• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigation of inter-cell interference in visible light communication

    2015-03-01 08:07:17AghaYasirAliZhangZaichenAbdeldimeAbdelgaderZongBaiqing

    Agha Yasir Ali  Zhang Zaichen  Abdeldime M.S.Abdelgader  Zong Baiqing

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2 ZTE Corporation, Shenzhen 518057, China)

    ?

    Mitigation of inter-cell interference in visible light communication

    Agha Yasir Ali1Zhang Zaichen1Abdeldime M.S.Abdelgader1Zong Baiqing2

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2ZTE Corporation, Shenzhen 518057, China)

    Abstract:This paper proposes the orthogonal and non-orthogonal schemes in the interference environments for visible light communication (VLC) systems. The proposed schemes pay attention to the case when different bit streams from multiple cells are simultaneously transmitted, which consequently causes inter-cell interference (ICI) and greatly deteriorates the bit error rate (BER) and channel capacity performance of the system. The performance of the new developed multi-cell system in indoor VLC systems is evaluated. The bipolar phase shift keying (BPSK) modulation scheme with orthogonal pulses (OPs) for multiple cells environments is employed to mitigate the ICI problem and improve the BER and channel capacity performances. Since the use of different OPs in each cell requires more number of OPs, which requires high bandwidth, OPs are reused at certain distances. Three different schemes, which are OPs, orthogonal and non-orthogonal pulses (NOP) reuse, are compared. This paper investigates the impact of using these schemes and compared their performances in the ICI environments. The BER and channel capacity using the proposed schemes are comprehensively examined. Simulation and theoretical results show that the OPs schemes are more effective in the interference areas of the room and significantly outperform NOP.

    Key words:visible light communication; inter-cell interference; orthogonal pulses

    Received 2015-03-09.

    Biographies:Agha Yasir Ali (1979—), male, graduate, aghayasirali@hotmail.com; Zhang Zaichen(corresponding author), male, doctor, professor, zczhang@seu.edu.cn.

    Foundation items:The National High Technology Research and Development Program of China (863 Program) (No. 2013AA013601), the National Natural Science Foundation of China(No. 61223001), the Natural Science Foundation of Jiangsu Province (No.BK20140646), the Research Fund of National Mobile Communication Research Laboratory (No.2014A03, 2014B03, 2014B04), the Research Fund of Zhongxing Telecommunication Equipment Corporation, the Fundamental Research Funds of the Central Universities (No.2242014K40033), the United Creative Foundation of Jiangsu Province (No.BY2013095-1-18).

    Citation:Agha Yasir Ali, Zhang Zaichen, Abdeldime M.S. Abdelgader, et al. Mitigation of inter-cell interference in visible light communication[J].Journal of Southeast University (English Edition),2015,31(4):437-442.[doi:10.3969/j.issn.1003-7985.2015.04.002]

    In recent years, visible light communication (VLC) has emerged as a promising technology that has been used to support communication systems in special scenarios such as hospitals, conference rooms and universities[1]. VLC has been the object of extensive interest over the past few years. Many potential applications for this technology have been suggested. They refer to optical wireless communication using the visible light spectrum from 380 to 780 nm. VLC transmits data by intensity modulation on optical sources, such as light emitting diodes (LEDs) and laser diodes. Multiple LED sources are commonly employed in typical indoor environments because the optimum illuminance can be met at 300 to 1 500 lux for sufficient illumination[1].

    Recently, the study of the multi-cell VLC system has emerged as an important research topic. One of the major problems in VLC systems is inter-cell interference (ICI) due to the overlapping of images from multiple cells. The multiple input multiple output (MIMO) system for multi-user environments are introduced and simulation results are presented in Ref.[2]. The limitation of this system is that it cannot work in the central area and middle corners of the room. The complete area of the room is covered with multiple cells[3], as shown in Fig.1. In some areas, the images overlap. Another solution is proposed in Ref.[4], in which cell arrangement is proposed for multi-cell VLC systems to reduce the signal-to-noise ratio(SNR) fluctuation, but this technique needs a greater number of cells and some parts of the room will not be covered by communication. Guerra-Medina et al.[5]proposed an optical code-division multiple accesses (OCDMA) system for multi-user VLC, which utilizes random optical codes (ROCs) as coding sequences, thus increasing the implementation complexity of the system. In the same context, an indoor VLC system which supports multiple accesses under line-of-sight (LOS) constraints is investigated in Ref.[6], but the room coverage problem remains unsolved. Moreover, Chen et al.[7]proposed a pre-coding multi-user MIMO indoor VLC system. Their main problem is the separation of the receiving data for different user terminals. Some other schemes were proposed in Refs.[8-9]. The optical detectors with different fields of view (FOV)are utilized and the influence of the FOV of the proposed system is analyzed, but the FOV of the detectors cannot be changed. Rahaim et al.[3]eliminated the ICI by using frequency partitioning. The available bandwidth is divided intoKsslots and the neighboring cells utilize separate frequencies to eliminate interference at interference regions. However, this scheme requires LEDs with a high bandwidth.

