• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identi fi cation and Analysis of High-Frequency Oscillations in the Eyewalls of Tropical Cyclones

    2015-02-24 06:21:38CHENShuminYouyuLULIWeibiaoandWENZhiping
    Advances in Atmospheric Sciences 2015年5期

    CHEN ShuminYouyu LULI Weibiaoand WEN Zhiping

    1Department of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou510275

    2State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou510301

    3Bedford Institute of Oceanography,Fisheries and Oceans Canada,Dartmouth,Nova Scotia,B2Y4A2Canada

    Identi fi cation and Analysis of High-Frequency Oscillations in the Eyewalls of Tropical Cyclones

    CHEN Shumin1,2,Youyu LU3,LI Weibiao?1,and WEN Zhiping1

    1Department of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou510275

    2State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou510301

    3Bedford Institute of Oceanography,Fisheries and Oceans Canada,Dartmouth,Nova Scotia,B2Y4A2Canada

    High-frequency oscillations,with periods of about 2 hours,are fi rst identi fi ed by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones(TCs).Analysis of a model simulation of Typhoon Hagupit(2008)shows that the oscillations also occur in the TC intensity,vertical motion,convergence activity and air density around the eyewall.Sequences of oscillations in these variables follow a certain order.

    tropical cyclone,high-frequency oscillations,eyewall,intensity

    1. Introduction

    Tropical cyclones(TCs)are one of the most energetic weather phenomena and pose great scienti fi c challenges to meteorologists.Although forecasting of TC tracks has signi fi cantly improved(Emanuel,1999,2000),accurate prediction of TC intensities is still dif fi cult(Wang and Chan,2002; Knapp and Kruk,2010;DeMaria et al.,2014).

    TCsarecomplexsystemsandtheirintensities areaffected by a variety of physical processes.Many studies focus on the TC’s updraft and the eyewall-produced updraft.One aspect is the updraft’s control of TC intensity through the activity of secondary circulation.This is related to the positive feedbackmechanismsforthegenesisandmaintenanceofTCs,for which there are two classical theories:“conditional instability of second kind”(CISK;Charney and Elliassen,1964)and“wind-induced surface heat exchange”(WISHE;Emanuel, 1986;Rotunno and Emanuel,1987;Emanuel,1989,1997). The other aspect is related to the structure and activities in the eyewall.Thisincludesmesoscaleconvectivesystems(MCSs; Hendricks et al.,2004;Montgomery et al.,2006,2009),secondary rain bands(e.g.,Montgomery and Kallenbach,1997; Reasoretal.,2000),eyewallcycles(ShapiroandWilloughby, 1982)and activities of waves.

    Studies on waves in the eyewall generally focus on the vortex Rossby waves(Chen et al.,2003;Zhong et al.,2009;MenelaouandYau,2014),inertiagravitywaves(Willoughby, 1976;Kurihara,1976;Schecter,2008;Ki and Chun,2011), and the fi ne-scale spiral rainbands,which are associated with Kelvin–Helmoltz instability(Romine and Wilhelmson,2006) and inertial-buoyancy waves(Li et al.,2010).However,these sorts of studies generally focus on the horizontal distribution and propagation of the waves.The temporal evolution of the waves and their vertical propagation have not been fully investigated.

    In this study,the activities of waves are analyzed with a focus on the temporal evolution and vertical propagation.Evidence of high-frequency oscillations,with periods of about 2 hours,is revealed from analysis of observed wind speeds and model-simulated TCs.Such high-frequency oscillations have not been reported in previous studies,probably due to the lack of availablein-situhigh-frequency observations in the central areas of TCs.

    2. Analysis procedure

    The characteristics of high-frequency oscillations in the eyewall of TCs are analyzed by applying the wavelet transform to both the observations and the outputs from a numerical simulation.

    2.1.Observational data at Shangchuan Station

    Minutely wind speed and surface pressure from the automatic weather station at Shangchuan(21.7°N,112.8°E)are used in this study.The station is located in the central part ofShangchuan Island at an elevation of 83 m above sea level. The data are collected and quality controlled by the Climate Center of Guangdong Province.Shangchuan Island is one of thelargestislandsinGuangdongProvinceandisalsoaregion heavily in fl uenced typhoons.

