• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the Phase-Strength Asymmetry of the North Atlantic Oscillation Using Conditional Nonlinear Optimal Perturbation

    2015-02-24 06:21:55JIANGZhinaWANGXinandWANGDonghai
    Advances in Atmospheric Sciences 2015年5期

    JIANG Zhina,WANG Xin,and WANG Donghai

    1State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    2State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou510301

    Exploring the Phase-Strength Asymmetry of the North Atlantic Oscillation Using Conditional Nonlinear Optimal Perturbation

    JIANG Zhina?1,WANG Xin2,and WANG Donghai1

    1State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    2State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou510301

    Negative-phase North Atlantic Oscillation(NAO)events are generally stronger than positive-phase ones,i.e.,there is a phase-strength asymmetry of the NAO.In this work,we explore this asymmetry of the NAO using the conditional nonlinear optimal perturbation(CNOP)method with a three-level global quasi-geostrophic spectral model.It is shown that,with winter climatological fl ow forcing,the CNOP method identi fi es the perturbations triggering the strongest NAO event under a given initial constraint.Meanwhile,the phase-strength asymmetry characteristics of the NAO can be revealed.By comparing with linear results,we fi nd that the process of perturbation self-interaction promotes the onset of negative NAO events,which is much stronger than during positive NAO onset.Results are obtained separately using the climatological and zonal-mean fl ows in boreal winter(December–February)1979–2006 as the initial basic state.We conclude,based on the fact that NAO onset is a nonlinear initial-value problem,that phase-strength asymmetry is an intrinsic characteristic of the NAO.

    North Atlantic Oscillation,asymmetry,optimization problem

    1. Introduction

    The North Atlantic Oscillation(NAO)is a very important low-frequency variability mode of the Northern Hemisphere characterized by a meridional dipole pattern in the sea level pressure fi eld and a meridional shift of the westerly jet in the North Atlantic region(Walker and Bliss,1932;Feldstein,2003;Luo et al.,2007a,2007b).It affects regional weather and climate(Hurrell,1995;Hurrell and van Loon, 1997;Pablo and Soriano,2007;L′opez-Moreno and Vicente-Serrano,2008;Song et al.,2011),and even global circulation(Wallace,2000;Jeong and Ho,2005;Hong et al.,2008; Wang et al.,2013).The NAO has a wide range of variability from several days to decades(Feldstein,2003;Ostermeier and Wallace,2003;Moore et al.,2013).

    In recent years,a series of studies have been focused on the characteristics and mechanisms of NAO events on the intraseasonal time scale.Feldstein(2003)suggested that NAO events complete their life cycle in about two weeks.Benedict et al.(2004)investigated the synoptic characteristics of individual NAO events and found that the formation of NAO events originate from synoptic-scale waves.Franzke et al.(2004),using numerical experiments,further veri fi ed the importance of the latitudinal position of perturbations relative to the climatological Atlantic jet in triggering NAO events. Rivi`ere and Orlanski(2007)emphasized the importance of high-frequency momentum fl ux on the NAO pattern by analyzing reanalysis data and numerical sensitivity experiments.

    Considering that the NAO is a nonlinear initial-value problem(Benedict et al.,2004;Franzke et al.,2004),Luo et al.(2007a)established a weakly nonlinear nondimensional barotropic model with scale-separation and uniform westerly wind assumptions and clari fi ed the dynamical mechanism of synoptic-scale waves driving the life cycle of the NAO with a period of nearly two weeks.Furthermore,Luo and Cha(2012)extended the above model by removing the uniform westerly wind assumption,and explored the effect of the meridional shift of the North Atlantic jet from its mean position on the formation of different NAO phases.Subsequently,Drouard et al.(2013)performed short-term simulations using a three-level quasi-geostrophic global model and analyzed the propagation of synoptic waves in the eastern Paci fi c in the presence of a large-scale ridge or trough anomaly and their downstream impact on the NAO.

    Many studies have illustrated the feedback of eddies on the persistence of low-frequency patterns(Robinson,2000; Feldstein,2003;Gerber and Vallis,2007).Luo et al.(2007a)theorized that the eddy forcing arising from pre-existing synoptic-scale waves is crucial for the growth and decay of the NAO.Besides,they found that negative-phase NAO (NAO-)events occurred repeatedly within the NAO region after the initial NAO-event had decayed.However,for positive-phase NAO(NAO+)events,isolated dipole blocking downstream of the North Atlantic region could occur after the initial NAO+event had decayed.These results imply that longer-persisting NAO-events are more easily maintained than NAO+events.Furthermore,Barnes and Hartmann(2010)explored the persistence of the NAO using observations of the 3D vorticity budget in the Atlantic sector. They pointed out that the eddy vorticity fl ux plays a positive eddy feedback role in the midlatitude region and is strongest during the negative-phase NAO,which induces the greater persistence of this phase of the NAO.Jiang et al.(2013)explored the dynamics of the onset of NAO with the conditional nonlinear optimal perturbation(CNOP)method.By comparing the linear and nonlinear evolutions of CNOP,they pointed outthatthenonlinearprocessesduringpositive-andnegativephase NAO onset may play different roles.In fact,by comparing Figs.6b and 7b in the work of Feldstein(2003), it is apparent that the nonlinear interaction between eddies is stronger during negative NAO events than positive NAO events.

    In the present work,we extend the study of Jiang et al.(2013)and explore the role of nonlinear processes in NAO phase-strength asymmetry(i.e.the fact that negative NAO events are usually stronger than positive ones)by comparing NAO events triggered by linear optimal perturbation and CNOP.Short-term simulations with a three-level quasigeostrophic global model are carried out.

    The remainder of the paper is organized as follows:In section 2,the data and method are presented.An analysis of the observational composite NAO events is shown in section 3,followed in section 4 by a presentation of the CNOPs triggering NAO onset and their nonlinear evolution.The role of nonlinear processes is revealed in section 5 by comparison with linear optimal perturbation.Finally,conclusions are given in section 6.