    This paper investigates the interference problem in the interference areas and proposes a scheme to eliminate the ICI by using orthogonal pulses (OPs), which can be generated by various techniques as given in Refs.[10-11]. To extend the network coverage and provide communication for user terminals in all locations of the room, a novel approach is proposed. It improves the bit error rate (BER) and the capacity performances of the VLC system by eliminating ICI. Due to the increase of ICI in some areas, approximately equal power is received from several cells, and OPs are figureted. As we increase the number of OPs, a high bandwidth LEDs is required. The requirement of high bandwidth LEDs can be managed by reusing OPs at certain distances in the room. The contribution of this work is to provide communication for the whole area of the room and mitigate the ICI in the overlapping areas by using OPs.

    Fig.1 Foot prints of cells and interference areas in the room

    1The Model of Proposed System

    In this paper, a model for the source, reflectors, and receiver is considered in an empty square room. Also, the proposed techniques can be extended to other rooms in a straightforward manner. For a low cost VLC system, the most viable modulation is the intensity modulation and direct detection (IM/DD), in which the desired waveform is modulated onto the instantaneous power of the carrier. Modeling a VLC link as a linear baseband, the time-invariant system has impulse responseh(t) with signal independent additive noiseσ(t). The visible-light channel is modeled as a linear optical additive white Gaussian noise (AWGN).

    yr(x,y,z)(t)=Rh(t)*x(t)+σ(t)

    (1)

    whereyr(x,y,z)(t) is the photo-detector current and it represents the photo sensitivity of the photo-detector (in A/W);x(t) is the instantaneous input pulse power. The average time transmitted optical power is given by[3,12]

    (2)

    The average received optical power generally can be determined by[12]

    (3)

    CLOS=(l+1)APDγcosl(φ)g(ψ)T(ψ)cofcos(ψ)

    In this paper, the line of sight(LOS) and non line-of-sight (NLOS) links are considered. The DC gain on the first reflectionHrefis

    (4)

    CNLOS=(l+1)APDγcosl(φ)g(ψ)T(ψ)cofcos(ψ)

    whereCLOSandCNLOSare the variables used in Eq.(3) and Eq.(4);dis the distance between the receiver and transmitter;D1is the distance between the transmitter and reflective point;D2is the distance between reflective point and receiver;γis the reflectance factor; dAis the reflective area of the small region;αis the angle of irradiance to the receiver;βis the angle of incidence to the receiver;lis the order of Lambertian emission;APDis the receiving area;φis the irradiance angle;ψis the angle of incidence;T(ψ)cofis the signal transmission coefficient of an optical filter;ψcis the FOV;pis the refractive index;g(ψ) is the gain of the optical concentrator[1].

    (5)

    In the LOS and NLOS, the received power is generally determined by[12]

    Pr=HLOS(0)PtLOS+∑Href(0)Ptref

    (6)

    This paper is designed for multiple cells to solve the interference problem in multiple cell environments. The OPs are transmitted as bipolar phase shift keying (BPSK). A binary ‘1’ is represented by a positive pulse and binary ‘0’ is represented by a negative pulse.

    The proposed scheme is designed to eliminate ICI from multiple cells in the room. Fig.1 shows the foot prints of interference areas between cells. This scheme is mainly effective in those areas. As defined in Ref.[3], the maximum area can be covered by cells to provide communication in every area of the room by adjusting the minimum acceptable power. Therefore, the covered area of each cell is π(λ)2/2Nfor a square shaped room, whereλis the length of the room andNis the number of cells.

    The maximum power received at them-th receiver from thek-th cell can be obtained from Eq.(6).

