• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distribution algorithm of entangled particles for wireless quantum communication mesh networks

    2015-03-01 08:07:19WangXiaojunShiLihuiZhanHaitaoXiangRuiqingYuXutao

    Wang Xiaojun Shi Lihui Zhan Haitao Xiang Ruiqing Yu Xutao

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)

    ?

    Distribution algorithm of entangled particles for wireless quantum communication mesh networks

    Wang Xiaojun1Shi Lihui2Zhan Haitao2Xiang Ruiqing1Yu Xutao2

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)

    Abstract:With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree (MST)-based quantum distribution algorithm (QDMST) is presented to construct the mesh backbone network. First, the articulation points are found, and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an MST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.

    Key words:wireless quantum communication networks; entangled particles distribution; wireless mesh networks; minimum spanning tree

    Received 2015-07-09.

    Biography:Wang Xiaojun (1975—), male, doctor, professor, wxj@seu.edu.cn.

    Foundation item:Prospective Research Project on Future Networks of Jiangsu Province, China ( No.BY2013095-1-18).

    Citation:Wang Xiaojun, Shi Lihui, Zhan Haitao, et al. Distribution algorithm of entangled particles for wireless quantum communication mesh networks[J].Journal of Southeast University (English Edition),2015,31(4):450-456.[doi:10.3969/j.issn.1003-7985.2015.04.004]

    In the traditional research of quantum physics, the study of entangled particle distribution focuses on how to produce high quality and high intensity entangled particles, and to distribute them onto two nodes with maximum distance between them[1-4]. During the research of wireless quantum networks[5-10], it is necessary to study the entangled particle distribution in terms of the entire network. Future wireless quantum networks based on entangled states may be large scale, which makes it impossible to distribute high quality entangled particles directly between the source and destination because of the long distance. Instead, the quantum path needs to be constructed with several quantum channels hop by hop via intermediate nodes. Therefore, in order to determine the nodes’ capability of producing entangled particles, investigation on transmission speed and fidelity of entangled particles in the network becomes necessary, which is usually referred to as an entangled particles distribution problem.

    For wireless quantum networks, one of the essential requirements for quantum information transmission between two nodes is the existence of the quantum path. The path can be either a direct quantum channel between them or a quantum path between them via entanglement swapping. Generally in the network, the entangled particles can be produced by nodes involved in the communication or by dedicated devices.

    In a quantum communication network based on the backbone mesh structure[11-13], each node has the capability of quantum teleportation. They are able to exchange routing information and quantum measurement information with traditional radio communication transceivers. The backbone of the quantum network is composed of backbone nodes with extra capability of producing and distributing entangled particles. While each non-backbone node is connected to one or more backbone nodes, and it has no capability of producing and distributing entangled particles for saving cost and reducing complexity. Thus, the entangled particles distribution issue in large-scale quantum communication networks with the mesh structure can be regarded as a quantum backbone node selection problem while ensuring the network connectivity of quantum channels.

    1The Model of QDMST Algorithm

    There are two kinds of channels, i.e. quantum channels and radio channels in a wireless quantum communication network. While in a traditional radio communication network, there may be no direct quantum channel between two neighbor nodes, and vice versa, as shown in Fig.1. Due to the variations with entangled particles in quantum channels, the topology of a quantum network varies much more significantly than that of a traditional radio network. Therefore, it is necessary to develop a dedicated algorithm to construct the backbone network for producing and distributing entangled particles. This paper presents a quantum distribution algorithm based on a minimum spanning tree (QDMST) to reconstruct a backbone network when network outage occurs due to topology change.

    Fig.1 Wireless quantum communication network based on mesh structure

    Assume thatNquantum nodes are randomly distributed within a square region, which includesMbackbone nodes andN-Mnon-backbone nodes. Each non-backbone network node acts as a source and/or a destination node, which is connected to at least one backbone node via a quantum channel and a radio channel. In the case of a fixed number of nodes, fewer nodes in the backbone network means fewer nodes capable of generating and distributing entangled particles. Thus, the algorithm focuses on minimizing the number of backbone nodes in order to reduce network cost and complexity. Also, to directly ensure high-quality, low-cost teleportation[14-16]between the two quantum nodes, the distance between them cannot be too long[16-17]where a threshold is assumed to beR. In order to ensure network connectivity and that each terminal node can transfer quantum information through the backbone network, the distance between each terminal node and at least one backbone node must be less than the effective teleportation distance threshold. The objective of the QDMST algorithm is to minimize the number of backbone nodes:

    minM

    (1)

    s.t.M

    (2)

    whereriis the shortest distance between the terminal nodeiand backbone nodes, and 1≤i≤N-M.