    2.2.Model simulation

    Becausetheobservationsareinsuf fi cientforcapturingthe detailed characteristics of TCs,we also analyze the TC simulated by a numerical model.The simulation is based on the Weather Research and Forecasting(WRF)model(Skamarock et al.,2008)developed for advancing the study and prediction of mesoscale weather and accelerating the transfer of research advances into operation.The Advanced Research WRF(ARW)dynamics solver integrates the compressible non-hydrostatic Euler equations that are cast in fl ux forms.The equations are formulated using a terrainfollowing hydrostatic-pressure(σ)coordinate in the vertical direction.The horizontal discretization uses the Arakawa-C staggering grids.The WRF physical processes include a selectionofexplicitmicrophysicsschemes,cumulusconvective parameterizations,a land-surface model,planetary boundary layer(PBL)parameterizations,and longwave and shortwave radiation schemes.

    2.3.The wavelet transform

    The wavelet transform,following Christopher and Compo(1998),is applied to the observations and model output.For a time series denoted bybk(k=0,1,...,N-1), the wavelet transform decomposes the signal into scaled and translated versions of a“mother wavelet”Ψ0,resulting in“child wavelets”,or simply“wavelets”,represented by

    wheresjandnrepresent scale and translation(on the time axis),respectively;δtrepresents the sampling period of the signal;and(δt/sj)1/2represents the energy normalization factor that keeps the energy of child wavelets the same as that of the mother wavelet.The signal is then converted to the scale and translation domains by scaling and translating the mother wavelet to match the high and low frequencies in thesignal,thusprovidinganimproved fi ttingtothedata.This process is represented by a convolution ofxkwith the scaled and translated wavelets:

    where the asterisk denotes the complex conjugate andW(n,sj)is called a wavelet coef fi cient.The wavelet power spectrum(WPS)is de fi ned as|W(n,sj)|2;and the signi ficance levels ofW(n,sj)can be determined by the wavelet red noise spectrum,with details provided by Christopher and Compo(1998).The normalized WPS(NWPS)describes the contribution of a certain scale to the total energy.Following Zhu et al.(2010),the NWPSE(n,sj)is de fi ned as

    3. Observational facts

    We fi rstanalyzethewindspeedsandsurfacepressureduring three TCs,with a sampling period of 1 minute,observed at Shangchuan Station.The three TCs are:Severe Typhoon Hagupit(2008),Severe Tropical Storm Goni(2009),and Typhoon Koppu(2009).They passed through Shangchuan Station at 0000 UTC 24 September 2008,0000 UTC 5 August 2009,and 1800 UTC 14 September 2009,respectively.Figure 1 shows the observed tracks and maximum wind speed (MWS)of these TCs,taken from the CMA-STI best-trackdataset(Ying et al.,2014)for TCs complied by the Shanghai Typhoon Institute(STI),China Meteorological Administration(CMA).The location of Shangchuan Station and the times that the TCs passed through the station are also shown in Fig.1.The wavelet transform is applied to the time series of the wind speeds and pressures covering 24 hours,including 12 hours before and after the TCs passed the station.The analysis results for the wind speeds are shown in Fig.2. Denoted by the gray shading,and the contours of 10%,the spectral energy is signi fi cant at periods of about 2 hours:90–120 minutes for Hagupit(2008),90–150 minutes for Goni (2009),and 75–150 minutes for Koppu(2009).Based on the relationship between the periods and discrete scales given in Christopher and Compo(1998),the period of 2 hours corresponds to a spatial scale of about 10 km.This aspect is discussed in section 5.Judging from the shaded area in Fig. 2,these high-frequency oscillations are usually signi fi cantly different from the red-noise process around the eye and eyewall where winds are strong.In asymmetric TCs[Hagupit (2008)and Koppu(2009)],the oscillations are more signi ficant at the side with higher wind speeds.