    2. Data and method

    2.1.Data

    The daily NAO index from the National Weather Service Climate Prediction Center(CPC)is used to de fi ne the NAO events.The observational streamfunction fi elds at 200,500, and 800 hPa are derived from the daily 0000 UTC ERAInterimreanalysisoftheEuropeanCenterforMedium-Range Weather Forecasts(ECMWF)(Dee et al.,2011).Our focus is on boreal winter in the months of December–February(DJF) for the period 1979–2006.

    2.2.Model

    The model used is a three-level quasi-geostrophic global spectral model proposed by Marshall and Molteni(1993), which has already been used in previous studies of the NAO (Jiang et al.,2013;Drouard et al.,2013).The model equations are as follows:

    Here,the indexi=1,2,3 refers to 200,500,and 800 hPa, respectively;Qiandψirepresent the potential vorticity and streamfunction;Jindicates the Jacobian operator of a 2D if eld;andDiare the linear dispersion operators.

    are the potential vorticity forcing terms,which are estimated using the following expression(Drouard et al.,2013):

    whereandare the climatological states generated from the ERA-Interim reanalysis data in boreal winter(DJF)during 1979–2006 with a T21 truncation at three levels,to make the simulation consistent with the observational analysis.

    2.3.Set-up of the short-term optimization method

    The CNOP is an initial perturbation,which makes the objective function in the nonlinear regime acquire a maximum at the optimization time with some given constraint(Mu and Duan,2003).Many studies have revealed that CNOP is a useful tool for exploring the effect of nonlinear processes on weather and climate predictability(Sun and Mu,2011;Wang et al.,2012;Qin and Mu,2012;Qin et al.,2013).Duan and Mu(2006)and Duan et al.(2008)explained ENSO amplitude asymmetry using this method.Inspired by their work, and considering that the formation of the NAO is a nonlinear initial-value problem(Franzke et al.,2004;Luo et al.,2007a, 2007b),CNOP is applied to explore the phase-strength asymmetry of the NAO.

    The particular set-up of the nonlinear optimization method used here has been described previously in Jiang et al.(2013);however,for convenience,we provide a simple introduction as follows:First,an empirical orthogonal function(EOF)is applied to a long-term streamfunction anomaly fi eld to obtain the typical NAO pattern.Then,an NAO index,which is similar to the standardized principal component time series of the computed EOF,is de fi ned to quantify the intensity of an NAO event.The CNOPs triggering the NAO-(NAO+)onset are the initial perturbations that make the difference of the NAO indices between the perturbed basic state and the reference state at the optimization time acquire a minimum(maximum)under some initial constraint condition.That is,for the initial anomalies satisfying the given constraint condition,the NAO event caused by the CNOPs is the strongest during all those induced by other initial perturbations.In this study,a total energy norm(Franzke and Majda,2006;Jiang et al.,2008)is used as the initial constraint.

    3. CharacteristicsofthecompositeNAO events from observational evidence

    The criterion to select the NAO events in this research follows that of Feldstein(2003).Brie fl y,if the NAO index fromCPC is greater(less)than 1.0(-1.0)standard deviation for fi ve or more consecutive days,then a positive(negative)NAO event is de fi nedto takeplace.The fi rst day on whichthe NAO index exceeds the threshold is noted as the onset day[lag(0)]. Accordingly,we de fi ne 32 NAO+and 16 NAO-events.

    The composite evolution of the anomalous 200 hPa streamfunction fi eld for NAO events from ERA-Interim reanalysis from lag(-2)days to lag(10)days is shown in Fig.1. As seen in Fig.1a,at lag(-2)days,a statistically signi fi cant NAO-pattern with a high-over-low dipole anomaly is shown over the east of Greenland and the midlatitude North Atlantic Ocean.This dipole pattern then propagates westward and reaches maturity at lag(2)days over Greenland and the midlatitude North Atlantic Ocean.At lag(10)days,the NAO-has weakened.From Fig.1b we can see that the NAO+with a low-over-high dipole anomaly over Greenland and the midlatitude North Atlantic Ocean forms at lag(-2)days and,by lag(4)days,it is largely strengthenedin situ.At lag(8)days, only weak remnants of the NAO+are found.Comparatively, the life cycle of the composite NAO-events is longer than that of the NAO+events.Another distinct difference between the two phases of NAO events is that the amplitude of the composite NAO-events is remarkably stronger than that of the NAO+events in the mature stage.This characteristic can also be found in Luo et al.(2012,Fig.1),though their criterion for selecting NAO events was based on different persistence periods(i.e.,3 days).

    To better compare the strength of the two NAO phases, we de fi ne an NAO strength index,which is the absolute value of the difference of the two streamfunction anomalous centers of the NAO pattern between higher and lower latitudes. The temporal evolution of the NAO strength index in the 200 hPa streamfunction fi eld from lag(0)to lag(8)days is shown in Fig.2.The data clearly show that the composite NAO-events are stronger than the corresponding NAO+events during their life cycles,which illustrates the characteristics of NAO phase-strength asymmetry from the observational point of view.

    4. CNOPs and the triggered NAO events

    In this section,we seek to identify the optimal perturbations triggering NAO onset with an optimization time of eight days.An upper-bound of the initial constraint magnitude 4 J kg-1is chosen in order to make the amplitude of the initial perturbation approximately 30 gpm.The results for the winter climatological and zonal mean(an average over all longitudes) fl ows as the initial basic state are presented.

    4.1.Winter climatological fl ow

    Figure 3 presents the CNOP triggering the NAO-onset(CNOP-Ne)with an optimization time of eight days and its nonlinear evolution at 500 hPa.It is found that CNOPNe at 500 hPa is mainly concentrated in and around the mid-to-high latitudes of North America(Fig.3a).The wave trains at lower-to-middle levels over North America present a baroclinic structure,which is westward with height(not shown).Initially,the CNOP-Ne propagates southeast withtime(Fig.3b).When the perturbations reach the east coast of North America,they begin to propagate along the classical regions of strong baroclinicity over the Atlantic(Hoskins and Valdes,1990)to the northeast(Fig.3c),and fi nally form the dipole NAO-anomaly(Fig.3d).