    2Implementation of QDMST Algorithm

    In this paper, the mesh network architecture model is constructed based on the graph theory, and the QDMST algorithm is implemented. Assume that the square area of the model is denoted asG(V,E), whereV={v1,v2,…vN} is the quantum node set. Only if the distance between the pair of nodes is less thanR, there is an edge between them, namely the existence of a quantum channel. The edge set is defined asE={e1,e2,…,en} (n

    1) First a connected graphG(V,E) is randomly generated.

    2) The articulation points (if they exist) of the connected graph are labelled as the initial nodes of the backbone network.

    3) If all nodes are covered by backbone nodes, directly go to Step 6).

    4) Connected components composed by nodes not belonging to the backbone network are found.

    5) The general center of each connected block is obtained and classified as the backbone nodes. Go to Step 3).

    6) The minimum spanning tree (MST) of the backbone network is formed according to the distance weights.

    7) If there is a quantum channel between any two adjacent nodes on the MST, the algorithm stops; otherwise go to Step 8).

    8) The shortest path inGbetween the two nodes is found, and the corresponding nodes on the path are classified as the backbone nodes. Go to Step 6).

    The steps concerned in the algorithm include four sub-algorithms: the shortest distance algorithm, the articulation point algorithm, the general center algorithm and the MST algorithm.

    First, the algorithm needs to obtain the shortest path between any two nodes in the network. The success probability of single-hop teleportation will decrease exponentially as distance increases due to the loss or distortion of entangled particles caused by environmental noise in free space. Therefore, the shortest distance algorithm is the basis of the QDMST algorithm, and it is used to calculate the articulation points and general centers. The Warshall-Floyd algorithm[18]is a classic shortest distance algorithm which takes advantage of dynamic programming by using an adjacency matrix to describe the topology. Combined with the structure characteristics of the quantum network, the shortest distance algorithm used in this paper is described as follows:

    Algorithm 1Shortest distance algorithm

    Input: W=(wij)N×Nis the adjacency matrix of graphG;wijis the weight ofeij;k1andk2are the two nodes.

    Output:Pis the shortest path betweenk1andk2, and nodes on the path are sorted by sequence order; min D is the distance of the shortest path.

    D=(dij);//dijis the shortest distance fromvitovj.

    for eachI,j,//Initializedij.

    dij=wij,k=1;

    for eachi,j//Updatedij.

    ifdik+dkj

    dij=dik+dkj;

    ifk=Nthen

    stop;

    min D=D(k1,k2);

    kx=k2, 0=1,P(s)=k2;

    for eachi

    ifD(k1,i)=D(k1,kx)-W(i,kx) then

    kx=i,P(s+1)=i,s=s+1;

    Ifkx=k1then

    stop;

    A connected graph without articulation points[19]is called a biconnected graph. Deleting any node of the biconnected graph will not damage the network connectivity. If articulation points exist, they are classified as backbone nodes to reduce the number of them and meanwhile ensure network connectivity. According to their characteristics, the steps of the algorithm to determine articulation points are presented in Algorithm 2.

    Algorithm 2Articulation point determining algorithm

    Input: W=(wij)N×N, the adjacency matrix of graphG;

    Output: Articulation pointvi.

    for eachi

    //Find the adjacency matrix Aiof the subgraphG-vi.

    Delete thei-th row and thej-th column from W→Ai;

    do Algorithm 1//Find the shortest distance matrix Diof subgraphG-vi.

    input Ai;

    output Di;

    //Determine whetherviis the articulation point by Di.

    If there is non-zero element in Diin addition to the main diagonal element then

    vi?Articulation points;

    elsevi∈Articulation points;

    The initially selected backbone nodes may not be able to cover all nodes in the network. For the uncovered nodes, they are divided into various connected components and their centers are then nominated as backbone nodes for completing the coverage. The object of the QDMST is to construct a mesh quantum network with the minimum number of backbone nodes, each of which can cover more other nodes. The general center is the node that has a minimum distance to the most remote node among all nodes in the network[20]. Therefore, it is appropriate to select general centers as backbone nodes. The general center algorithm is presented as follows:

    Algorithm 3General center determining algorithm

    Input: W=(wij)N×N, the adjacency matrix of graphG,wherewijis the weight ofeij;

    Output: The general centeri0of the graph.

