• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Dynamic Core for a Non-hydrostatic Model System on the Yin-Yang Grid

    2015-02-24 06:21:49LIXiaohanPENGXindongandLIXingliang
    Advances in Atmospheric Sciences 2015年5期

    LI XiaohanPENG Xindongand LI Xingliang

    1State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    2Center of Numerical Weather Prediction,China Meteorological Administration,Beijing100081

    An Improved Dynamic Core for a Non-hydrostatic Model System on the Yin-Yang Grid

    LI Xiaohan1,PENG Xindong?1,and LI Xingliang1,2

    1State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    2Center of Numerical Weather Prediction,China Meteorological Administration,Beijing100081

    A 3D dynamic core of the non-hydrostatic model GRAPES(Global/Regional Assimilation and Prediction System)is developed on the Yin-Yang grid to address the polar problem and to enhance the computational ef fi ciency.Three-dimensional Coriolis forcing is introduced to the new core,and full representation of the Coriolis forcing makes it straightforward to share code between the Yin and Yang subdomains.Similar to that in the original GRAPES model,a semi-implicit semi-Lagrangian scheme is adopted for temporal integration and advection with additional arrangement for cross-boundary transport.Under a non-centered second-order temporal and spatial discretization,the dry nonhydrostatic frame is summarized as the solution of an elliptical problem.The resulting Helmholtz equation is solved with the Generalized Conjugate Residual solver in cooperation with the classic Schwarz method.Even though the coef fi cients of the equation are quite different from those in the original model,the computational procedureof the newcore is just thesame.The bi-cubic Lagrangian interpolation serves to provide Dirichlet-type boundary conditions with data transfer between the subdomains.The dry core is evaluated with several benchmark test cases,and all the tests display reasonable numerical stability and computing performance.Persistency of the balanced fl ow and development of both the mountain-induced Rossby wave and Rossby–Haurwitz wave con fi rms the appropriate installation of the 3D Coriolis terms in the semi-implicit semi-Lagrangian dynamic core on the Yin-Yang grid.

    Yin-Yang grid,semi-implicit semi-Lagrangian,nonhydrostatic,dynamic core

    1. Introduction

    Thedynamiccoreistheheartoftheatmosphericmodel.It determines the computing characteristics such as the numerical accuracy and computational ef fi ciency.Use of a highorder spatial fi nite differencing scheme,semi-Lagrangian transport,advanced temporal integration,and other stateof-the-art techniques has improved model representation signi fi cantly.In addition,with the rapid development of computer systems,there is increasing demand for global high-resolution numerical weather predictions.With a conventional latitude–longitude grid,the difference between the mesh size at the equator and in the polar regions becomes larger as the model resolution increases.The large and complex computations involved in running global high-resolution models calls for a quasi-uniform grid on a sphere.For example,the Nonhydrostatic Icosahedral Atmospheric Model (NICAM,Tomita and Satoh,2004)and Model for Prediction Across Scales–Atmosphere(MPAS-A,Skamarock et al., 2012)have been developed recently for multi-scale simula-tions and cloud-resolving forecasts.Mesoscale phenomena and even cloud development can be resolved with a global atmospheric model(Satoh et al.,2010).A global nonhydrostatic model system,the Global/Regional Assimilation and Prediction System(GRAPES,Xue and Chen,2008),was developed on the latitude–longitude grid system at the Chinese Meteorological Administration.It is a fully compressible model designed for numerical weather prediction across scales.The height-based terrain-following coordinate is used to incorporate orography for the convenience of bottom boundaryarrangement.TheGRAPESdynamiccoreissolved with the semi-implicit semi-Lagrangian(SISL)method containing the spherical departure-point determination(Ritchie and Beaudoin,1994)and the non-centered fi nite differencing scheme(Semazzi et al.,1995).The 3D vector SISL scheme (Qian et al.,1998)is adopted to discretize the momentum equations.The Charney–Phillips grid(Charney and Philips, 1953)and Arakawa-C grid(Arakawa and Lamb,1997)were chosen for the staggering of physical variables in the vertical and horizontal directions,respectively.

    In high-resolution cases,however,numerical approaches developed for the longitude–latitude coordinate face additional dif fi culties,such as pole singularity and the conver-gence of meridians in the polar regions.The meridians converge closer to the poles,which makes the latitudinal grid interval null at the pole points.The singularity displays a problem in vector representation.On the other hand,the singularity is not a physical property,but a problem of coordinate system selection.The problem can be overcome in a variety of ways,such as diagnosing the polar wind with the minimization principle(McDonald and Bates,1989).In a numerical model,the time step is rigidly limited by the smallest grid spacing at the poles.This shortcoming turns into a serious issue for effective and economic model integrations in high-resolution models.In fact,the problem becomes worse and more complicated in the case of the SISL model.The existence of tan?and sec?in the horizontal advection terms reduces the accuracy of computation in high latitude areas whendealingwiththesphericaldeparture-pointintheRitchie scheme.In a latitude–longitude mesh model,subgrid-scale processes at midlatitudes may be resolved as grid-scale processes in the polar regions due to the relatively high resolution there,which confuses the physical interaction among scales.Different physics schemes are then required in the corresponding model for proper simulations.