    Similarly,the CNOP triggering the NAO+onset(CNOPPo)with an optimization time of eight days and its nonlinear evolution at 500 hPa are shown in Fig.4.It can be seen that the CNOP-Po at 500 hPa is mainly located over the highlatitudeNorthPaci fi c(Fig.4a).CombinedwiththeCNOP-Po at 200 and 800 hPa,a baroclinic wave train structure can still be observed over the North Paci fi c at lower-to-middle levels (not shown),more upstream than that of the CNOP-Ne with the same optimization time(Fig.3a).This is consistent with the observational evidence revealed by Feldstein(2003)that the formation of NAO-appears to be primarilyin situ.At the initial time,a wave train over the east coast of Asia to the North Paci fi c propagates downstream and ampli fi es mostly over the Paci fi c region of strong baroclinicity(Hoskins and Valdes,1990),and forms a strong meridional low-over-high dipole structure over the North Paci fi c.Another wave train over the east coast of North America to the North Atlantic ampli fi es mostly at around day 5,which propagates over the Atlantic region of strong baroclinicity(Hoskins and Valdes, 1990),and fi nally forms the dipole NAO+anomaly(Fig. 4d).Comparatively,strong energy dispersion of CNOP-Po exists during its evolution;whereas,the perturbation energy of CNOP-Ne mainly concentrates over the North Atlantic region.This may partly explain why the NAO+is weaker than the NAO-at the optimization time.In the theoretical model of Luo et al.(2007a),they also attributed the energy disper-sion of NAO+events as causing the frequent occurrence of European blocking events and,accordingly,NAO persistence asymmetry in the two phases.The difference here is that we focus on the perturbation evolution during an NAO onset stage,whereas Luo et al.(2007a)paid attention to what will happen after an NAO event decays.

    4.2.Winter zonal-mean fl ow

    To further explore the effect of the background fl ow on the asymmetric characteristics of the NAO,the CNOPs and their nonlinear evolution based on the winter zonal-mean fl ow as the initial basic state are examined.

    The CNOPs triggering the positive and negative NAO onset over the zonal-mean fl ow with an optimization time of eight days and their nonlinear evolution at 500 hPa at day eight are presented in Fig.5.It is found that the CNOP-Ne is distributed over the midlatitude Western Hemisphere.Comparatively,the CNOP-Po is composed of two wave trains,one upstream over the North Paci fi c Ocean and the other over the east coast of North America and the North Atlantic.At the optimization time,an NAO-like pattern can be observed, in which one anomaly forms over southern Greenland,accompanied by another anomaly with an opposite sign to its south.Comparatively,the NAO-is still stronger than the NAO+,meaning that the phase-strength asymmetry is an intrinsic characteristic of the NAO,unaffected by the initial background fl ow.

    5. Role of nonlinear processes

    To better illustrate the role of nonlinear processes,in this section we calculate the conditional linear optimal perturbation(CLOP)triggering the NAO onset.To obtain the CLOP, a new objective function is de fi ned,which is similar to that of CNOP but the nonlinear evolution of the initial perturbation is replaced by its tangent linear integration.In addition, a very small value is chosen as the initial constraint.After the CLOP is obtained,because of its linear characteristics, the energy norm of CLOP is then scaled to the same as that of CNOP.The CLOP triggering the NAO+(NAO-)onset is called CLOP-Po(CLOP-Ne).The spatial pattern of CLOPPo is similar to that of CLOP-Ne,but with an opposite sign.

    The CLOP-Ne with an optimization time of eight days and its linear and nonlinear evolution at day eight based on climatological fl ow is presented in Fig.6.Comparing with Fig.3a,it is apparent that,at the initial time,CLOP-Ne has another strong negative anomaly over the east coast of Asia, whereas CNOP-Ne has another strong positive anomaly over North Canada.The linear and nonlinear evolution of CLOPNe can both develop into a dipole NAO-structure(Figs. 6b and c).Comparatively,the NAO-induced by CNOP-Ne (Fig.3d)is stronger than that triggered by CLOP-Ne.Thismay be due to the strong positive anomaly over North Canada for CNOP-Ne making a positive contribution to the northern center of the NAO-dipole pattern.Because of the linear characteristics,CLOP-Po and its linear evolution are similar to CLOP-Ne and its linear evolution,but with an opposite sign.The nonlinear evolution of CLOP-Po is shown in Fig. 6d.It seems that the southern center of the NAO+dipole pattern is somewhat displaced northwestward.The two anomalous centers of the NAO+dipole pattern are weaker than that in Fig.4d.

    The NAO indices triggered by the linear and nonlinear optimal perturbations based on the climatological fl ow at the optimization time of fi ve and eight days are illustrated in Table 1.It is clear that the linear evolution of CLOP-Ne and CLOP-Po are symmetric.The nonlinear evolution of CLOPNe is stronger than that of CLOP-Po with the same optimization time,both of which are weaker than their respective linear evolution.In addition,the nonlinear evolution of CNOPNe is also stronger than that of CNOP-Po with the optimization time of fi ve and eight days,respectively.Though the phase-strength asymmetry of NAO events can be revealed by both the nonlinear evolution of CLOPs and CNOPs,we also notice that the nonlinear evolution of CNOP is stronger than that of CLOP with the same speci fi ed constraints,which implies CNOP is the most optimal perturbation triggering the NAO onset in the nonlinear regime.

