| 人妻 亚洲 视频| 亚洲精品色激情综合| av黄色大香蕉| 色婷婷av一区二区三区视频| 亚洲国产精品国产精品| 国产一区二区在线观看av| av线在线观看网站| 草草在线视频免费看| 内地一区二区视频在线| 少妇人妻 视频| 久久精品国产亚洲av天美| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 亚洲美女视频黄频| 亚洲图色成人| 极品人妻少妇av视频| 中文字幕人妻熟人妻熟丝袜美| 美女国产视频在线观看| 老女人水多毛片| 99久久中文字幕三级久久日本| 一个人免费看片子| 日韩三级伦理在线观看| 亚洲第一av免费看| 久久人人爽人人爽人人片va| av福利片在线| 一本大道久久a久久精品| 人体艺术视频欧美日本| 99久久综合免费| 亚洲人成77777在线视频| 性色avwww在线观看| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 免费高清在线观看日韩| 午夜老司机福利剧场| 在线天堂最新版资源| 我要看黄色一级片免费的| 精品熟女少妇av免费看| 大香蕉97超碰在线| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| av.在线天堂| 一本一本综合久久| 高清黄色对白视频在线免费看| 成年人午夜在线观看视频| 满18在线观看网站| 免费日韩欧美在线观看| 两个人的视频大全免费| a 毛片基地| 国产有黄有色有爽视频| 春色校园在线视频观看| 免费观看在线日韩| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 99热全是精品| 中文欧美无线码| 国产欧美日韩一区二区三区在线 | 老熟女久久久| 国产成人免费观看mmmm| 久久久国产欧美日韩av| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲 | 国产黄片视频在线免费观看| 欧美激情极品国产一区二区三区 | 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 午夜激情av网站| 亚洲av国产av综合av卡| a级毛色黄片| 哪个播放器可以免费观看大片| 狠狠精品人妻久久久久久综合| 搡女人真爽免费视频火全软件| av线在线观看网站| 国产精品国产三级国产av玫瑰| 一个人免费看片子| 国产成人精品婷婷| 一区二区日韩欧美中文字幕 | 日韩三级伦理在线观看| 久久国产精品男人的天堂亚洲 | 男男h啪啪无遮挡| 国产av精品麻豆| 亚洲精品日本国产第一区| 男女啪啪激烈高潮av片| 亚洲五月色婷婷综合| 日本与韩国留学比较| 中文字幕亚洲精品专区| 国产伦精品一区二区三区视频9| 日本91视频免费播放| 高清av免费在线| 亚洲欧美成人精品一区二区| 精品少妇久久久久久888优播| videosex国产| 春色校园在线视频观看| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 久久热精品热| 下体分泌物呈黄色| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 婷婷色麻豆天堂久久| 亚洲精品第二区| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 日产精品乱码卡一卡2卡三| 性色av一级| 日本色播在线视频| 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 欧美3d第一页| 婷婷色综合大香蕉| 久久久久久久国产电影| 日韩制服骚丝袜av| 国产亚洲精品第一综合不卡 | 日韩av免费高清视频| 久热这里只有精品99| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 国产欧美亚洲国产| 午夜福利视频精品| 国产免费现黄频在线看| 丰满少妇做爰视频| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 美女大奶头黄色视频| 久久精品国产亚洲网站| 成人手机av| 纯流量卡能插随身wifi吗| 日本wwww免费看| 中文字幕人妻熟人妻熟丝袜美| av又黄又爽大尺度在线免费看| 日本欧美视频一区| √禁漫天堂资源中文www| 国产精品国产av在线观看| 欧美性感艳星| 欧美日本中文国产一区发布| 丝袜美足系列| 中文字幕人妻丝袜制服| 午夜激情av网站| 91国产中文字幕| 欧美日韩亚洲高清精品| 亚洲怡红院男人天堂| 亚洲欧美色中文字幕在线| 一级a做视频免费观看| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 久久精品人人爽人人爽视色| 免费观看的影片在线观看| 男女免费视频国产| 国产精品一区www在线观看| 亚洲精品久久久久久婷婷小说| 成人二区视频| 国产极品粉嫩免费观看在线 | 女人久久www免费人成看片| 丝袜美足系列| 亚洲第一区二区三区不卡| 久久久久国产精品人妻一区二区| 国产精品成人在线| 国产欧美日韩一区二区三区在线 | 亚洲美女搞黄在线观看| 日韩三级伦理在线观看| 少妇的逼水好多| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 国内精品宾馆在线| 男女啪啪激烈高潮av片| 妹子高潮喷水视频| 亚洲怡红院男人天堂| 天天影视国产精品| 亚洲av电影在线观看一区二区三区| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 伊人亚洲综合成人网| 婷婷成人精品国产| 七月丁香在线播放| 日韩欧美一区视频在线观看| 色视频在线一区二区三区| 亚洲av二区三区四区|