    Owing to the aforementioned problems,model development using quasi-uniform grids on a sphere is now an important topic for multiscale simulation and numerical weather forecasting.Themostfamiliardesignsofquasi-uniformgrids are the icosahedral grid(Sadourny et al.,1968),the cubed grid(Sadourny,1972),and the Yin-Yang grid(Kageyama and Sato,2004).The advantages and disadvantages of each of these grids have been discussed in Williamson(2007),in which the Yin-Yang grid was selected as an appropriate successor to the longitude–latitude coordinate.Most numerical algorithms based on the longitude–latitude coordinate can be straightforwardly used on the Yin-Yang grid without any change.Mesh re fi nement and the practice of grid nesting are convenient because of the structured and regular grid distribution.Global and regional models can share the same dynamic frame in the Yin-Yang grid system.The disadvantage of the Yin-Yang grid,however,is the existence of inner boundaries.In this paper,we show the details of the computingprocedureoftheSISL methodwhen a3DCoriolis forcing is added.Rede fi nition of the coef fi cients of the Helmholtz equation and arrangement of the boundary consideration in the Generalized Conjugate Residual(GCR)iteration are displayed with respect to the dynamic core on the Yin-Yang grid.

    The paper is organized as follows:A brief description of the Yin-Yang grid with the interpolation scheme for inner boundaries is presented in next section.The detailed computing procedure of the nonhydrostatic dynamic core of GRAPES on the Yin-Yang grid(GRAPES YY)follows in section 3,including the SISL method,computing of the corresponding coef fi cients,and arrangement of cross-boundary transport.Numerical results of some standard tests are presented in section 4,and a conclusion to the study is provided in section 5.

    2. The Yin-Yang grid

    The Yin-Yang grid, fi rst proposed by Kageyama and Sato (2004),is composed of two identical component zones.The pair of zones are combined in a complementary way to cover the sphere with overlaps at their boundaries.Each component zone is a low latitude part of the longitude–latitude grid, and one is rotated by 90°to fi t with the other.The grid spacing is quasi-uniform—the minimum/maximum ratio of the grid spacing is about 0.707—and the coordinate is orthogonal without any singularity.Therefore,high-order interpolation schemes and fi nite difference methods that have been developed on the longitude–latitude coordinate can be applied on the Yin-Yang grid.In addition,a set of parallel computation methods can be easily introduced into the system thanks to the identical structure of the two zones.Like any other overset grid,however,the Yin-Yang grid requires interpolation at the boundaries,which might reduce the accuracy of numerical integrations and frequent communications between processors will de fi nitely decrease the computing speed of the parallel program.Global conservation is another issue for the overlapped Yin-Yang grid.The existence of inner boundaries becomes a problem for the mass- fl ux balance between the component zones.Peng et al.(2006)developed a numerical constraint to guarantee that the fl uxes at the boundaries of the two components are identical,which achieves local and global conservation.

    To solve the boundary problem of the Yin-Yang grid,a 2D Lagrange interpolation was introduced for boundary data exchange in Li et al.(2006,2008)and Baba et al.(2010). In their work,the results of benchmark tests showed that the presence of the overset region does not signi fi cantly affect the dynamics on both long and short time scales when the high-order interpolation methods are applied.In a Yin-Yang grid system,boundary data exchange occurs in the halo region that is aligned to the bounds of each domain.Quantities in the halo region are not updated with temporal integration of prognostic equations,but with interpolation from another zone.In this paper,two overset grids are de fi ned for the cubic Lagrange interpolation.The coordinate conversion between Yin and Yang grids can be expressed as

    whereλand?represent longitude and latitude,respectively, and the subscriptseandodenote the Yin and Yang grids. The scalar quantity can be interpolated directly with bi-cubic Lagrangian interpolation(Li et al.,2006),and vector transformation from the Yang to Yin zone gives

    and vice versa.

    3. Dynamical frame of the GRAPESYY

    3.1.Prognostic equations

    The nonhydrostatic governing equations of the atmosphere on a sphere read

    on a spherical coordinate system,where Π is the Exner function,θis the potential temperature,cp=1004.64 J kg-1K-1represents the speci fi c heat at constant pressure,u,vare horizontal winds andwis the vertical speed,tmeans time,g=9.80616 m s-2is the gravitational acceleration,ris the radius vector of the spherical coordinate,D3denotes the 3D divergence,fis Coriolis parameter and

    Rdrepresents the ideal gas constant for dry air,QTshows the source or sink term of heat andFTis the turbulent diffusion, both of which are 0 in this dry core.

    For uniform code design on the Yin and Yang components,3D Coriolis force,different from the original GRAPES (Chen et al.,2008),is described in the momentum equations. It also serves to improve the accuracy and fl exibility of the dynamic core.After discretization with the SISL method,the dynamical equations for the prognostic variablesu,v,w,Π′andθ′at time leveln+1 are written as

    in a height-based terrain-following coordinatewhere Π′(θ′)is a perturbation of the Exner function(potential temperature)from its reference state?Π(?θ).We note that the curvature terms in the momentum equations disappear when a semi-Lagrangian algorithm is used for transporting computation of the 3D vector.The reference state is a heightdependent function of each variable,which is the horizontal average of the given initial fi elds and is different from that in the original model.In the equations,?tis the time step andαεthe contribution adjustment factor.Information on the departure point at time levelnand the nonlinear terms are included inAx(x=u,v,w,Π′,θ′),which remains the same as intheoriginalGRAPESmodel(XueandChen,2008).Linear termsLx(x=u,v,w,Π′,θ′)at time leveln+1 are

    where

    is a residual fraction of the reference atmosphere from the hydrostatic balance state,and