    Figure 3 shows the NWPS of the observed minutely wind speedandpressureatShangchuanStation,integratedforvariations at time scales of 90–150 minutes.Figures 3a–c show the 24-hour durations when the three TCs passed the station. For reference,the NWPS during a period of 24 hours without TC activity is shown in Fig.3d.The high-frequency oscillations are signi fi cant in the wind speeds under TC conditions,which boost the maximum NWPS by at least 10%–20%.Compared with winds,the high-frequency oscillations in the pressure are insigni fi cant,the reasons for which are discussed in section 5.

    The spectral energy is also signi fi cant in the range of periods of about 3–6 hours(Fig.2).Such variations represent the evolution of wind speed due to different parts of the TC passing by the station.These include:the outer region with relatively weak winds,the eyewall with strong winds,and the eye with nearly static wind.As the outer region and eyewall of one side,the eye,and then the eyewall and outer region of the other side pass through the station successively,the wind speeds observed at the station increase and decrease accordingly.

    4. Model experiments

    4.1.Experiment setup

    The WRF model is applied to simulate Typhoon Hagupit. The model includes three fi xed two-way interactive domains on Mercator projections(Fig.4),with detailed parameters provided in Table 1.Domain 1,the outer mesh,has a horizontal resolution of 27 km,and is designed to simulate the synoptic-scale environment for the storm to evolve.Domain 2 has a resolution of 9 km,and is designed to simulate the mesoscale structure of Hagupit.Domain 3,the inner mesh,has a resolution of 3 km,and is designed to simulate the inner-core structure of Hagupit.There are 28 unevenly spaced vertical levels with a higher resolution in the PBL. The top is set to 50 hPa.Theσlevels are placed at values of 1.000,0.990,0.978,0.964,0.946,0.922,0.894,0.860,0.817, 0.766,0.707,0.644,0.576,0.507,0.444,0.380,0.324,0.273, 0.228,0.188,0.152,0.121,0.093,0.069,0.048,0.029,0.014, and 0.000.Apart from the cumulus parameterization scheme not being used in Domain 3,the physical schemes are the same for the sub-models of the three domains.The Kain–Fritsch(KF)cumulus parameterization scheme(Kain and Fritsch,1990,1993;Kain,2004)is used because it provides the best result based on tests of various cumulus parameterization schemes for this case.Other options of model physics being used are the WRF Single-Moment 6-Class(WSM6) microphysics scheme(Hong et al.,2004),the Yonsei University(YSU)PBL scheme(Hong and Lim,2006),the 5-layer thermal diffusion land-surface model scheme(Skamarock et al.,2008),the RapidRadiativeTransferModel(RRTM)longwave radiation scheme(Mlawer et al.,1997),and the Dudhia shortwave radiation scheme(Dudhia,1989).

    The initial and boundary conditions are obtained from the 6-hourly US National Centers for Environmental Prediction (NCEP)Final Analysis(FNL)data.The SST is fi xed during model integration.The analysis fi elds with a horizontal resolution of 1°×1°,including temperature,wind,geopotential height,and dewpond at mandatory pressure levels,are interpolated horizontally to the horizontal points and vertically to theσlevels.The boundary conditions of the outermost domains are speci fi ed by temporally interpolating the NCEP FNL data.Each coarser domain provides the next fi ner domain with time-dependent lateral boundary conditions,while the solution of each fi ner domain feeds back to that of the next coarser domain at every time step.The twoway interactions among the sub-models of the three domains are thus achieved.

    Because the fi rst guess information is from the NCEP FNL data with relatively coarse resolution,the vortices contained are too broad and too weak.Initialization of a higherresolution model with such coarse resolution fi elds only obtains the general physical characteristics of the storms.To improve the simulation of intensity,the initial vortex in the NCEP FNL data is replaced by a new vortex with intensity closer to observations using the NCAR-AFWA(Air Force Weather Agency)bogussing scheme(Davis and Low-Nam, 2001;Low-Nam and Davis,2001).The following assumptions are made in de fi ning the bogus storm pro fi le:(1)axisymmetry;(2)vorticity speci fi ed within 300 km of the bogus storm center;(3) fi xed radius of maximum wind(RMW);(4) mass and wind fi elds in nonlinear balance;(5)nearly saturated core without an eye;and(6)the maximum winds of the bogus storm being a pre-determined fraction of the observed maximum winds.