    To better illustrate the physics of nonlinear processes, wecalculatethenonlinearterm(perturbationself-interaction)?-2[-J(?,q)]and the linear terms(perturbation/basic state interaction)?-2[-J(ψ,q)]+?-2[-J(?,Q)]for CNOPs,in whichqand?represent the perturbation potential vorticity and streamfunction,andQandψrepresent the potential vorticity and streamfunction of the basic state.?-2represents the inverse Laplace operator.The projection(Feldstein, 2003)of the above terms on the typical NAO pattern at 200 hPa for CNOP-Ne and CNOP-Po with an optimization time of eight days based on the climatological fl ow is shown in Fig.7.It can be seen that the CNOP-Po self-interaction contributes to a positive or negative effect during the NAO+onset,far less than the CNOP-Po/basic state interaction.However,the CNOP-Ne self-interaction contributes more than the CNOP-Ne/basic state interaction before day 5,which both promote the evolution of NAO-events.After day 5,the CNOP-Ne self-interaction contributes slightly less than thatof the CNOP-Ne/basic state interaction.It is evident that the perturbation/basic state interaction during NAO-onset is much stronger than that during NAO+onset.The perturbationself-interactiondetermines thenegativephaseof NAO, whereas it only modi fi es positive NAO events.

    Similarly,the index of the NAO events triggered by the optimal perturbations based on the zonal-mean fl ow at different optimization times is also shown in Table 2.Again, the linear evolution of CLOP-Ne and CLOP-Po are symmetric.The nonlinear evolution of CLOP-Ne is stronger than thatof CLOP-Po,both of which are much weaker than their respective linear evolution.For CNOPs,we fi nd that the nonlinear evolution of CNOP-Ne is stronger than that of CNOPPo with the optimization time of fi ve and eight days,respectively.However,the nonlinear evolution of CNOPs is much stronger than that of their respective CLOPs.In spite of whether the nonlinear evolution of CNOPs or the nonlinear evolution of CLOPs can reveal the phase-strength asymmetry of NAO,linear approximation greatly underestimates the NAO strength.In addition,it also illustrates that the phasestrength asymmetry of NAO is unaffected by the background fl ow.

    Table 1.The NAO index induced by CLOPs and CNOPs at the optimization time(T)of fi ve and eight days using the winter climatological fl ow.

    The results of the above two sets of experiments with different basic states suggest that the phase-strength asymmetry is an intrinsic characteristic of the NAO induced by nonlinear processes during NAO onset.Perturbation energy is inclined to accumulate over the North Atlantic sector during NAO-onset,but dissipates easily during the formation of NAO+ events.

    6. Summary and conclusions

    In this work,Medium-Range Weather Forecasts ERAInterim reanalysis data are used to reveal a phase-strength asymmetry of the NAO,i.e.,the composite NAO-events are stronger than NAO+events during boreal winter(DJF) 1979–2006.This asymmetry is explored using the CNOP method with a quasi-geostrophic T21 three-level spectral model.

    For consistency,the forcing term of the model is fi rst generated with the ECMWF ERA-Interim climatological fl ow during winter 1979–2006.Under the given initial constraint condition,the CNOPs triggering the positive and negative NAO events over the winter climatological fl ow are obtained. It is found that the optimal precursors possess localized characteristics,mainly over the mid-to-high latitudes.With time, theprecursorspropagatesoutheastwardandamplify,doingso most rapidly when they reach the classical regions of strong baroclinicity.At the optimization time,an NAO-like pattern can be observed over the North Atlantic.Comparatively,it seems that the NAO-is stronger than the NAO+with the sameoptimizationtime.Ifweusethewinterzonal-mean fl ow as the initial basic state forced by the climatological fl ow,the NAO events with the correct spatial scale and phase-strength asymmetry can still be triggered.The propagation path and evolution of the optimal perturbations can be clearly revealed with this global spectral model.

    In contrast,according to our sensitivity experiments,no NAO events can be triggered by CNOPs if the forcing term is generated with the winter zonal-mean fl ow.This suggests that zonal asymmetric forcing is crucial for the growth of the NAO.Franzke et al.(2004)used sensitivity experiments to verify that the zonally symmetric basic state cannot show realistic NAO characteristics of the correct spatial and temporal scale,which is consistent with our results.In addition,as we know,CNOP is dependent on the norm used in the de fi nition of the objective function(Jiang et al.,2008;Mu and Jiang, 2008).In this paper,we fi nd that it is not sensitive to the initial norm used with the streamfunction squared norm or the total energy norm.

    Furthermore,by projecting the linear term and nonlinear term on the NAO pattern and comparing with the NAO indices induced by CNOPs and CLOPs,we fi nd that the infl uence of nonlinear processes on NAO-onset is greater than that on NAO+onset.The perturbation self-interaction greatly promotes the negative NAO onset,whereas it sometimes promotes,and sometimes prohibits,the positive NAO onset.In addition,it is the different role played by the perturbation self-interaction that induces the phase-strength asymmetry of NAO events.We can attempt to understand this in terms of the strength asymmetry of the mean westerly wind in the mid-to-high latitudes associated with the phase of NAO events.During the onset of NAO+events,the westerly jet core is shifted poleward(DeWeaver and Nigam,2000a, 2000b;Luo et al.,2007b;Jiang et al.,2013),which leads to eddy fl uxes producing a poleward transport of heat and, accordingly,the baroclinicity in the region of the shifted jet is reduced(Robinson,2000).Subsequently,less eddies are produced.In this case,the nonlinear processes induced by eddies become less important.For NAO-events,the oppositeistrue.BarnesandHartmann(2010)usedobservationsof the 3D vorticity budget in the Atlantic sector to attribute the stronger positive feedback during NAO-events to an association with anomalous northward eddy propagation away from the jet.Therefore,in future work,a complex global circulation model should be used to further examine the dynamical mechanisms that dominate the phase-strength asymmetry of the NAO.

    Acknowledgements.We thank the editor and two anonymous reviewers for their insightful suggestions,which helped to greatly improve the manuscript.This study was jointly supported by the National Key Basic Research and Development(973)Project(Grant No.2012CB417200)and the National Natural Science Foundation of China(Grant No.41230420).

    REFERENCES

    Barnes,E.A.,and D.L.Hartmann,2010:Dynamical feedbacks and the persistence of the NAO.J.Atmos.Sci.,67,851–865.