    φsxandφsyare the topographic slope,zTis the model top,andzsissurfaceheight.Thetermscontainingf?andfλarenewly introduced into the equations in comparison to the GRAPES model.Considering Eqs.(13)–(15),the linear equation set of Eqs.(8)–(10)can be solved accordingly:

    where

    and

    δ=αε?tis de fi ned,and matrixis given as

    and

    wherezis the height level.Substitutewinto the thermodynamic equation[Eq.(17)]to obtainθ′at the next time level:

    where

    Whenu,v,wandLΠin Eq.(11)are substituted with Eqs. (18)–(20)and(16),a Helmholtz equation is deduced as

    where

    The related 19 Π grid points,which serves the numerical solution of Eq.(39),are displayed in Fig.1.It is worth noting that Eqs.(21)–(43)are all different from those in the original GRAPES model due to the full consideration of the 3D Coriolis term.The Helmholtz equation on the Yin-Yang grid is solved by using the GCR method with an incompleteLL Ufactorization(IL U)(Liu and Cao,2008)to speed up the convergence of the iterative algorithm.The classical Schwarz method is adopted to update the interface conditions of subdomains(Qaddouri et al.,2008).Bi-cubic Lagrangian interpolation is used for boundary updating.The threshold of absolute error,which is a sum of the Yin and Yang grids,is set to be 10-15for the numerical convergence measurement.

    3.2.Semi-Lagrangian advection

    3.2.1.Semi-Lagrangian transport on the Yin-Yang grid

    Both the nonlinear terms and the departure-point-related termsareincludedinAxinEqs.(8)–(12).Thedeparturepoint is calculated according to Ritchie and Beaudoin(1994).Halo regions are de fi ned for each component zone to avoid multitime data exchange during the parallel computation.Necessary data exchange is performed once per time step.When a departure point is located out of the computational region, it should be interpolated according to quantities in the halo zone(Fig.2).The details are summarized as follows:

    (1)Compute the position of the midpoint(λm,?m,rm)at the half-time level on the sphere considering

    where(λa,?a,ra)represents the arrival point.

    (2)Determine the velocity components at the midpoint (um,vm,wm)with linear interpolation.If the departure point is located outside the computational domain,grid points in the halo region help accomplish the interpolation.

    (3)Iterate(twice in this paper)the above two steps to modify the midpoint determination.The departure point(λd, ?d,rd)is then de fi ned as

    Note that steps(1)and(3)are the same as in the original model,while step(2)is modi fi ed because of the existence of inner boundaries.Although the departure points can be out of the computational domain,they must be limited within the outer halo region boundaries.In this dynamic frame,four groups of departure points are calculated at scalar and vector grid points,separately,to de fi ne the coef fi cients in Eqs.(24), (28),(32),and(38).

    3.2.2.Three-dimensional SISL integration for vectors on the Yin-Yang grid

    The 3D SISL integration scheme(Qian et al.,1998)for vectors is used to calculateAu,v,won the Yin-Yang grid.For scalars,the termAθ,Πcan be interpolated at the departure point(denoted with superscript“*”)directly:

    whereLx(x=θ,Π)is the linear term,Nx(x=θ,Π)is the nonlinear variation and

    We note that the termsξu0,v0,w0all containAu,v,w,θin Eqs. (24),(28)and(32).The prediction of 3D momentum calls for a good description ofAu,v,w,θ,which depends on the computation of

    at their departure points,denote by.

    In the non-uniform vertical direction,a cubic Lagrangian interpolation,

    is used to ensure high-order accuracy.A second-order formulation for the vertical gradient of Π is given as

    This ensures second-order accuracy without guaranteeing quantity conservation in the vertical transport.An alternative choice that achieves exact conservation is

    but the accuracy decreases for non-uniform grids,where the Πkis located at the middle level of?zkand?zk+1.In the horizontal directions,four grids are needed in the halo region for a cubic Lagrangian interpolation at the departure point.

    4. Numerical results of benchmark tests

    For the validation of the dynamical modi fi cation concerning 3D Coriolis and trajectory computation across boundaries,several benchmark tests are carried out to check the computational accuracy and the performance of GRAPES YY.The model top is de fi ned as 32.5 km,and the model atmosphere is divided into 36 non-uniform levels.The horizontal resolution is 2.5°.There is no viscosity added in the dry core.

    4.1.Steady-state geostrophic fl ow

    This test is a 3D extension of Test 2 in Williamson et al. (1992).The initial state is de fi ned as

    whereu0is set to be 20 m s-1andαis fl ow orientation angle, which is 0 here.Thirty-day integration results of Π′,u,v,wand the differences between the numerical solution and the exactone,withatimestepof1800s,areshowninFigs.3a–d. Corresponding results from GRAPES are presented in Figs. 3e–h for comparison.The Π′in Fig.3a shows its zonal parallel contours after the 30-day integration,while the absolute error is about-1.0×10-4at the equator and 5.0×10-5in midlatitude regions.Zonal wind(Fig.3b)keeps its initial state with a perturbation of-0.12 m s-1at the boundary of the Yin-Yang grid.Meridional and vertical winds,which display as absolute error in Figs.3c and d,show their order of about 10-3and 10-7m s-1,respectively.Meanwhile,errors of meridional and vertical winds reach 0.1 and 2×10-3m s-1in the polar regions of the GRAPES model(Figs.3g and h).Relatively small error is found with the new dynamic core on the Yin-Yang grid.It is clear that obvious numerical error exists at the boundaries of the overset grid in GRAPES YY,and the error appears in the pole regions in the original GRAPES core.The new core shows a much smaller error than the original one.Owing to fact the analytical solutions of the meridional and vertical velocities are null, numerical errors appear as highly signi fi cant.Consequently, a boundary trail is revealed in Figs.3c and d.The time series of the corresponding error norms?1,?2and?∞of both the scalar and vectors are given for GRAPES YY in Fig.4.Error norms increase with time.The?1and?2norms of the Π′are 0.002 and 0.0025 at day 30,while those of the velocity are 0.009 and 0.0095,respectively.This numerical test con fi rms the stability of the SISL method and the proper installation of the 3D Coriolis force in the nonhydrostatic frame.