    //Find the shortest distance matrix of each node D(di,k), wherei,k=1,2,…,N;

    do Algorithm 1

    input W

    output D(di,k);

    //Calculate the farthest distance for each node to each edge, wherek1andk2are two nodes onej;

    for eachI,j

    //Find the node whose distance to the farthest node is the minimum

    for eachi,j

    i0←the SN of this node.

    After selecting necessary backbone nodes, a connected graph is formed based on these nodes by an MST algorithm. The MST is the tree that the sum of all edge weights is minimized among all of the spanning trees of the connected graph. The Prim algorithm and Kruskal algorithm[21]are the most popular MST algorithms. The Kruskal MST algorithm used in this paper is presented as follows:

    Algorithm 4Minimum spanning tree

    Input: W=(wij)N×N, adjacency matrix of graphG,wherewijis the weight ofeij;

    Output: Adjacency matrix of MSTb.

    T=φ//Set the tree empty

    for eachi//Join all nodes inT

    T=T∪{vi} //Tincludes all nodes without edge

    for eachi,j

    doei,j(∈E) sorting by the weightswijascending

    for eachei,j(∈E)

    ifviandvjare not in the same connected component

    T=T∪{eij};//JoineijinT

    Combine the two connected component;

    b←adjacency matrix ofT

    For the MST obtained by Algorithm 4, the constraint in (2) thatri

    Based on the above algorithms, the proposed algorithm QDMST can be summarized as follows:

    Algorithm 5QDMST algorithm

    Randomly generate a connected graphG(V,E);

    F=φ//Set backbone nodes set empty

    do Algorithm 2 //Set articulation nodes as initial backbone

    input W(G)

    output articulation nodes ofG

    F=F∪{articulation nodes ofG}

    Step 1for eachvi(∈V)

    ifviis not covered by backbone nodes then

    goto Step 2;

    goto Step 3; //All nodes covered by backbone

    Step 2do find {Tn}, the connected components composed by the nodes uncovered by backbone;

    for eachTn//get general center of connected components into backbone

    do Algorithm 3

    input W(Tn)

    output general center

    F=F∪{general center}

    goto Step 1;

    Step 3do Algorithm 4//get the MST of backbone network

    input W(F)

    output MSTB(VB,EB)

    for eachei,j(∈EB) //determine whether a quantum channel exists between any two adjacent nodes on the MST

    if the quantum channel does not exist betweenviandvjthen

    goto Step 4;

    end //If quantum channels exist for all edge, the algorithm ends

    Step 4do Algorithm 1 //Find the shortest path

    input W(G)

    output nodes on the shortest path

    F=F∪{nodes on the shortest path} //Join nodes on shortest path in the backbone

    goto Step 3;

    3Performance Analysis and Simulation

    To demonstrate algorithm procedures and verify their effectiveness, the steps of an exemplified QDMST algorithm are shown in Fig.2 to Fig.5. A connected graph is randomly generated within a square area of 1 000 m×1 000 m, as shown in Fig.2. The quantum teleportation distance thresholdRis 250 m, and the total number of nodesNis 30. Each black line indicates the existence of a reliable quantum channel and a radio channel between two relevant quantum nodes.

    Fig.2 Randomly generated connected graph

    In the case of a connected graph in Fig.2, the set of articulation points is first determined as {1,10,23,28}, which does not cover all nodes, as shown in Fig.3. The radius of the circle isR, and the small squares denote the backbone nodes. Uncovered nodes {{7,18}, {5,11,12,19,22,24,25}} are separated into two connected components. Subsequently, the general centers {7,12} of two uncovered connected components are added into the backbone nodes set as {1,7,10,12,23,28}. There are still some uncovered nodes, which require the algorithm to further calculate the general centers of the uncovered connected components, and to expand the backbone network to {1,7, 10,12,23,24,28}. Now all the nodes are covered by the backbone network. An MST is formed by these backbone nodes, as shown in Fig.4.

    Fig.3 Articulation points as initial backbone nodes

    Fig.4 MST formed by backbone nodes

    Fig.5 Quantum mesh network obtained by QDMST

    Checking the topology in Fig.2, it can be seen that on this tree there may be no quantum channel between two neighbor nodes, such as that between nodes 1 and 10.