    Pr(k,m)=H(0)LOS(k,m)Pt(k)LOS+∑H(0)(k,m)refPt(k)ref

    (7)

    wherePt(k)is the transmitted power from thek-th cell. The total power received from the cell to them-th receiver is

    (8)

    The receiver only passes the signal from thek-th cell because the signals from other cells are orthogonal to the correlation function of them-th receiver, as shown in Fig.2.

    Fig.2 The VLC proposed model

    2Analysis

    The multiple cells (cell1,cell2,…,cellN) are transmitting OPs (x1(t),x2(t),…,xN(t)), respectively. Allowing them-th receiver to receive all the pulses from LOS, the NLOS and matched filter correlator is

    (9)

    (10)

    where the maximum power is received at timetd, andRmis the correlator function of them-th receiver,

    (11)

    In the case of non-orthogonal pulses (NOPs), all the cells use the same pulse and bandwidth for transmission. Therefore, the signals from other cells in Eq.(11) are considered as noises and they are not equal to zero. The SNR cannot be affected by the bandwidth but it is affected by the ICI and distance. Using Eq.(7) and Eq.(8), the SNR from thek-th cell is defined as[3]

    (12)

    whereWkrepresents the bandwidth of thek-th cell.

    The channel capacity of NOPs is the same for all cells because all pulses are using the same bandwidth. The capacity of NOPs is defined as

    (13)

    The proposed scheme improves SNR by using OPs. When each cell uses an OP, the receiver can easily distinguish signals from the principle cell. The bandwidth of OPs used by cells can be defined as

    (14)

    whereTsis the symbol time. From Eq.(14), the number of OPs requires high bandwidth LEDs. The high bandwidth pulses can affect the SNR. The greater the number of pulses is minimized by reusing OPs at certain locations in the room. Substituting Eq.(14) and Eq.(11) into Eq.(12), the SNR for OPs can be derived as

    (15)

    Note that the SNR performance of OP is affected by its high bandwidth but NOP is affected by interference.

    Substituting Eq.(14) and Eq.(15) into the Shannon capacity figure, the channel capacity can be improved by using OPs, specifically in interference areas,

    (16)

    As BPSK modulation technique is used in this scheme, the theoretical BER can be calculated as

    (17)

    Consequently, the BER of NOPs is given as

    (18)

    From Eq.(7) and Eq.(11), we can obtain

    (19)

    3Simulation Results and Discussion

    The setup of simulation program for the indoor VLC system contains four cells which are located in the ceiling[3,12]and two types of comparisons are given which are NOP with 4OP and NOP with 2OP. The receiving plane is 1.85 m away from ceiling. The center of the room is selected as the origin of the coordinate, and the other parameters of the proposed system are listed in Refs.[11-12].

    Without loss of generality, we assume two typical scenarios to simulate BER and the capacity performances of the system by considering different pulses distributed in different cells.

    Obviously, the proposed scheme is effective, particularly at the center and the interference area of the two cells, as shown in Fig.1. From the analytical results, it is observed that the capacity and BER performances are mainly affected by the distance and ICI; however, the proposed scheme is mainly affected by distance.

    Fig.3 Channel capacity and bandwidth

    As depicted in Fig.3 to Fig.5, the overall capacity performance is significantly improved by using the proposed scheme. Fig.3 shows the difference of channel capacity among 4OP, 2OP and NOP. Note that the highest channel capacity is obtained when using 4OP, and the high bandwidth cell obtains high channel capacity. In the case of 2OP, the diagonal cells share the same pulse; therefore, ICI occurs in diagonals of the room and the channel capacity deteriorates in diagonal cells. In the case of NOP, the capacity is almost identical between cells, because the same bandwidth pulses are used. The channel capacity of NOPs is affected by ICI and decreases rapidly in the interference area compared to OPs. Particularly, at a high SNR, the difference between OPs and NOPs is significantly high.

    Fig.4 shows the difference of the channel capacity in the three-dimensional pattern between 4OP and NOP. Note that the maximum response is obtained by cell1and cell3because they are using the highest bandwidth. Cell4uses the lowest bandwidth, therefore, it produces a low channel capacity. As depicted in Fig.5, the two diagonal cells use the same bandwidth in the case of 2OP; therefore, only the channel capacities of diagonal cells are identical.