    In the zonal fl ow case,small interpolation error at the boundaries is clearly displayed with the meridional wind and vertical velocity.We fi nd the error ofvandwto be 10-3and 10-7,respectively,which is negligible in comparison with theucomponent.But does the error destroy the model stability in a non-zero meridional wind case?We also show the numerical results of the balanced fl ow with an angle of 45°in Fig.5.This con fi guration seems to be the harshest for the Yin-Yang grid because of the orthogonality of the two sub-zones.Owing to the zonal wind enhancement at high latitudes in this test case,the time step will be tightly limited in a latitude–longitude grid system.On the quasi-uniform Yin-Yang grid,however,the time step remains the same as in the former.A reasonable distribution is found with all the scalar and vector quantities.The scalar Π′,zonal wind and vertical wind display equivalent computational error as in Fig.3. Even though the meridional wind shows larger error because of its enhancement,the boundary trail is nearly invisible in the vector fi elds.

    4.2.Zonal fl ow over a mountain

    In this test,the dynamic core with 3D Coriolis force and the SISL solver is tested with topography.The initial wind velocity is the same as the previous one.The mountain height is given by

    whereh0=2000 m determines the peak height of the mountain andR=1500 km is the mountain half width;D,thedistance to the mountain center(λc,?c)=(π/2,π/6):

    The pressure fi eld is initially given a hydrostatic balance state,

    whereN=0.0182 s-1is the Brunt–Valsala frequency,κ= 2/7,u0=20 m s-1,a=6371.229 km is mean radius of earth,? is earth’s angular velocity andpsp=930 hPa denotes the surface pressure at the South Pole.No analytical solution is available in this test case,but the results with a spectral method(Jablonowski et al.,2008)can be referenced.Geopotential height,temperature,and the horizontal wind componentsuandvat the 700 hPa level of day 15 are given in Fig.6 in comparison to the results of the original GRAPES. All the results of the new core integration are comparable with those in Jablonowski et al.(2008),even though a lowresolution con fi guration is used here.The fi gures illustrate a proper evolution of the mountain-induced Rossby wave,and no boundary trail is found with the non-zero velocity in this case.The original model,however,displays the Rossby wave as not well developed,due to the low-resolution con fi guration.Therefore,we can again con fi rm good numerical performance via this test case.

    4.3.Three-dimensional Rossby–Haurwitz wave

    The initial velocity fi eld is given by

    wherec=4 denotes the wave number,andM=K≈1.962×10-6s-1.Pro fi les of the temperature and pressure are given by

    wherepref=955 hPa andT0=288 K with the moistadiabatic lapse rate Γ=0.0065 km-1.The geopotential is given as

    where

    The time step is changed to 600 s in this test for the serious limitation of linear computational stability.The numerical results of the geopotential height,u,andvat 500 hPa and surface pressure at day 14 are plotted in Fig.7.The four-wave structure propagates correctly in geopotential height,surface pressure and the horizontal wind fi eld in this low-resolution model.No obvious numerical deformation of the wave is observed,and the wave displays smooth propagation at the Yin-Yang boundaries with the classic Schwarz scheme.

    The cost of the classic Schwarz solver is about 24.92% of the model total expense due to the frequent information exchange for the boundary constraint of the Helmholtz equation.Of course,the cost varies with the iteration in the GCR solver.With the help of the ILU preconditioner,the convergence of the GCR solver shows great ef fi ciency.The iteration before its convergence is listed in Fig.8 for the fi rst 100-step integration.Rapid convergence of the solvers is achieved for the overset grid,and the iteration tends to decrease with time.The test of the zonal fl ow over a mountain shows more iterations than the others for its strong time-dependent current.

    5. Conclusion

    An improved dynamic core of the GRAPES model is successfully reconstructed on a quasi-uniform Yin-Yang grid, which is free of pole singularity.Three-dimensional Coriolis force has been introduced to the new frame,which makes the code identical between the Yin and Yang components. The departure point across boundaries is fi xed with the help of the halo region,and the SISL scheme for 3D vectors is implemented into the dynamical core on the Yin-Yang grid. Numerical results of 3D benchmark tests reveal strong computational stability and reasonable performance.The results also show the property of the 3D Coriolis installation and the reconstruction of the Helmholtz equation in the SISL integration.The new nonhydrostatic core displays reasonable numerical results in three idealized tests with or without topography.The classic Schwarz method,which updates the boundary with a bi-cubic Lagrangian interpolation,is generally ef fi cient for the constraint of global convergence of the numerical solution.On the other hand,relatively expensive cost and numerical oscillations at the boundary are also observed in the SISL integration.Further investigation on the interpolation procedure of the determination of coef fi cients fortheHelmholtzequationintheclassicalSchwarzmethodis demanded by the SISL integration of non-hydrostatic models on the Yin-Yang grid.Additional developments,such as the boundary constraint,parallelization for large computations, and consideration of vapor and the installation of physics, will be pursued in future work.