    The pair of neighbor nodes on the tree without direct quantum channel are connected using the shortest distance algorithm. The results are shown in Fig.5. The dotted lines show the final connection of the backbone network. The final backbone nodes are {1,3,6,7,10,11,12,17,23,24,28,30}, 12 in total. Each non-backbone node can be connected via one or more backbone nodes.

    To evaluate the performance of the algorithm, the QDMST is compared with the random selection algorithm, by which a node is chosen to be a backbone node randomly, followed by determining whether the backbone structure mesh network can be composed in ensuring the connectivity currently. If not, one more node is randomly chosen to join the backbone node set until the backbone covers all nodes. One result of random selection is exemplified in Fig.6, where the number of backbone nodes is larger than that of the QDMST.

    Fig.6 Wireless quantum communication mesh network obtained by random selection algorithm

    To evaluate the performance of the above algorithm more accurately, the average backbone nodes numberABNand average quantum channel distanceAQCDare defined as two performance parameters.

    (3)

    (4)

    The QDMST performance variations vs. node numberNand communication radius thresholdRare presented and compared with that of the random selection algorithm. 100 connected graphs are randomly generated, and the performance curves are shown in the following figures.

    Fig.7 shows thatABNincreases with the increasing total node numberNand a fixed communication radiusR. The QDMST obtains more obvious gain with a greaterN. Fig.8 shows thatABNdecreases whileRincreases with a fixedN. The QDMST obtains a more pronounced performance gain with a smallerR.ABNtends to be at the same level whenRis large. It can be seen from both the two figures that the QDMST always performs better than the random selection algorithm.

    Fig.7 Influences on ABN with variation of N and fixed R

    Fig.8 Influences on ABN with variation of R and fixed N

    Fig.9 shows thatAQCDdecreases whileNincreases with a fixedR. Fig.10 shows thatAQCDincreases whileRincreases with a fixedN. By comparing the two configures, it can be seen that communication radiusRis the dominant factor influencing the variation ofAQCD, and the performance of QDMST is superior to that of the random selection algorithm in both cases.

    4Conclusion

    In summary, the QDMST algorithm can generate a topology for quantum communication networks based on the backbone mesh structure while ensuring the networks connectivity. It makes the distribution of entangled particles effective with cost saving and complexity reduction. Under the same network scenarios, the QDMST algorithm outperforms the random selection algorithm in terms of the backbone nodes numbers and quantum channel distance.

    Fig.9 Influences on AQCD with variation of N and fixed R

    Fig.10 Influences on AQCD with variation of R and fixed N

    References

    [1]Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J].PhysicalReviewLetters, 2005, 94(23): 230504.

    [2]Chapuran T E, Toliver1 P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications [J].NewJournalofPhysics, 2009, 11(10): 1884-2016.

    [3]Guan J Y, Cao Z, Liu Y, et al. Experimental passive round-robin differential phase-shift quantum key distribution [J].PhysicalReviewLetters, 2015, 114(18): 180502.

    [4]Ciurana A, Martin V, Martinez-Mateo J, et al. Entanglement distribution in optical networks [J].IEEEJournalofSelectedTopicsinQuantumElectronics, 2015, 21(3): 1-12.

    [5]Cheng S T, Wang C Y, Tao M H. Quantum communication for wireless wide-area networks [J].IEEEJournalonSelectedAreasinCommunications, 2005, 23(7): 1424-1432.

    [6]Hanzo L, Haas H, Imre S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless [J].ProceedingsoftheIEEE, 2012, 100(Special Centennial Issue): 1853-1888.

    [7]Yu X T, Xu J, Zhang Z S. Distributed wireless quantum communication networks [J].ChinesePhysicsB, 2013, 22(9): 090311.

    [8]Wang K, Yu X T, Lu S L, et al. Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation [J].PhysicalReviewA, 2014, 89(2): 022329.

    [9]Metwally N. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems [J].PhysicaScripta, 2014, 89(12): 125103.

    [10]Xu T Y, Zhang Z S, X J. Distributed wireless quantum communication networks with partially entangled pairs [J].ChinesePhysicsB, 2014, 23(1): 010303.

    [11]Ju H J, Rubin I. Backbone topology synthesis for multiradio mesh networks [J].IEEEJournalonSelectedAreasinCommunications, 2006, 24(11): 2116-2126.

    [12]Ashraf U, Abdellatif S, Juanole G. Gateway selection in backbone wireless mesh networks [C]//2009IEEEWirelessCommunications&NetworkingConference. Budapest, Hungary, 2009: 1-6.