    Fig.4 Channel capacity of 4OP and NOP

    Fig.5 Channel capacity of 2OP and NOP

    In what follows, we consider the BER performance of the system. The BER performance is significantly improved by using OPs over NOPs, especially at the center and interference areas of the room, as shown in Fig.6 and Fig.7. The theoretical and numerical results of 4OP, 2OP and NOP are compared with diagonals and sides of the room, as shown in Fig.6 and Fig.7. It is clear that the numerical and theoretical responses are almost identical. As discussed in the case of 2OP, the diagonal cells share the same pulse; therefore, the interference only occurs between diagonal cells. However, the side cells use OPs, so the BER responses of 2OP and 4OP in Fig.7 are identical. The maximum BER is in the center of the room because the equal power is received from all cells. The identical response for OPs and NOPs are at the corners of the room. The corners of the room are not affected by ICI. ICI occurs when a zero transmitted by the principle cell is falsely identified as the one from other cells. ICI increases with the increase of SNR; therefore, the difference between OPs and NOPs is increased with high SNRs, as shown in Fig.8.

    Generally, a better BER performance can be achieved at a high SNR. However, due to interference, the performance of NOPs does not improve significantly. Fig.8 depicts the scenarios when the SNR are 56, 60, 65, and 68 dB along with the diagonals of the room. The results show that with the high SNR, the proposed scheme is more effective.

    Simulation results show that the proposed scheme obtains a better BER at the expense of an increased bandwidth. Compared 2OP with 4OP, the 2OP requires low bandwidth and provides comparatively less capacity, and it also has worse BER performance. Hence, the proposed scheme eliminates the interference from LOS as well as from the diffuse path.

    Fig.6 BER vs. diagonal of the room (SNR=66 dB)

    Fig.7 BER vs. length of the room (SNR=66 dB)

    4Conclusion

    We investigate the BER and capacity performances of our recently proposed scheme in the indoor VLC system under multi-cell environments. The inter-cell interference is eliminated by OPs. In this scheme, the BER and capacity performances are improved. A method to improve the system performance by utilizing high bandwidth pulses is analyzed.

    Fig.8 ER vs. diagonal of the room under different SNRs. (a) SNR=56 dB; (b) SNR=60 dB;(c) SNR=65 dB;(d) SNR=68 dB

    Simulation results show that at a high SNR, the proposed scheme is more effective in the interference areas of the room. Simulation and theoretical results show that the proposed scheme removes the limitation of the FOV of the transmitter and covers the whole area of the room as well as reducing ICI. When the number of OPs increases, high bandwidth LEDs are required, which can be managed by reusing OP at a certain distance and significant improvements of the capacity and BER performances can be obtained.

    References

    [1]Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J].IEEETransactionsonConsumerElectronics, 2004, 50(1): 100-107.

    [2]Zeng L, O’Brien D, Minh H, et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting[J].IEEEJournalonSelectedAreasinCommunications, 2009, 27(9): 1654-1662.

    [3]Rahaim M, Little T. SINR analysis and cell zooming with constant illumination for indoor VLC networks [C]//The2ndInternationalWorkshoponOpticalWirelessCommunications(IWOW). Newcastle Upon Tyne, UK, 2013: 20-24.

    [4]Wang Z, Yu C, Zhong W D, et al. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems[J].Opticsexpress, 2012, 20(4): 4564-4573.

    [5]Guerra-Medina M, Gonzalez O, Rojas-Guillama B, et al. Ethernet-OCDMA system for multi-user visible light communications[J].ElectronicsLetters, 2012, 48(4): 227-228.

    [6]Wu Z, Little T. Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system[J].IETCommunications, 2012, 6(5): 525-531.

    [7]Chen J, Hong Y, Wang Z. Performance of precoding multi-user MIMO indoor visible light communications [C]//IEEEPhotonicsConference(IPC),WG4. Reston, USA, 2013: 541-542.

    [8]Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J].IEEETransactionsonSignalProcessing, 2004, 52(2): 461-471.

    [9]Spencer Q H, Peel C B, Haardt M. An introduction to the multi-user MIMO downlink[J].IEEECommunicationsMagazine, 2004, 42(10): 60-67.

    [10]Ali A Y, Zhang Z, Zong B. Pulse position and shape modulation for visible light communication system [C]//InternationalConferenceonElectromagneticsinAdvancedApplications(ICEAA). Palm Beach, Aruba, 2014:546-549.

    [11]Uddin M S, Cha J S, Kim J Y, et al. Mitigation technique for receiver performance variation of multi-color channels in visible light communication[J].Sensors, 2011, 11(6): 6131-6144.