    Benedict,J.J.,S.Lee,and S.B.Feldstein,2004:Synoptic view of the North Atlantic Oscillation.J.Atmos.Sci.,61,121–144.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: con fi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597.

    DeWeaver,E.,and S.Nigam,2000a:Do stationary waves drive the zonal-mean jet anomalies of the northern winter?J.Climate, 13,2160–2176.

    DeWeaver,E.,and S.Nigam,2000b:Zonal-eddy dynamics of the North Atlantic Oscillation.J.Climate,13,3893–3914.

    Drouard,M.,G.Rivi`ere,and P.Arbogast,2013:The North Atlantic Oscillation response to large-scale atmospheric anomalies in the Northeast Paci fi c.J.Atmos.Sci.,70,2854–2874.

    Duan,W.S.,and M.Mu,2006:Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation.J.Geophys.Res.,111,C07015, doi:10.1029/2005JC003458.

    Duan,W.S.,H.Xu,and M.Mu,2008:Decisive role of nonlinear temperature advection in El Ni?no and La Ni?na amplitude asymmetry.J.Geophys.Res.,113,C01014,doi:10.1029/ 2006JC003974.

    Feldstein,S.B.,2003:The dynamics of NAO teleconnection pattern growth and decay.Quart.J.Roy.Meteor.Soc.,129,901–924.

    Franzke,C.,and A.J.Majda,2006:Low-order stochastic mode reduction for a prototype atmospheric GCM.J.Atmos.Sci., 63,457–479.

    Franzke,C.,S.Lee,andS.B.Feldstein,2004:IstheNorthAtlantic Oscillation a breaking wave?J.Atmos.Sci.,61,145–160.

    Gerber,E.P.,and G.K.Vallis,2007:Eddy–zonal fl ow interactions and the persistence of the zonal index.J.Atmos.Sci., 64,3296–3311.

    Hong,C.C.,H.H.Hsu,and C.Y.Wu,2008:Decadal relationship between the North Atlantic Oscillation and cold surge frequency in Taiwan.Geophys.Res.Lett.,32,L24707,doi: 10.1029/2008GL034766.

    Hoskins,B.J,and P.J.Valdes,1990:On the existence of stormtracks.J.Atmos.Sci.,47,1854–1864.

    Hurrell,J.W.,1995:Decadal trends in the North Atlantic Oscillation:Regional temperatures and precipitation.Science,269, 676–679.

    Hurrell,J.W.,and H.van Loon,1997:Decadal variations in climate associated with the North Atlantic Oscillation.Climatic Change,36,301–326.

    Jeong,J.H.,and C.H.Ho,2005:Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation.Geophys.Res.Lett.,32,L14704,doi:10.1029/2005 GL023024.

    Jiang,Z.N.,M.Mu,and D.H.Wang,2008:Conditional nonlinear optimal perturbation of a T21L3 quasi-geostrophic model.Quart.J.Roy.Meteor.Soc.,134,1027–1038.

    Jiang,Z.N.,M.Mu,and D.H.Luo,2013:A study of the North Atlantic Oscillation using conditional nonlinear optimal perturbation.J.Atmos.Sci.,70,855–875.

    L′opez-Moreno,J.I.,and S.M.Vicente-Serrano,2008:Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe:A multitemporalscale approach.J.Climate,21(6),1220–1243.

    Luo,D.H.,and J.Cha,2012:The North Atlantic Oscillation and the North Atlantic jet variability:Precursors to NAO regimes and transitions.J.Atmos.Sci.,69,3763–3787.

    Luo,D.H.,A.Lupo,and H.Wan,2007a:Dynamics of eddydriven low-frequency dipole modes.Part II:A simple model of North Atlantic Oscillations.J.Atmos.Sci.,64(1),3–28.

    Luo,D.H.,T.T.Gong,and Y.N.Diao,2007b:Dynamics of eddy-driven low-frequency dipole modes.Part III:Meridional shifts of westerly jet anomalies during two phases of NAO.J. Atmos.Sci.,64,3232–3243.

    Luo,D.H.,J.Cha,and S.B.Feldstein,2012:Weather regime transitions and the interannual variability of the North Atlantic Oscillation.Part II:Dynamical processes.J.Atmos.Sci.,69, 2347–2363.

    Marshall,J.,and F.Molteni,1993:Toward a dynamical understanding of planetary-scale fl ow regimes.J.Atmos.Sci.,50, 1792–1818.

    Moore,G.W.K.,R.A.Renfrew,and R.S.Pickart,2013:MultidecadalMobilityoftheNorthAtlanticOscillation.J.Climate, 26,2453–2466.

    Mu,M.,and W.S.Duan,2003:A new approach to studying ENSO predictability:Conditional nonlinear optimal perturbation.Chinese Sci.Bull.,48,1045–1047.

    Mu,M.,and Z.N.Jiang,2008:A method to fi nd perturbations that trigger blocking onset:Conditional nonlinear optimal perturbations.J.Atmos.Sci.,65,3935–3946.

    Ostermeier,G.M.,and J.M.Wallace,2003:Trends in the North Atlantic Oscillation–northern hemisphere annular mode during the twentieth century.J.Climate,16,336–341.

    Pablo,F.D.,and L.R.Soriano,2007:Winter lightning and North Atlantic Oscillation.Mon.Wea.Rev.,135,2810–2815.

    Qin,X.H.,and M.Mu,2012:In fl uence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts.Quart.J.Roy.Meteor.Soc.,138,185–197.

    Qin,X.H.,W.S.Duan,and M.Mu,2013:Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations.Quart.J.Roy.Meteor.Soc.,139,1544–1554.

    Rivi`ere,G.,and I.Orlanski,2007:Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation.J.Atmos.Sci.,60,241–266.

    Robinson,W.A.,2000:A baroclinic mechanism for the eddy feedback on the zonal index.J.Atmos.Sci.,57,415–422.