    [13]Cao Y, Yu X, Cai Y. Wireless quantum communication networks with mesh structure [C]//2013IEEEInternationalConferenceonInformationScienceandTechnology(ICIST). Yangzhou, China, 2013: 1485-1489.

    [14]Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].PhysicalReviewLetters, 1993, 70(13): 1895.

    [15]Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels [J].PhysicalReviewLetters, 1996, 76(5): 722.

    [16]Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication [J].PhysicalReviewLetters, 1998, 81(26): 5932.

    [17]Borregaard J, Kómár P, Kessler E M, et al. Long-distance entanglement distribution using individual atoms in optical cavities [J].PhysicalReviewA, 2015, 92(5): 012307.

    [18]Hougardy S. The Floyd-Warshall algorithm on graphs with negative cycles [J].InformationProcessingLetters, 2010, 110(8): 279-281.

    [19]Gao S X.Graphtheoryandnetworkflowtheory[M]. Beijing: Higher Education Press, 2009:53-56. (in Chinese)

    [20]Wang H Y.GraphtheoryanditsMATLABimplementation[M]. Beijing: Beihang University Press, 2010: 42-46. (in Chinese)

    [21]Gao S X.Graphtheoryandnetworkflowtheory[M]. Beijing: Higher Education Press, 2009:20-23. (in Chinese)