    Acknowledgements.The authors appreciate the two reviewers’constructive comments and valuable suggestions.This study was supported by the National Natural Science Foundation of China (Grant No.41175095),the National Key Technology R&D Program(Grant No.2012BAC22B01)and a research project of the Chinese Academy of Meteorological Sciences(Grant No.2014Z001).

    REFERENCES

    Arakawa,A.,and V.R.Lamb,1997:Computational design of the basic dynamical processes of the UCLA General Circulation Model.Methods in Computational Physics,Vol.17,J.Chang, Ed.,Academic Press,San Francisco,USA,173–265.

    Baba,Y.,K.Takahashi,and T.Sugimura,2010:Dynamical core of an atmospheric general circulation model on a Yin-Yang grid.Mon.Wea.Rev.,138,3988–4005.

    Charney,J.G.,and N.A.Philips,1953:Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic Flow.J.Meteor.,10,71–99.

    Chen,D.,and Coauthors,2008:New generation of multi-scale NWP system(GRAPES):General scienti fi c design.Chinese Sci.Bull.,53(22),3433–3445.

    Jablonowski,C.,P.Lauritzen,R.Nair,and M.Taylor,2008:Idealized test cases for the dynamical cores of atmospheric general circulationmodels:AproposalfortheNCARASP2008summer colloquium.[Available online at http://esse.engin.umich. edu/admg/publications.php.]

    Kageyama,A.,and T.Sato,2004:“Yin-Yang grid”:An overset grid in spherical geometry.Geochem.Geophys.Geosyst.,5, Q09005,doi:10.1029/2004GC000734.

    Li,X.L.,D.H.Chen,X.D.Peng,F.Xiao,and X.S.Chen,2006: Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere.Adv.Atmos.Sci., 23(5),792–801,doi:10.1007/s00376-006-0792-9.

    Li,X.L.,D.H.Chen,X.D.Peng,K.Takahashi,and F.Xiao, 2008:A multimoment fi nite-volume shallow-water model on the Yin-Yang overset spherical grid.Mon.Wea.Rev.,136, 3066–3086.

    Liu,Y.,and J.W.Cao,2008:ILU preconditioner for NWP system:GRAPES.Computer Engineering and Design,29(3), 731–734.(in Chinese)

    McDonald,A.,and J.R.Bates,1989:Semi-Lagrangian integration of a grid point shallow water model on the sphere.Mon. Wea.Rev.,117,130–137.

    Peng,X.,F.Xiao,and K.Takahashi,2006:Conservative constraint for a quasi-uniform overset grid on the sphere.Quart.J.Roy.Meteor.Soc.,132,979–996.

    Qian,J.,F.Semazzi,and J.S.Scroggs,1998:A global nonhydrastatic semi-Lagrangian atmospheric model with orography.Mon.Wea.Rev.,126,747–771.

    Qaddouri,A.,L.Laayouni,J.C?ot′e,and M.Gander,2008:Optimized Schwarz methods with an overset grid for shallowwater equations:Preliminary results.Appl.Numer.Math., 58(4),459–471.

    Ritchie,H.,and C.Beaudoin,1994:Approximations and sensitivity experiments with a baroclinic semi-Lagrangian spectral model.Mon.Wea.Rev.,122,2391–2399.

    Sadourny,R.A.,1972:Conservative fi nite-difference approximations of the primitive equations on quasi-uniform spherical grids.Mon.Wea.Rev.,100,136–144.

    Sadourny,R.A.,A.Arakawa,and Y.Mintz,1968:Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere.Mon.Wea.Rev., 96,351–356.

    Satoh,M.,T.Inoue,and H.Miura,2010:Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators.J.Geophys.Res., 115,D00H14,doi:10.1029/2009JD012247.

    Skamarock,W.,J.Klemp,M.Duda,L.Fowler,and S.H.Park, 2012:A multi-scale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering.Mon. Wea.Rev.,140,3090–3105.

    Semazzi,F.,J.H.Qian,and J.S.Scroggs,1995:A global nonhydrostatic,semi-Lagrangian,atmospheric model without orography.Mon.Wea.Rev.,123,2534–2550.

    Tomita,H.,and M.Satoh,2004:A new dynamical framework of nonhydrostatic global model using the icosahedral grid.Fluid Dyn.Res.,34,357–400.

    Williamson,D.L.,2007:The evolution of dynamical cores for global atmospheric models.J.Meteor.Soc.Japan,85B,241–269.

    Williamson,D.L.,J.B.Drake,J.J.Hack,R.Jackob,and P.N. Swarztrauber,1992:A standard test for numerical approximations to the shallow water equations in spherical geometry.Journal of Computational Physics,102,211–224.

    Xue,J.S.,and D.H.Chen,2008:Design of GRAPES dynamical frame and the experiments.Scienti fi c Design and Application of Numerical Prediction System GRAPES,J.H.Wang,Ed., Science Press,Beijing,65–136.(in Chinese)

    :Li,X.H.,X.D.Peng,and X.L.Li,2015:An improved dynamic core for GRAPES on the Yin-Yang grid.Adv. Atmos.Sci.,32(5),648–658,

    10.1007/s00376-014-4120-5.