    [12]Ali A Y, Zhang Z. Received power based area estimation for indoor visible light communication[C]//InternationalConferenceonInformation&IntelligentSystems(ICIIS). Sousse,Tunisia, 2013:1-8.

    doi:10.3969/j.issn.1003-7985.2015.04.002

    极品教师在线免费播放| 欧美日韩乱码在线| av.在线天堂| 久久精品国产鲁丝片午夜精品 | 免费看美女性在线毛片视频| 午夜福利在线在线| 搞女人的毛片| 国产人妻一区二区三区在| 国产成年人精品一区二区| 搡老岳熟女国产| 国产爱豆传媒在线观看| 久久香蕉精品热| 国产高清不卡午夜福利| 色哟哟哟哟哟哟| 熟女电影av网| 精品一区二区三区视频在线观看免费| 99热精品在线国产| 免费看av在线观看网站| 亚洲va在线va天堂va国产| 中亚洲国语对白在线视频| 日本一二三区视频观看| 嫩草影院新地址| 日韩精品有码人妻一区| 日韩,欧美,国产一区二区三区 | 少妇被粗大猛烈的视频| 欧美日本视频| 久久午夜福利片| 有码 亚洲区| 97人妻精品一区二区三区麻豆| 黄色日韩在线| 欧美潮喷喷水| 亚洲精品456在线播放app | netflix在线观看网站| 欧美另类亚洲清纯唯美| 久久国内精品自在自线图片| 国产高清视频在线观看网站| 免费在线观看影片大全网站| 日本黄色视频三级网站网址| 1000部很黄的大片| 欧美一区二区精品小视频在线| netflix在线观看网站| 精品国内亚洲2022精品成人| 成人精品一区二区免费| 久久99热6这里只有精品| 一夜夜www| 日本色播在线视频| 搡老岳熟女国产| 日韩欧美一区二区三区在线观看| 老熟妇仑乱视频hdxx| 特级一级黄色大片| 天堂网av新在线| 久久久国产成人精品二区| 久久久久九九精品影院| 亚洲性夜色夜夜综合| 日本 av在线| 91久久精品电影网| 亚洲性久久影院| 久久久精品大字幕| 国产v大片淫在线免费观看| 国内精品宾馆在线| 国产伦人伦偷精品视频| 精品午夜福利在线看| 婷婷色综合大香蕉| 成人毛片a级毛片在线播放| 国产毛片a区久久久久| 尾随美女入室| 日本一本二区三区精品| 久久精品国产鲁丝片午夜精品 | 精品人妻偷拍中文字幕| 久久精品人妻少妇| 久久精品91蜜桃| 搞女人的毛片| 色5月婷婷丁香| 亚洲av中文字字幕乱码综合| 成人精品一区二区免费| 亚洲不卡免费看| 狂野欧美白嫩少妇大欣赏| 在线观看午夜福利视频| 有码 亚洲区| 高清日韩中文字幕在线| 日本与韩国留学比较| 亚洲第一区二区三区不卡| 欧美日韩瑟瑟在线播放| 真人做人爱边吃奶动态| 亚洲图色成人| 两人在一起打扑克的视频| 亚洲最大成人手机在线| 免费搜索国产男女视频| 九九热线精品视视频播放| 美女黄网站色视频| 国产精品久久久久久久电影| 国产伦在线观看视频一区| 中文字幕久久专区| 日日夜夜操网爽| 淫妇啪啪啪对白视频| 欧美最黄视频在线播放免费| 18+在线观看网站| 国产精品亚洲美女久久久| 又紧又爽又黄一区二区| 成人一区二区视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 熟女人妻精品中文字幕| 亚洲欧美激情综合另类| 亚洲av电影不卡..在线观看| 久久午夜亚洲精品久久| 午夜亚洲福利在线播放| 久久久久久大精品| 色综合亚洲欧美另类图片| 日韩中字成人| 午夜影院日韩av| 欧美+亚洲+日韩+国产| 人妻夜夜爽99麻豆av| 欧美日韩综合久久久久久 | 动漫黄色视频在线观看| 波野结衣二区三区在线| 亚洲最大成人中文| 黄色一级大片看看| 亚洲精华国产精华液的使用体验 | 日韩强制内射视频| 久久亚洲真实| 无人区码免费观看不卡| 麻豆av噜噜一区二区三区| 免费搜索国产男女视频| 亚洲狠狠婷婷综合久久图片| 成年女人永久免费观看视频| 啪啪无遮挡十八禁网站| 毛片一级片免费看久久久久 | 女人十人毛片免费观看3o分钟| 18禁在线播放成人免费| 国产精品久久久久久av不卡| 国产一区二区亚洲精品在线观看| 免费av毛片视频| 高清日韩中文字幕在线| 色综合亚洲欧美另类图片| 国产欧美日韩精品亚洲av| 亚洲最大成人av| 免费人成视频x8x8入口观看| 午夜精品在线福利| 欧美3d第一页| 午夜激情福利司机影院| 一进一出抽搐动态| 在线看三级毛片| 久久精品国产亚洲av天美| 99久久精品一区二区三区| 亚洲欧美日韩东京热| 小说图片视频综合网站| 不卡视频在线观看欧美| 伦理电影大哥的女人| ponron亚洲| 在线天堂最新版资源| 国产精品一区二区性色av| 精品人妻视频免费看| 精品午夜福利在线看| 