    Song,J.,W.Zhou,X.Wang,and C.Y.Li,2011:Zonal asymmetry of the annular mode and its downstream subtropical jet: An idealized model study.J.Atmos.Sci.,68,1946–1973,doi: 10.1175/2011JAS3656.1.

    Sun.G.D.,and M.Mu,2011:Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem.Nonlinear Processes in Geophysics,18,883–893,doi: 10.5194/npg-18-883-2011.

    Walker,G.T.,and E.W.Bliss,1932:World weather V.Mem.Roy. Meteor.Soc.,4,53–84.

    Wallace,J.M.,2000:North Atlantic Oscillation/annular mode: Two paradigms—one phenomenon.Quart.J.Roy.Meteor. Soc.,126,791–805.

    Wang,Q.,M.Mu,and A.D.Henk,2012:Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio Large Meander.Adv.Atmos. Sci.,29,118–134,doi:10.1007/s00376-011-0199-0.

    Wang,W.,W.Zhou,X.Wang,S.K.Fong,and K.C.Leong,2013: Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection.J.Geophys.Res.Atmos.,118,8306–8319,doi: 10.1002/jgrd.50633.

    :Jiang,Z.N.,X.Wang,and D.H.Wang,2015:Exploring the phase-strength asymmetry of the North Atlantic Oscillation using conditional nonlinear optimal perturbation.Adv.Atmos.Sci.,32(5),671–679,

    10.1007/s00376-014-4094-3.

    (Received 12 May 2014;revised 15 September 2014;accepted 26 September 2014)