    doi:10.3969/j.issn.1003-7985.2015.04.004

    男女国产视频网站| 欧美最新免费一区二区三区| 精华霜和精华液先用哪个| 国国产精品蜜臀av免费| 午夜爱爱视频在线播放| 亚洲图色成人| 免费av不卡在线播放| 亚洲精品成人久久久久久| 最近视频中文字幕2019在线8| 2021少妇久久久久久久久久久| 欧美高清性xxxxhd video| 特级一级黄色大片| 国产精品国产三级专区第一集| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 超碰97精品在线观看| 国产又色又爽无遮挡免| 蜜臀久久99精品久久宅男| 男女边吃奶边做爰视频| 午夜激情欧美在线| 尾随美女入室| 亚洲欧美日韩无卡精品| 麻豆成人av视频| av网站免费在线观看视频 | 久久99热6这里只有精品| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 禁无遮挡网站| 中文字幕久久专区| 午夜福利高清视频| 国产男人的电影天堂91| 国内精品宾馆在线| 久久这里有精品视频免费| 我的老师免费观看完整版| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 亚洲久久久久久中文字幕| 国产一区二区三区综合在线观看 | 天天躁夜夜躁狠狠久久av| 亚洲国产精品专区欧美| 又粗又硬又长又爽又黄的视频| 色综合站精品国产| 亚洲av一区综合| 国精品久久久久久国模美| 精品欧美国产一区二区三| 亚洲一区高清亚洲精品| 丝瓜视频免费看黄片| 午夜精品一区二区三区免费看| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 久久热精品热| 五月伊人婷婷丁香| 高清av免费在线| 啦啦啦中文免费视频观看日本| 国产精品嫩草影院av在线观看| 人妻系列 视频| 乱码一卡2卡4卡精品| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 午夜福利视频精品| 99热这里只有是精品50| 国产高潮美女av| 我的女老师完整版在线观看| 在线免费十八禁| 成人欧美大片| 欧美日韩在线观看h| 亚洲av一区综合| 嘟嘟电影网在线观看| 一个人看视频在线观看www免费| 中文欧美无线码| av在线天堂中文字幕| 国产亚洲一区二区精品| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 国产一区二区三区综合在线观看 | 亚洲精华国产精华液的使用体验| 国产午夜精品久久久久久一区二区三区| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 免费看a级黄色片| 美女xxoo啪啪120秒动态图| 青春草国产在线视频| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说| 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 欧美日韩一区二区视频在线观看视频在线 | 天堂av国产一区二区熟女人妻| 久久久久久九九精品二区国产| 欧美另类一区| 蜜桃亚洲精品一区二区三区| 精品国产一区二区三区久久久樱花 | 一级爰片在线观看| 男人舔奶头视频| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 中文字幕亚洲精品专区| 亚洲精品久久午夜乱码| 亚洲国产精品成人综合色| 大片免费播放器 马上看| 亚洲欧美中文字幕日韩二区| 99久国产av精品| 欧美97在线视频| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 亚洲va在线va天堂va国产| 亚洲精品第二区| 一级av片app| 丝袜喷水一区| 久久鲁丝午夜福利片| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频 | 又爽又黄无遮挡网站| 看免费成人av毛片| 国产精品久久久久久精品电影| 亚洲综合精品二区| 尾随美女入室| 久久精品夜夜夜夜夜久久蜜豆| 丰满少妇做爰视频| 成人欧美大片| 欧美日韩在线观看h| 欧美另类一区| av在线天堂中文字幕| 亚洲伊人久久精品综合| 高清av免费在线| 床上黄色一级片| videossex国产| 亚洲成人一二三区av| 九九久久精品国产亚洲av麻豆| 一级毛片电影观看| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区三区影片| 男女那种视频在线观看| 小蜜桃在线观看免费完整版高清| 久久鲁丝午夜福利片| 午夜日本视频在线| 久久久久久久久久黄片| 丝袜美腿在线中文| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 午夜福利在线观看免费完整高清在| 亚洲欧美成人综合另类久久久| 成人漫画全彩无遮挡| 亚洲欧美中文字幕日韩二区| 在线观看人妻少妇| www.av在线官网国产| 黄片无遮挡物在线观看| 日韩强制内射视频| 熟女人妻精品中文字幕| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 国产美女午夜福利| av福利片在线观看| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆 | 亚洲av免费高清在线观看| 97超碰精品成人国产| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 国产成人一区二区在线| 亚洲18禁久久av| 青春草国产在线视频| 欧美最新免费一区二区三区| 欧美性感艳星| av线在线观看网站| 国产极品天堂在线| 午夜精品在线福利| 九草在线视频观看| 国产视频首页在线观看| 欧美高清性xxxxhd video| 纵有疾风起免费观看全集完整版 | a级一级毛片免费在线观看| 91aial.com中文字幕在线观看| 久久午夜福利片| 成人一区二区视频在线观看| 男人舔女人下体高潮全视频| 久久久久网色| 国产精品一区二区在线观看99 | 国产 一区 欧美 日韩| 久久精品人妻少妇| 性色avwww在线观看| 人人妻人人看人人澡| 最新中文字幕久久久久| a级毛色黄片| 波野结衣二区三区在线| 国产黄色小视频在线观看| 观看免费一级毛片| 久久久久精品久久久久真实原创| 免费在线观看成人毛片| 亚洲成人av在线免费| 一级毛片电影观看| 一级爰片在线观看| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区 | 又大又黄又爽视频免费| 人妻系列 视频| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 网址你懂的国产日韩在线| 精品久久久久久久久av| 亚洲精品一区蜜桃| 只有这里有精品99| 亚洲最大成人手机在线| 国产精品99久久久久久久久| 亚洲国产欧美在线一区| 亚洲av电影不卡..