    (Received 11 June 2014;revised 22 September 2014;accepted 26 September 2014)

    ?Corresponding author:PENG Xindong

    Email:pengxd@cams.cma.gov.cn

    三级男女做爰猛烈吃奶摸视频| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品久久久精品久久久| 三级国产精品片| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| 亚洲自拍偷在线| 国产视频首页在线观看| 麻豆乱淫一区二区| 免费av观看视频| 亚洲国产高清在线一区二区三| 成人国产麻豆网| 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 国产91av在线免费观看| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 久久精品久久久久久久性| 又黄又爽又刺激的免费视频.| 国产黄片美女视频| 精品一区二区免费观看| 一二三四中文在线观看免费高清| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 日本色播在线视频| 欧美zozozo另类| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 亚洲国产av新网站| 高清欧美精品videossex| 欧美成人午夜免费资源| 国产老妇女一区| 99久久精品热视频| 美女cb高潮喷水在线观看| 尤物成人国产欧美一区二区三区| 亚洲av二区三区四区| 亚洲成人中文字幕在线播放| 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 天堂俺去俺来也www色官网 | 国产三级在线视频| 青青草视频在线视频观看| 日韩一区二区三区影片| 亚洲性久久影院| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 国产乱来视频区| 国产成人午夜福利电影在线观看| 中文字幕av成人在线电影| 亚州av有码| 国产高清有码在线观看视频| 亚洲欧美日韩卡通动漫| 中文欧美无线码| 内射极品少妇av片p| 看免费成人av毛片| 日韩人妻高清精品专区| 亚洲欧美精品专区久久| 街头女战士在线观看网站| 男女下面进入的视频免费午夜| 亚洲一级一片aⅴ在线观看| 欧美性感艳星| 插阴视频在线观看视频| 在线免费观看不下载黄p国产| 嘟嘟电影网在线观看| 亚洲人成网站高清观看| 亚洲精华国产精华液的使用体验| 高清视频免费观看一区二区 | 久久久久久久久久黄片| 国产高清国产精品国产三级 | 午夜福利网站1000一区二区三区| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 亚洲精品国产成人久久av| 精品久久久久久久末码| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 国产 一区精品| 久久99热这里只频精品6学生| 超碰97精品在线观看| 久久鲁丝午夜福利片| 日韩伦理黄色片| 免费观看无遮挡的男女| 国产免费又黄又爽又色| 国产三级在线视频| 日韩av在线大香蕉| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产美女午夜福利| 成人午夜精彩视频在线观看| 久久国产乱子免费精品| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 街头女战士在线观看网站| av在线播放精品| av线在线观看网站| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 国产麻豆成人av免费视频| 免费看不卡的av| 日本与韩国留学比较| 日本免费a在线| 久久久久久久大尺度免费视频| 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va| 一级av片app| 三级经典国产精品| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 国产一区二区三区综合在线观看 | 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲图色成人| 日韩人妻高清精品专区| 一个人观看的视频www高清免费观看| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 日本免费a在线| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品一二区理论片| 国产极品天堂在线| 一二三四中文在线观看免费高清| 观看免费一级毛片| 亚洲欧美精品专区久久| 高清欧美精品videossex| 午夜免费观看性视频| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 亚洲av不卡在线观看| 国产男女超爽视频在线观看| 一级毛片电影观看| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 亚洲精品456在线播放app| 看十八女毛片水多多多| 97在线视频观看| 婷婷色av中文字幕| 人体艺术视频欧美日本| or卡值多少钱| 欧美 日韩 精品 国产| 夫妻性生交免费视频一级片| 国产精品三级大全| 国产精品伦人一区二区| 国产精品久久久久久久电影| 激情 狠狠 欧美| 91精品国产九色| .国产精品久久| 久久久国产一区二区| 啦啦啦啦在线视频资源| 免费观看在线日韩| 日本av手机在线免费观看| 精品人妻一区二区三区麻豆| av网站免费在线观看视频 | 成人午夜精彩视频在线观看| www.