    ?Corresponding author:JIANG Zhina

    Email:jzn@cams.cma.gov.cn

    精品国产超薄肉色丝袜足j| 老司机深夜福利视频在线观看| 欧美日韩视频精品一区| 免费观看人在逋| 日韩欧美国产一区二区入口| 超碰97精品在线观看| 国产无遮挡羞羞视频在线观看| 精品国产国语对白av| 欧美日韩av久久| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 一边摸一边抽搐一进一出视频| 亚洲va日本ⅴa欧美va伊人久久| 在线国产一区二区在线| 搡老熟女国产l中国老女人| 一级毛片精品| 9191精品国产免费久久| 亚洲免费av在线视频| 人妻久久中文字幕网| 亚洲男人的天堂狠狠| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 欧美黑人精品巨大| 两个人免费观看高清视频| 亚洲男人的天堂狠狠| 精品一区二区三区av网在线观看| 色播在线永久视频| 亚洲欧美精品综合久久99| 欧美人与性动交α欧美精品济南到| 午夜精品在线福利| 国产精品偷伦视频观看了| 国产精品久久视频播放| 最近最新免费中文字幕在线| 国产精品国产av在线观看| 国产欧美日韩一区二区三| 国产欧美日韩一区二区三| avwww免费| 日韩中文字幕欧美一区二区| 悠悠久久av| 亚洲精品国产色婷婷电影| 国产1区2区3区精品| 国产99久久九九免费精品| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| 91av网站免费观看| 免费av毛片视频| 亚洲av电影在线进入| 日韩三级视频一区二区三区| 亚洲熟妇熟女久久| av中文乱码字幕在线| 久久精品aⅴ一区二区三区四区| 高清欧美精品videossex| 久久精品91蜜桃| 精品国产超薄肉色丝袜足j| 久久欧美精品欧美久久欧美| 女人被躁到高潮嗷嗷叫费观| 巨乳人妻的诱惑在线观看| 日韩欧美一区视频在线观看| 在线观看舔阴道视频| 9191精品国产免费久久| 亚洲 欧美 日韩 在线 免费| 可以在线观看毛片的网站| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦在线免费观看视频4| 最新在线观看一区二区三区| 国产区一区二久久| 国产精品一区二区免费欧美| 国产熟女xx| 十八禁人妻一区二区| 欧美成狂野欧美在线观看| 超色免费av| 久久久久久久午夜电影 | 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产精品电影一区二区三区| 一进一出抽搐动态| 亚洲一区二区三区欧美精品| 黄色片一级片一级黄色片| 欧美另类亚洲清纯唯美| 丝袜人妻中文字幕| 久久久国产成人免费| 国产成人欧美在线观看| 99精品久久久久人妻精品| 日本一区二区免费在线视频| 99久久精品国产亚洲精品| 制服人妻中文乱码| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 黄色毛片三级朝国网站| 99国产精品99久久久久| 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 在线观看免费视频日本深夜| 一边摸一边做爽爽视频免费| 国产成人系列免费观看| av中文乱码字幕在线| 精品国产一区二区三区四区第35| 99re在线观看精品视频| 少妇被粗大的猛进出69影院| 女性生殖器流出的白浆| 欧美黑人欧美精品刺激| 日韩欧美国产一区二区入口| 国产精品国产av在线观看| 午夜福利在线免费观看网站| 1024视频免费在线观看| 别揉我奶头~嗯~啊~动态视频| 最新美女视频免费是黄的| 亚洲情色 制服丝袜| 一级毛片精品| 两个人看的免费小视频| 岛国在线观看网站| 国产精品国产高清国产av| www.自偷自拍.com| 免费少妇av软件| 波多野结衣高清无吗| 久久国产精品男人的天堂亚洲| 亚洲 欧美 日韩 在线 免费| av中文乱码字幕在线| 天堂动漫精品| 亚洲国产精品一区二区三区在线| 又大又爽又粗| 欧美在线一区亚洲| e午夜精品久久久久久久| 女人被狂操c到高潮| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区久久| 999精品在线视频| 在线观看一区二区三区激情| 日韩三级视频一区二区三区| 久久精品成人免费网站| 亚洲第一欧美日韩一区二区三区| 免费观看精品视频网站| 久久国产精品影院| 一级a爱片免费观看的视频| 五月开心婷婷网| 久久久久国内视频| 大码成人一级视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品一卡2卡三卡4卡5卡| 国产av在哪里看| 日韩欧美三级三区| 亚洲av熟女| 老司机午夜十八禁免费视频| 精品久久久久久久久久免费视频 | 亚洲视频免费观看视频| 一个人免费在线观看的高清视频| 男人的好看免费观看在线视频 | 精品一区二区三区视频在线观看免费 | 国产亚洲av高清不卡| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 亚洲欧美激情综合另类| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 午夜免费鲁丝| 不卡一级毛片| 99国产精品免费福利视频| 91国产中文字幕| 国产高清国产精品国产三级| 亚洲色图av天堂| 亚洲国产精品sss在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看视频国产中文字幕亚洲| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 日韩大码丰满熟妇| 级片在线观看| 激情在线观看视频在线高清| 亚洲 国产 在线| 美女高潮到喷水免费观看| 欧美精品一区二区免费开放| 国产在线精品亚洲第一网站| 黑人巨大精品欧美一区二区mp4| 少妇被粗大的猛进出69影院| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 免费在线观看视频国产中文字幕亚洲| 99久久人妻综合| 成人亚洲精品一区在线观看| 欧美日韩视频精品一区| 淫妇啪啪啪对白视频| 国产无遮挡羞羞视频在线观看| 亚洲男人天堂网一区| 免费搜索国产男女视频| 色综合欧美亚洲国产小说| 无限看片的www在线观看| 亚洲美女黄片视频| 久久精品人人爽人人爽视色| 一进一出抽搐动态| 一级毛片精品| 亚洲伊人色综图| 国产精品爽爽va在线观看网站 | 纯流量卡能插随身wifi吗| 深夜精品福利| 久久九九热精品免费| 两个人看的免费小视频| 夜夜看夜夜爽夜夜摸 | 午夜老司机福利片| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 91九色精品人成在线观看| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 精品一区二区三区四区五区乱码| 黑人操中国人逼视频| 免费看a级黄色片| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 亚洲第一av免费看| 欧美成人性av电影在线观看| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 丰满迷人的少妇在线观看| 亚洲欧美激情在线| 男女床上黄色一级片免费看| 男人操女人黄网站| 国产激情欧美一区二区| 大型黄色视频在线免费观看| 午夜福利在线免费观看网站| 操美女的视频在线观看| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 亚洲av熟女| 黑人猛操日本美女一级片| 一级黄色大片毛片| 亚洲激情在线av| 一区二区三区精品91| 成人影院久久| 国产无遮挡羞羞视频在线观看| 日韩三级视频一区二区三区| 欧美日韩一级在线毛片| 搡老乐熟女国产| 中文亚洲av片在线观看爽| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 真人做人爱边吃奶动态| 久久久久亚洲av毛片大全| 大陆偷拍与自拍| 中出人妻视频一区二区| a级毛片黄视频| 午夜免费观看网址| 中文欧美无线码| 久久影院123| 精品国产亚洲在线| 在线天堂中文资源库| bbb黄色大片| 亚洲av成人一区二区三| 日本欧美视频一区| 亚洲欧美一区二区三区黑人| 久久草成人影院| 欧美日韩瑟瑟在线播放| 18禁观看日本| 91国产中文字幕| 十八禁人妻一区二区| 一本综合久久免费| 女性生殖器流出的白浆| 91大片在线观看| 午夜免费成人在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日本黄色视频三级网站网址| 一级片免费观看大全| 亚洲欧美一区二区三区久久| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 亚洲第一青青草原| www.