在线观看| 国产极品天堂在线| 亚洲最大成人手机在线| 黄色日韩在线| 午夜亚洲福利在线播放| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 国产精品久久久久久久久免| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 岛国毛片在线播放| av在线天堂中文字幕| 国产亚洲一区二区精品| 国产精品人妻久久久久久| 国产成人精品福利久久| 国产在视频线在精品| 91精品一卡2卡3卡4卡| 2021天堂中文幕一二区在线观| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 亚洲av中文av极速乱| 亚洲av电影在线观看一区二区三区 | 国产成人91sexporn| 国产在视频线精品| 国产免费又黄又爽又色| 国产高潮美女av| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频 | 国产一级毛片七仙女欲春2| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 欧美性猛交╳xxx乱大交人| 免费少妇av软件| 亚洲熟女精品中文字幕| 亚洲欧美日韩卡通动漫| 成人性生交大片免费视频hd| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| 黄色一级大片看看| 久久99蜜桃精品久久| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 全区人妻精品视频| 亚洲18禁久久av| 简卡轻食公司| 中文在线观看免费www的网站| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄| 禁无遮挡网站| 亚洲丝袜综合中文字幕| 久久久午夜欧美精品| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 欧美日本视频| 日本色播在线视频| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 国产精品综合久久久久久久免费| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 欧美区成人在线视频| 97在线视频观看| 建设人人有责人人尽责人人享有的 | 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 1000部很黄的大片| 99久国产av精品国产电影| 国产精品.久久久| 免费看美女性在线毛片视频| 97超碰精品成人国产| 亚洲av成人av| 又爽又黄a免费视频| 久久精品国产自在天天线| 99热6这里只有精品| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 在线播放无遮挡| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 好男人在线观看高清免费视频| 欧美区成人在线视频| 亚洲国产精品成人综合色| 麻豆成人av视频| 精品一区在线观看国产| 欧美变态另类bdsm刘玥| 国产一区二区亚洲精品在线观看| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久 | 亚洲欧美一区二区三区黑人 | freevideosex欧美| 久久精品国产亚洲网站| 男人舔奶头视频| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| 国产成人a∨麻豆精品| 国产成人freesex在线| av在线天堂中文字幕| 午夜视频国产福利| 国产视频首页在线观看| 亚洲国产日韩欧美精品在线观看| 乱人视频在线观看| 91狼人影院| 亚洲最大成人av| 80岁老熟妇乱子伦牲交| 亚洲精品国产成人久久av| av专区在线播放| 国产成人精品婷婷| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 成年女人在线观看亚洲视频 | 久久久久精品性色| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 在线天堂最新版资源| 久久午夜福利片| 亚洲av二区三区四区| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 国产综合精华液| 中文资源天堂在线| 一个人免费在线观看电影| 日韩成人伦理影院| 一级二级三级毛片免费看| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 最近最新中文字幕免费大全7| 非洲黑人性xxxx精品又粗又长| 国产女主播在线喷水免费视频网站 | 国产一级毛片在线| 精华霜和精华液先用哪个| 蜜桃亚洲精品一区二区三区| 久久精品国产自在天天线| 中文字幕制服av| eeuss影院久久| 久久久久久久大尺度免费视频| av国产免费在线观看| 成人二区视频| 久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 热99在线观看视频| 高清在线视频一区二区三区| 国产精品一及| 男女那种视频在线观看| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 又粗又硬又长又爽又黄的视频| 黄色欧美视频在线观看| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 国产黄色小视频在线观看| 国产探花极品一区二区| 色播亚洲综合网| 国产成人精品福利久久| 成人无遮挡网站| 熟女电影av网| 成人午夜高清在线视频| 大又大粗又爽又黄少妇毛片口| 久热久热在线精品观看| 你懂的网址亚洲精品在线观看| 亚洲最大成人av| 丝袜喷水一区| 黄片无遮挡物在线观看| 一本一本综合久久| 国产探花极品一区二区| 九色成人免费人妻av| 亚洲人成网站在线播| 国产亚洲5aaaaa淫片| 午夜爱爱视频在线播放| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 免费少妇av软件| 久久久久精品久久久久真实原创| 国产中年淑女户外野战色| 