色视频.com| 久99久视频精品免费| 亚洲无线观看免费| 亚洲av免费在线观看| 人妻系列 视频| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看 | 一个人看的www免费观看视频| 久久亚洲国产成人精品v| 免费看a级黄色片| 69av精品久久久久久| videos熟女内射| 亚洲av国产av综合av卡| 性色avwww在线观看| 少妇的逼水好多| 欧美日韩精品成人综合77777| 婷婷色综合www| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 国产精品一区www在线观看| 国产精品国产三级国产专区5o| 国产高清国产精品国产三级 | 国产亚洲精品av在线| 1000部很黄的大片| 欧美日韩精品成人综合77777| 国产一区二区在线观看日韩| 中国国产av一级| 2021少妇久久久久久久久久久| 三级国产精品片| av线在线观看网站| 成年女人在线观看亚洲视频 | 亚洲国产色片| 又爽又黄a免费视频| 久久久久久久久久成人| 国产高潮美女av| 国产不卡一卡二| 国产精品爽爽va在线观看网站| 水蜜桃什么品种好| 天堂网av新在线| 国产精品一区二区在线观看99 | 日日摸夜夜添夜夜爱| 三级国产精品片| 尤物成人国产欧美一区二区三区| 欧美 日韩 精品 国产| 国产精品麻豆人妻色哟哟久久 | 亚洲精品视频女| 国产三级在线视频| 黑人高潮一二区| 久久午夜福利片| 午夜福利成人在线免费观看| 国产成人精品福利久久| 精品人妻视频免费看| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 黄色日韩在线| 精品国产三级普通话版| 国产免费视频播放在线视频 | 国产探花极品一区二区| 日本免费在线观看一区| 国产黄频视频在线观看| 国产精品三级大全| 好男人视频免费观看在线| 亚洲精品中文字幕在线视频 | 搞女人的毛片| 哪个播放器可以免费观看大片| 一级二级三级毛片免费看| 日韩亚洲欧美综合| 亚洲久久久久久中文字幕| 国产淫语在线视频| 最近中文字幕2019免费版| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 午夜福利视频1000在线观看| 极品少妇高潮喷水抽搐| 三级男女做爰猛烈吃奶摸视频| 日日撸夜夜添| 精品久久久精品久久久| 真实男女啪啪啪动态图| 欧美xxⅹ黑人| 国产精品三级大全| 久久精品国产亚洲网站| 国产精品人妻久久久久久| 精品国产一区二区三区久久久樱花 | 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| 又大又黄又爽视频免费| 听说在线观看完整版免费高清| 国产美女午夜福利| 国产午夜精品一二区理论片| 汤姆久久久久久久影院中文字幕 | 国产单亲对白刺激| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 黄色日韩在线| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 亚洲精品色激情综合| 毛片女人毛片| 欧美高清性xxxxhd video| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 精品一区二区免费观看| 亚洲婷婷狠狠爱综合网| 精品久久久久久久久久久久久| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 日韩人妻高清精品专区| 偷拍熟女少妇极品色| 熟妇人妻不卡中文字幕| 亚洲国产高清在线一区二区三| 亚洲精品色激情综合| 国产精品久久视频播放| 最近的中文字幕免费完整| 夜夜爽夜夜爽视频| 国产精品久久久久久久电影| 精品久久国产蜜桃| 一夜夜www| 中文字幕制服av| 夫妻性生交免费视频一级片| 国产精品一区二区三区四区久久| 简卡轻食公司| 欧美高清成人免费视频www| 国内精品美女久久久久久| 在线免费观看的www视频| 精品久久久久久久末码| 久99久视频精品免费| 国产大屁股一区二区在线视频| 三级经典国产精品| 亚洲精品色激情综合| 51国产日韩欧美| 午夜视频国产福利| 国产真实伦视频高清在线观看| 一区二区三区四区激情视频| 欧美高清性xxxxhd video| 肉色欧美久久久久久久蜜桃 | 五月玫瑰六月丁香| 欧美丝袜亚洲另类| 女人久久www免费人成看片| 国产一区亚洲一区在线观看| 国产精品一区www在线观看| 午夜免费观看性视频| 高清午夜精品一区二区三区| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 青春草视频在线免费观看| 中文欧美无线码| 97热精品久久久久久| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 亚洲熟妇中文字幕五十中出| 最近的中文字幕免费完整| 久久久久国产网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品色激情综合| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 欧美+日韩+精品| 看非洲黑人一级黄片| 大片免费播放器 马上看| 国产一区有黄有色的免费视频 | 欧美精品国产亚洲| 国产单亲对白刺激| 纵有疾风起免费观看全集完整版 | 人妻少妇偷人精品九色| 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 欧美另类一区| 麻豆精品久久久久久蜜桃| 在线播放无遮挡| 五月伊人婷婷丁香| 亚洲四区av| 亚洲精华国产精华液的使用体验| 国产亚洲5aaaaa淫片| 嫩草影院入口| 国产探花在线观看一区二区| 久久热精品热| 国产精品一区二区在线观看99 | 午夜日本视频在线| 久久久精品94久久精品| 禁无遮挡网站| 亚洲av不卡在线观看| 国模一区二区三区四区视频| 我的老师免费观看完整版| 免费播放大片免费观看视频在线观看| 搡老妇女老女人老熟妇| 午夜免费激情av| 欧美高清成人免费视频www| 日日啪夜夜撸| 91久久精品国产一区二区成人| 别揉我奶头 嗯啊视频| 国产亚洲精品av在线| 亚洲乱码一区二区免费版| 女人十人毛片免费观看3o分钟| 免费少妇av软件| 国产精品福利在线免费观看| 亚洲国产欧美人成| 久久久久久久大尺度免费视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲综合精品二区| 欧美97在线视频| 蜜臀久久99精品久久宅男| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 中文乱码字字幕精品一区二区三区 | 亚洲精品aⅴ在线观看| 日日干狠狠操夜夜爽| 在线观看人妻少妇| 身体一侧抽搐| 乱人视频在线观看| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 一区二区三区四区激情视频| 在线观看人妻少妇| 国产三级在线视频| 国产精品久久视频播放| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 亚洲高清免费不卡视频| 婷婷色av中文字幕| 大话2 男鬼变身卡| 