精华液| 亚洲少妇的诱惑av| 热99re8久久精品国产| 一级a爱视频在线免费观看| 国产精品一区二区三区四区久久 | 老司机在亚洲福利影院| 精品人妻在线不人妻| 日日干狠狠操夜夜爽| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 1024香蕉在线观看| 久久久久九九精品影院| 欧美久久黑人一区二区| 国产精品综合久久久久久久免费 | 一区二区日韩欧美中文字幕| 男人的好看免费观看在线视频 | 婷婷精品国产亚洲av在线| 久久久久国内视频| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 老鸭窝网址在线观看| 成人亚洲精品av一区二区 | 欧美乱妇无乱码| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三| 国产精华一区二区三区| 亚洲在线自拍视频| 国产精品98久久久久久宅男小说| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 韩国精品一区二区三区| 亚洲中文av在线| 高清在线国产一区| 亚洲少妇的诱惑av| 国产精品 国内视频| 亚洲男人的天堂狠狠| 97碰自拍视频| 狠狠狠狠99中文字幕| 黄色丝袜av网址大全| 久久人人精品亚洲av| 中文欧美无线码| 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 日韩欧美在线二视频| 亚洲全国av大片| 亚洲av熟女| 久久青草综合色| 免费看a级黄色片| 欧美在线一区亚洲| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 新久久久久国产一级毛片| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 亚洲一区二区三区不卡视频| 成人三级黄色视频| 桃红色精品国产亚洲av| 久久久久久久久中文| av中文乱码字幕在线| 免费搜索国产男女视频| 怎么达到女性高潮| 亚洲成人精品中文字幕电影 | 级片在线观看| 韩国精品一区二区三区| 亚洲黑人精品在线| 啦啦啦在线免费观看视频4| avwww免费| 欧美日韩福利视频一区二区| 又黄又爽又免费观看的视频| 91精品三级在线观看| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 国产成人精品在线电影| 久久热在线av| 国产精品久久久av美女十八| 成人黄色视频免费在线看| 国产成+人综合+亚洲专区| 淫秽高清视频在线观看| 国产亚洲精品一区二区www| 91成年电影在线观看| 美女福利国产在线| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| av福利片在线| 男人舔女人的私密视频| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看 | 亚洲美女黄片视频| 中出人妻视频一区二区| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 国产精品二区激情视频| 久久 成人 亚洲| 国产三级黄色录像| 91九色精品人成在线观看| 国产有黄有色有爽视频| 国产精品国产高清国产av| 日韩av在线大香蕉| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| 麻豆av在线久日| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 女同久久另类99精品国产91| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| av视频免费观看在线观看| 天堂影院成人在线观看| 日本黄色日本黄色录像| 色综合婷婷激情| 国产精品av久久久久免费| 国产精品久久久久成人av| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 大香蕉久久成人网| 国产高清视频在线播放一区| 亚洲成a人片在线一区二区| 在线视频色国产色| 免费久久久久久久精品成人欧美视频| 91麻豆精品激情在线观看国产 | 久久久久久久午夜电影 | 在线看a的网站| 精品福利观看| 中文欧美无线码| 国产高清视频在线播放一区| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 欧美激情 高清一区二区三区| 久久人人爽av亚洲精品天堂| 久久久久久久午夜电影 | 免费看十八禁软件| 999精品在线视频| 人人妻人人澡人人看| 国产av在哪里看| 99久久综合精品五月天人人| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 国产精品九九99| 午夜91福利影院| 一夜夜www| 曰老女人黄片| 国产色视频综合| 午夜视频精品福利| 国产精品亚洲av一区麻豆| av在线播放免费不卡| 在线播放国产精品三级| 久久精品影院6| 亚洲国产欧美网| 51午夜福利影视在线观看| 国产精品国产高清国产av| 久久久久国内视频| 欧美一区二区精品小视频在线| 国产精品秋霞免费鲁丝片| av中文乱码字幕在线| 精品日产1卡2卡| 亚洲精品一二三| 亚洲色图综合在线观看| 91av网站免费观看| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 久久精品亚洲av国产电影网| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 一进一出好大好爽视频| 国产成人免费无遮挡视频| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 精品福利观看| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲视频免费观看视频| 真人做人爱边吃奶动态| 亚洲一码二码三码区别大吗| 999久久久精品免费观看国产| 美女 人体艺术 gogo| 久久国产精品男人的天堂亚洲| 亚洲欧洲精品一区二区精品久久久| 亚洲精品美女久久av网站| 精品国产国语对白av| 69av精品久久久久久| 丰满饥渴人妻一区二区三| 国产欧美日韩综合在线一区二区| 无遮挡黄片免费观看| 色尼玛亚洲综合影院| 欧美日本中文国产一区发布| 女人爽到高潮嗷嗷叫在线视频| 麻豆成人av在线观看| 精品熟女少妇八av免费久了| 国产又爽黄色视频| 精品久久久久久久久久免费视频 | 国产在线精品亚洲第一网站| 黑丝袜美女国产一区| 亚洲色图av天堂| 香蕉国产在线看| 99国产极品粉嫩在线观看| 国产激情久久老熟女| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 亚洲专区字幕在线| 一区二区三区精品91| 久久久久亚洲av毛片大全| 国产成人啪精品午夜网站| 长腿黑丝高跟| 不卡av一区二区三区| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 国产高清videossex| 久久久久久久午夜电影 | 免费看十八禁软件| 亚洲av成人不卡在线观看播放网| 夫妻午夜视频| 美女高潮到喷水免费观看| 岛国在线观看网站| 久久久国产成人免费| 国产成人系列免费观看| 黄色a级毛片大全视频| 欧美激情高清一区二区三区| 黄网站色视频无遮挡免费观看| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区| 亚洲色图综合在线观看| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 免费在线观看视频国产中文字幕亚洲| 青草久久国产| 国产精品久久久av美女十八| 亚洲欧美日韩高清在线视频| 51午夜福利影视在线观看| 亚洲一区二区三区色噜噜 | 日韩免费av在线播放| av网站在线播放免费| 老汉色av国产亚洲站长工具| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 成人三级黄色视频| 怎么达到女性高潮| 高清黄色对白视频在线免费看| 免费在线观看影片大全网站| 高清av免费在线| 久久香蕉国产精品| 水蜜桃什么品种好| 久久久精品国产亚洲av高清涩受| 在线永久观看黄色视频| 久久久久久久久中文| 视频在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 男女高潮啪啪啪动态图| 天天添夜夜摸| 亚洲三区欧美一区| 欧美中文日本在线观看视频| 天堂动漫精品| a级毛片黄视频| 女警被强在线播放| 在线永久观看黄色视频| 在线观看舔阴道视频| 男人的好看免费观看在线视频 | xxx96com| 精品免费久久久久久久清纯| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 日韩三级视频一区二区三区| 777久久人妻少妇嫩草av网站| 女警被强在线播放| 国产精品国产av在线观看| 在线观看舔阴道视频| 久久精品亚洲av国产电影网| 亚洲第一av免费看| 黄色毛片三级朝国网站| 视频在线观看一区二区三区| 涩涩av久久男人的天堂| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 一进一出抽搐gif免费好疼 | 久久久水蜜桃国产精品网| 欧美日韩av久久| 精品久久久久久电影网| 久久中文看片网| 99国产精品一区二区三区| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 亚洲av片天天在线观看| 国产精华一区二区三区| 精品一区二区三卡| 丁香六月欧美| 亚洲一区二区三区欧美精品| 无遮挡黄片免费观看| 亚洲 欧美一区二区三区| a级毛片在线看网站| 国产三级在线视频| 人人妻人人添人人爽欧美一区卜| 免费人成视频x8x8入口观看| 自线自在国产av| 精品第一国产精品| а√天堂www在线а√下载| 精品电影一区二区在线| av天堂久久9| 狠狠狠狠99中文字幕| 成人国产一区最新在线观看| 国产高清videossex| 久久人妻熟女aⅴ| 天天躁夜夜躁狠狠躁躁| 欧美大码av| 亚洲七黄色美女视频| 韩国精品一区二区三区| 精品久久久久久久久久免费视频 | 欧美乱色亚洲激情| 99精品久久久久人妻精品| 丰满的人妻完整版| 日韩国内少妇激情av| 在线观看免费午夜福利视频| 国产91精品成人一区二区三区| 欧美国产精品va在线观看不卡| 99热国产这里只有精品6| 亚洲第一青青草原| 曰老女人黄片| 最新在线观看一区二区三区|