免费观看av网站的网址| 久久99热这里只频精品6学生| 久久这里有精品视频免费| 国产成人免费观看mmmm| 欧美成人精品欧美一级黄| 午夜福利高清视频| 一级毛片我不卡| 内射极品少妇av片p| 男女国产视频网站| 内射极品少妇av片p| 欧美激情在线99| 波野结衣二区三区在线| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 一级黄片播放器| 国产精品福利在线免费观看| 99热这里只有精品一区| 亚洲av免费在线观看| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 看免费成人av毛片| 午夜免费激情av| 边亲边吃奶的免费视频| 青春草国产在线视频| 美女大奶头视频| 成年av动漫网址| 国产伦精品一区二区三区视频9| 国产大屁股一区二区在线视频| 777米奇影视久久| 美女被艹到高潮喷水动态| 精品一区在线观看国产| 久久鲁丝午夜福利片| 毛片一级片免费看久久久久| 你懂的网址亚洲精品在线观看| 亚洲国产精品成人久久小说| 日本与韩国留学比较| 午夜精品国产一区二区电影 | 日韩精品有码人妻一区| 国产色爽女视频免费观看| 国产欧美另类精品又又久久亚洲欧美| 欧美变态另类bdsm刘玥| 日日干狠狠操夜夜爽| av天堂中文字幕网| 久久久久精品性色| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 欧美精品国产亚洲| 国产午夜精品论理片| 国产免费视频播放在线视频 | 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 日韩成人av中文字幕在线观看| 99久久九九国产精品国产免费| 亚洲va在线va天堂va国产| 欧美日韩一区二区视频在线观看视频在线 | 国产国拍精品亚洲av在线观看| 少妇的逼水好多| av在线天堂中文字幕| 少妇高潮的动态图| 插阴视频在线观看视频| 久久热精品热| 免费看日本二区| 亚洲伊人久久精品综合| 免费人成在线观看视频色| 国产精品三级大全| 免费av观看视频| 一二三四中文在线观看免费高清| 国产有黄有色有爽视频| 最近2019中文字幕mv第一页| 精品人妻视频免费看| 九九爱精品视频在线观看| xxx大片免费视频| 亚洲精品一二三| 女人十人毛片免费观看3o分钟| 精品国产一区二区三区久久久樱花 | 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 人人妻人人看人人澡| 久久6这里有精品| 国产熟女欧美一区二区| 久99久视频精品免费| 国产精品无大码| av黄色大香蕉| 男女边吃奶边做爰视频| 亚洲欧美日韩东京热| 婷婷色综合www| 亚洲精品日韩在线中文字幕| 亚洲人成网站在线播| 中文精品一卡2卡3卡4更新| 亚洲无线观看免费| 亚洲高清免费不卡视频| 国产高潮美女av| 亚洲精品456在线播放app| 免费电影在线观看免费观看| 午夜视频国产福利| 国产av国产精品国产| 亚洲电影在线观看av| 97精品久久久久久久久久精品| 黄片wwwwww| 黄色欧美视频在线观看| 综合色丁香网| 肉色欧美久久久久久久蜜桃 | 国产伦理片在线播放av一区| 久久午夜福利片| 日韩一本色道免费dvd| 又爽又黄无遮挡网站| 亚洲一级一片aⅴ在线观看| 赤兔流量卡办理| 色播亚洲综合网| 成人毛片60女人毛片免费| 国产一级毛片在线| 国产精品人妻久久久影院| 国产精品不卡视频一区二区| 欧美xxxx黑人xx丫x性爽| 91午夜精品亚洲一区二区三区| 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 欧美激情国产日韩精品一区| 一本久久精品| 只有这里有精品99| 国产综合懂色| or卡值多少钱| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| 看非洲黑人一级黄片| 亚洲在线观看片| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 男人狂女人下面高潮的视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 十八禁网站网址无遮挡 | 国产真实伦视频高清在线观看| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 亚洲一级一片aⅴ在线观看| 色5月婷婷丁香| 美女cb高潮喷水在线观看| 国产午夜精品久久久久久一区二区三区| 乱码一卡2卡4卡精品| 欧美性感艳星| 永久网站在线| 国产精品蜜桃在线观看| 有码 亚洲区| 网址你懂的国产日韩在线| 最近2019中文字幕mv第一页| 亚洲欧美成人综合另类久久久| 精品久久久久久久人妻蜜臀av| 嫩草影院入口| 婷婷色麻豆天堂久久| 日韩欧美国产在线观看| 噜噜噜噜噜久久久久久91| 人体艺术视频欧美日本| 亚洲一区高清亚洲精品| 国产男人的电影天堂91| 国产成人精品福利久久| 国产成人aa在线观看| 精品久久久久久电影网| av在线亚洲专区| 高清欧美精品videossex| 91av网一区二区| 亚洲丝袜综合中文字幕| 毛片一级片免费看久久久久| 亚洲精品久久久久久婷婷小说| 国产 一区 欧美 日韩| 一个人免费在线观看电影| 两个人的视频大全免费| 中文字幕免费在线视频6| 男女国产视频网站| 国产熟女欧美一区二区| 久热久热在线精品观看| 国产一区二区亚洲精品在线观看| av福利片在线观看| 欧美丝袜亚洲另类| 国产一区亚洲一区在线观看| 免费大片黄手机在线观看| 精品人妻熟女av久视频| 美女国产视频在线观看| 亚洲在久久综合| 午夜老司机福利剧场| 中文天堂在线官网| 韩国高清视频一区二区三区| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 可以在线观看毛片的网站| 日韩强制内射视频| 岛国毛片在线播放| 亚洲综合精品二区| 午夜福利高清视频| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 天堂网av新在线| 激情五月婷婷亚洲| 日本熟妇午夜| 性色avwww在线观看| 国产精品综合久久久久久久免费| 久久99热6这里只有精品| 日本wwww免费看| 一级爰片在线观看| 乱人视频在线观看| 三级经典国产精品| 老司机影院成人| 街头女战士在线观看网站| 精品久久久久久成人av| 五月玫瑰六月丁香| 国产伦理片在线播放av一区| 亚洲精品影视一区二区三区av| 国产免费福利视频在线观看| 韩国高清视频一区二区三区| 亚洲国产av新网站| 日韩一区二区视频免费看| 综合色丁香网| 全区人妻精品视频| 韩国av在线不卡| 99久久精品热视频|