欧美成人性av电影在线观看| 美女高潮喷水抽搐中文字幕| 国产午夜精品论理片| 伦理电影大哥的女人| 在线观看舔阴道视频| 婷婷精品国产亚洲av| 久久精品91蜜桃| 亚洲专区中文字幕在线| 91av网一区二区| 国产成年人精品一区二区| 狠狠狠狠99中文字幕| 99九九线精品视频在线观看视频| 性色avwww在线观看| 美女高潮的动态| 天堂网av新在线| 国内精品一区二区在线观看| 亚洲专区国产一区二区| 国产老妇女一区| 亚洲成人精品中文字幕电影| 亚洲av.av天堂| 少妇被粗大猛烈的视频| 成人国产一区最新在线观看| 婷婷色综合大香蕉| 亚洲精品一区av在线观看| 18禁黄网站禁片免费观看直播| 18禁黄网站禁片免费观看直播| 国产主播在线观看一区二区| 校园人妻丝袜中文字幕| 能在线免费观看的黄片| 国产精品一区二区免费欧美| 白带黄色成豆腐渣| 2021天堂中文幕一二区在线观| 成熟少妇高潮喷水视频| 国产探花在线观看一区二区| 欧美最新免费一区二区三区| 最新中文字幕久久久久| 99国产精品一区二区蜜桃av| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 国产女主播在线喷水免费视频网站 | 国产高清视频在线播放一区| 亚洲国产精品sss在线观看| 久久这里只有精品中国| 国产av不卡久久| 两个人视频免费观看高清| 俺也久久电影网| 欧美色欧美亚洲另类二区| 久久人妻av系列| 欧美绝顶高潮抽搐喷水| 国产一区二区三区视频了| 午夜a级毛片| 亚洲精品国产成人久久av| 99国产精品一区二区蜜桃av| 99riav亚洲国产免费| 啦啦啦啦在线视频资源| 国产探花在线观看一区二区| 国产精品国产高清国产av| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 亚洲av熟女| 午夜爱爱视频在线播放| 精品久久久久久成人av| 窝窝影院91人妻| 国产白丝娇喘喷水9色精品| 日韩欧美国产一区二区入口| 久久精品国产自在天天线| 中文字幕熟女人妻在线| 欧美色视频一区免费| 欧洲精品卡2卡3卡4卡5卡区| 91在线观看av| av在线蜜桃| 丰满的人妻完整版| 一级毛片久久久久久久久女| 日韩高清综合在线| 18禁黄网站禁片午夜丰满| 天堂影院成人在线观看| 天天一区二区日本电影三级| 日韩欧美 国产精品| 欧美+亚洲+日韩+国产| 亚洲精品成人久久久久久| 精品人妻1区二区| av.在线天堂| 亚洲经典国产精华液单| 国产精品亚洲美女久久久| 99久久成人亚洲精品观看| 三级毛片av免费| 免费人成视频x8x8入口观看| 哪里可以看免费的av片| eeuss影院久久| 国内少妇人妻偷人精品xxx网站| 成人高潮视频无遮挡免费网站| 级片在线观看| 久久精品国产亚洲网站| 久久九九热精品免费| 我要看日韩黄色一级片| 精品人妻视频免费看| 国产一级毛片七仙女欲春2| 免费看光身美女| 久久国产精品人妻蜜桃| 韩国av在线不卡| 国模一区二区三区四区视频| 国产中年淑女户外野战色| 精品日产1卡2卡| 日韩欧美在线乱码| 午夜福利在线观看免费完整高清在 | 男人舔女人下体高潮全视频| 少妇人妻一区二区三区视频| 久久久久久伊人网av| 乱人视频在线观看| 18禁裸乳无遮挡免费网站照片| 精品人妻熟女av久视频| 人妻久久中文字幕网| 欧美潮喷喷水| 99久久九九国产精品国产免费| 欧美+亚洲+日韩+国产| 婷婷六月久久综合丁香| 亚洲内射少妇av| 两个人视频免费观看高清| 美女cb高潮喷水在线观看| 成人鲁丝片一二三区免费| 十八禁国产超污无遮挡网站| 国产亚洲精品综合一区在线观看| 免费无遮挡裸体视频| 日本免费一区二区三区高清不卡| 日本色播在线视频| 精品午夜福利在线看| 久久6这里有精品| 在线免费十八禁| 亚洲av不卡在线观看| 国产精品电影一区二区三区| 天天一区二区日本电影三级| 久久热精品热| 99久久精品热视频| 校园人妻丝袜中文字幕| 亚洲最大成人中文| 免费av不卡在线播放| 麻豆国产97在线/欧美| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 亚洲色图av天堂| 国产午夜精品久久久久久一区二区三区 | 男女视频在线观看网站免费| 欧美色欧美亚洲另类二区| 亚洲人与动物交配视频| 又爽又黄a免费视频| 黄色一级大片看看| 黄片wwwwww| 日本免费a在线| 久久久久九九精品影院| 女的被弄到高潮叫床怎么办 | 久久久成人免费电影| 男女之事视频高清在线观看| 一级av片app| 国产精品不卡视频一区二区| 少妇高潮的动态图| 亚洲av五月六月丁香网| 日本熟妇午夜| 欧美+日韩+精品| 亚洲欧美日韩东京热| 欧美人与善性xxx| 少妇熟女aⅴ在线视频| 又黄又爽又免费观看的视频| h日本视频在线播放| 国产黄片美女视频| 国产老妇女一区| 