男女国产视频网站| 中文字幕人妻熟人妻熟丝袜美| 麻豆久久精品国产亚洲av| 一级毛片电影观看| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 97超碰精品成人国产| 亚洲18禁久久av| 成人亚洲精品av一区二区| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 国产熟女欧美一区二区| 亚洲av福利一区| 久久精品国产亚洲av天美| 婷婷色麻豆天堂久久| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 舔av片在线| av黄色大香蕉| 国产黄色免费在线视频| 能在线免费看毛片的网站| 国产探花极品一区二区| 最近最新中文字幕免费大全7| 青春草国产在线视频| 欧美区成人在线视频| 午夜亚洲福利在线播放| 成人综合一区亚洲| 国内揄拍国产精品人妻在线| av在线播放精品| 国产精品不卡视频一区二区| 久久久久久久久久黄片| 女人被狂操c到高潮| 国产爱豆传媒在线观看| 91久久精品国产一区二区成人| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| 青春草视频在线免费观看| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片| 国产女主播在线喷水免费视频网站 | 国产91av在线免费观看| 日产精品乱码卡一卡2卡三| 中文乱码字字幕精品一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 成年免费大片在线观看| 精品国产露脸久久av麻豆 | 亚洲久久久久久中文字幕| 黄片无遮挡物在线观看| 嫩草影院新地址| 尾随美女入室| 日韩av免费高清视频| 国产久久久一区二区三区| 免费看a级黄色片| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 中文字幕制服av| 亚洲真实伦在线观看| 一本一本综合久久| 99久久九九国产精品国产免费| 天堂√8在线中文| 欧美xxⅹ黑人| videossex国产| av天堂中文字幕网| 激情 狠狠 欧美| 波多野结衣巨乳人妻| av播播在线观看一区| 一级毛片我不卡| www.av在线官网国产| 国产成人精品婷婷| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 午夜爱爱视频在线播放| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 久久久久久久大尺度免费视频| 91久久精品电影网| 国产av国产精品国产| 成人综合一区亚洲| 日韩欧美精品v在线| 日本一二三区视频观看| 亚洲无线观看免费| 亚洲综合色惰| 久久99热6这里只有精品| 欧美xxⅹ黑人| 六月丁香七月| 成人亚洲精品一区在线观看 | 一级毛片aaaaaa免费看小| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 极品教师在线视频| 国产精品国产三级专区第一集| 中文乱码字字幕精品一区二区三区 | 日韩中字成人| 建设人人有责人人尽责人人享有的 | 亚洲av成人av| 老女人水多毛片| 亚洲av.av天堂| 中文字幕人妻熟人妻熟丝袜美| 色综合亚洲欧美另类图片| 欧美成人午夜免费资源| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 街头女战士在线观看网站| 韩国av在线不卡| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99 | 又黄又爽又刺激的免费视频.| av免费在线看不卡| 极品少妇高潮喷水抽搐| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 亚洲自偷自拍三级| 不卡视频在线观看欧美| 日本欧美国产在线视频| 亚洲欧美日韩无卡精品| 丝袜喷水一区| 免费看美女性在线毛片视频| 在线天堂最新版资源| 人妻系列 视频| 亚洲国产av新网站| 中文字幕av在线有码专区| 国产免费视频播放在线视频 | 亚洲av不卡在线观看| 国产成人精品婷婷| 欧美激情久久久久久爽电影| 中文乱码字字幕精品一区二区三区 | 水蜜桃什么品种好| 久久这里只有精品中国| 免费看不卡的av| 好男人视频免费观看在线| 亚洲av国产av综合av卡| 日日啪夜夜爽| 亚洲最大成人av| av福利片在线观看| 麻豆精品久久久久久蜜桃| www.色视频.com| 欧美日本视频| 午夜免费激情av| 日韩欧美精品v在线| 亚洲在线观看片| 观看美女的网站| 精品熟女少妇av免费看| 一级av片app| 国产欧美另类精品又又久久亚洲欧美| 国产探花极品一区二区| 亚洲国产色片| 免费播放大片免费观看视频在线观看| 成人午夜精彩视频在线观看| 久久韩国三级中文字幕| 亚洲精品自拍成人| 精品人妻一区二区三区麻豆| 青青草视频在线视频观看| 成年女人看的毛片在线观看| 亚洲精品中文字幕在线视频 | 伊人久久国产一区二区| 一级二级三级毛片免费看| 夜夜看夜夜爽夜夜摸| 国产一级毛片在线| 精品久久国产蜜桃| 三级经典国产精品| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| 91狼人影院| 精品欧美国产一区二区三| 少妇丰满av| 成人综合一区亚洲| av卡一久久| 亚洲真实伦在线观看| 久久久久久久亚洲中文字幕| 一夜夜www| 久久热精品热| 久久精品国产鲁丝片午夜精品| 99九九线精品视频在线观看视频| 日本黄大片高清| 女的被弄到高潮叫床怎么办| 国产成人福利小说| 大陆偷拍与自拍| 亚洲精品中文字幕在线视频 | 天堂网av新在线| 国产高清有码在线观看视频| 中文天堂在线官网| 国产在视频线在精品| 国产精品女同一区二区软件| 午夜福利在线观看免费完整高清在| 国产精品久久久久久久久免| 亚洲内射少妇av| .国产精品久久| 麻豆精品久久久久久蜜桃| 国产男人的电影天堂91| 国产成人精品福利久久| 51国产日韩欧美| 国产成人免费观看mmmm| 日韩,欧美,国产一区二区三区| 午夜爱爱视频在线播放| 国产成人免费观看mmmm| 少妇熟女aⅴ在线视频| 水蜜桃什么品种好| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 国产精品一区www在线观看| 高清日韩中文字幕在线| 色5月婷婷丁香| 人妻少妇偷人精品九色| 亚洲美女视频黄频| 久久亚洲国产成人精品v| 国产精品嫩草影院av在线观看| 男女下面进入的视频免费午夜|