免费观看在线日韩| 日本免费一区二区三区高清不卡| 亚洲 国产 在线| 亚洲 国产 在线| 中文字幕av成人在线电影| 悠悠久久av| 一区二区三区高清视频在线| 国产精品亚洲一级av第二区| 永久网站在线| 波多野结衣高清作品| 一本一本综合久久| 天堂网av新在线| 日韩中文字幕欧美一区二区| 欧美bdsm另类| 亚洲七黄色美女视频| 国产精品伦人一区二区| 国产免费男女视频| 日韩欧美精品v在线| 床上黄色一级片| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 黄色丝袜av网址大全| 国产熟女欧美一区二区| 婷婷色综合大香蕉| 岛国在线免费视频观看| 精品99又大又爽又粗少妇毛片 | 亚洲国产精品sss在线观看| 欧美性猛交╳xxx乱大交人| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看| 黄色女人牲交| 久久久久国内视频| 国产伦精品一区二区三区四那| 国产三级中文精品| 国产伦人伦偷精品视频| 九九爱精品视频在线观看| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美| 久久久久性生活片| 伊人久久精品亚洲午夜| 国产精品av视频在线免费观看| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 成人国产一区最新在线观看| 亚洲精品国产成人久久av| 亚洲成a人片在线一区二区| 特级一级黄色大片| 最新中文字幕久久久久| 午夜福利在线观看吧| 国产 一区 欧美 日韩| 国产老妇女一区| 99热只有精品国产| 真人一进一出gif抽搐免费| 窝窝影院91人妻| 国产不卡一卡二| 一进一出抽搐动态| 黄色日韩在线| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 亚洲欧美日韩高清在线视频| 永久网站在线| 国产国拍精品亚洲av在线观看| 久久久国产成人免费| 亚洲欧美日韩东京热| 黄色女人牲交| 亚洲国产色片| 亚洲精华国产精华液的使用体验 | 日韩 亚洲 欧美在线| 色综合婷婷激情| 波多野结衣高清无吗| 噜噜噜噜噜久久久久久91| 99热这里只有是精品在线观看| 欧美精品啪啪一区二区三区| 99久久精品热视频| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| www.www免费av| 免费观看精品视频网站| 午夜福利高清视频| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 国产精品人妻久久久影院| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 深夜a级毛片| 国产精品久久视频播放| 国产色婷婷99| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女| 一级av片app| 在线观看66精品国产| 在线免费观看的www视频| 日韩 亚洲 欧美在线| 国内精品一区二区在线观看| 久久久成人免费电影| 麻豆国产av国片精品| 国产精品亚洲美女久久久| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 国产女主播在线喷水免费视频网站 | 国产成人福利小说| 97超级碰碰碰精品色视频在线观看| 99久久九九国产精品国产免费| 国产精品,欧美在线| 女的被弄到高潮叫床怎么办 | 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类 | 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 赤兔流量卡办理| 深夜a级毛片| 欧美成人一区二区免费高清观看| 天堂网av新在线| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 亚洲精品影视一区二区三区av| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站 | a在线观看视频网站| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| 22中文网久久字幕| a在线观看视频网站| 欧美+日韩+精品| 女生性感内裤真人,穿戴方法视频| 国产人妻一区二区三区在| 欧美性感艳星| 亚洲av电影不卡..在线观看| 国产免费一级a男人的天堂| 69av精品久久久久久| 日本一本二区三区精品| 久久精品国产自在天天线| 男人和女人高潮做爰伦理| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 国产 一区 欧美 日韩| 久久精品国产自在天天线| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| av在线亚洲专区| 日韩强制内射视频| 看黄色毛片网站| 99在线人妻在线中文字幕| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 精品免费久久久久久久清纯| 亚洲三级黄色毛片| 丰满的人妻完整版| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 国产真实乱freesex| 两个人的视频大全免费| 午夜福利视频1000在线观看| 欧美日韩黄片免| 好男人在线观看高清免费视频| 白带黄色成豆腐渣| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 精品一区二区三区人妻视频| 国产精品久久视频播放| 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 欧美潮喷喷水| 久久中文看片网| 国产精品伦人一区二区| 日本与韩国留学比较| 亚洲四区av| av在线亚洲专区| 久久亚洲精品不卡| 日韩高清综合在线| 精品久久久噜噜| 亚洲av中文av极速乱 | 桃色一区二区三区在线观看| 黄色配什么色好看| 99热网站在线观看| 亚洲国产色片| 国产午夜精品论理片| 亚洲欧美日韩东京热| 日日撸夜夜添| 性色avwww在线观看| 久久久久精品国产欧美久久久| 亚洲经典国产精华液单| 男女做爰动态图高潮gif福利片| 欧美在线一区亚洲| 精品久久久久久成人av| 精品福利观看| 亚洲18禁久久av| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 亚洲第一区二区三区不卡| 国产欧美日韩精品一区二区| 中文字幕av成人在线电影| 久久久久久久午夜电影| 午夜激情福利司机影院| 亚洲午夜理论影院| 国产av在哪里看| 深爱激情五月婷婷| 国产单亲对白刺激| 黄色一级大片看看| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验 | 日本撒尿小便嘘嘘汇集6| 成年女人看的毛片在线观看| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 天堂√8在线中文| 老师上课跳d突然被开到最大视频| 精品久久久久久,| 无人区码免费观看不卡| 欧美三级亚洲精品| 国产精品久久久久久av不卡| 国产精品亚洲美女久久久| 床上黄色一级片| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 成人鲁丝片一二三区免费| 日韩人妻高清精品专区| 禁无遮挡网站| .国产精品久久| 日本a在线网址| 日日摸夜夜添夜夜添av毛片 | 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 在线免费观看不下载黄p国产 | 中亚洲国语对白在线视频| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 精品久久久久久久人妻蜜臀av| 久久人人爽人人爽人人片va| 乱码一卡2卡4卡精品| 日本 av在线| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 成人av一区二区三区在线看| 日本一二三区视频观看| 亚洲专区国产一区二区| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 亚洲av一区综合| 色5月婷婷丁香| 亚洲最大成人av| 国产精品人妻久久久久久| 国产精品日韩av在线免费观看| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 在线观看av片永久免费下载| 亚洲欧美日韩高清专用| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 亚洲人成网站在线播放欧美日韩| 一区二区三区免费毛片| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av| 日本 欧美在线| av福利片在线观看| 国产精品久久视频播放| 成年女人看的毛片在线观看| 99久久精品国产国产毛片| 变态另类成人亚洲欧美熟女| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 少妇猛男粗大的猛烈进出视频 | 美女被艹到高潮喷水动态| 香蕉av资源在线| xxxwww97欧美| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 两个人的视频大全免费|