    The simulation is initialized at 1200 UTC 22 September when the TC has crossed the Balintang Channel and entered the South China Sea,and has a relatively complete structure ( fi gurenotshown).Abogusvortexisintroducedattheinitializing time,with the center located at(19.5°N,120.8°E)(the same as the center location in the best-track achieves),and the maximum wind speed is set to 70 m s-1using an RMW of 81 km.Based on a large number of tests initialized with vortexes of different intensities,this bogus vortex provides the best result after the spin-up process.The integration is carried out for 48 hours,terminated at 1200 UTC 24 September,about 12 hours after Hagupit made landfall.The 48-hour integration covers the intensi fi cation,mature,and weakening stages of the life cycle of Hagupit.

    4.2.Model validations

    The model outputs from Domain 2,covering the intensi fi cation,mature,and weakening stages of the life cycle of Hagupit,are compared to observations.Figure 5 shows the observed(CMA-STI)and simulated TC tracks.Figure6a shows the deviations of the simulated track from the observed track.During 0–36 hours of integration before the storm made landfall,the simulated track agrees well with the observed track,with less than 40 km discrepancy in the positions of the TC center.During the last 10 hours of integration after the storm made landfall,the discrepancy increases to about 80 km;the simulated storm is located to the northnortheast of the observed location.The discrepancy may be caused by inaccuracy in the simulation of the large-scale circulation or the terrain data in the WRF model.

    Figures 6b and c compare the minimum sea level pressure and the maximum wind speed,respectively.Despite evident differencesinthedetail,thetrendsagreewell.Thesimulation shows an initial adjustment in the fi rst 15 minutes,followed by a relatively steady period.The rapid adjustment in the fi rst few minutes may be due to the fact that the model does not account for friction in the PBL,and thus the prescribed nonlinear balance is disturbed(Low-Nam and Davis,2001). From4hourstoaround10hours,thesimulatedsealevelpressure keeps increasing while the maximum wind speed keeps decreasing.Such trends are not present in the best-track data. Li et al.(2013)attributed this discrepancy to the spin-up process of the model.During 19–36 hours,when the simulated and observed TCs both reach their strongest stage,the maximum surface wind speeds are nearly equal,although the simulated minimum sea level pressure is slightly lower.

    The simulated 10 m wind speed and surface pressure are also compared with the hourly observations at three automatic weather stations,located in Heshan(22.8°N,113.0°E), Shangchuan and Dianbai(21.4°N,111.2°E).These stations were quite close to the storm center when Hagupit was about tomakelandfall(Fig.5).Figure7comparestheobservedand simulated pressure and 10 m wind speed.In general,the observed and simulated time variations are consistent,although the simulated evolution lags the observed one by nearly 2 hours.Furthermore,the simulated wind speed and surface pressure are also consistent with the minutely observations at Shangchuan Station(Fig.8).As given in Fig.8c,the NWPS of the simulated 10 m wind speed and surface pressure are similar to the minutely observations(Fig.3a).

    Shifting attention to the system-scale features,Fig.9 compares the simulated grid-scale precipitation with the Tropical Rainfall Measuring Mission(TRMM)Microwave Imager(TMI)2A12 surface rain rate.The TMI pro fi ling algorithm(2A12)generates vertical pro fi les of hydrometeors from TMI brightness temperatures,through blending the radiometric data with dynamical cloud models.For each pixel, the algorithm assigns a surface type(land/ocean/coast)and a freezing height;and computes surface rain,convective surface rain,and pro fi les of hydrometeors(cloud liquid,cloud ice,watervaporetc.)at14verticallevels.Figure9showsthat the simulation obtains intense precipitation,similar to observations,though it overestimates the magnitudes by a factor of two.The reason is that TRMM tends to underestimate moderate to high rains(>50 mm h-1),although it has superiorskill in detecting TC heavy rains(Islam and Uyeda,2005; Chen et al.,2013).

    In summary,despite some discrepancies,the simulation reproduces reasonably well the track,intensity,wind,pressure fi eld and distribution of precipitation.

    5. Oscillations in the modeled TC Hagupit

    5.1.Analysis methods for the eyewall

    Model output from Domain 3,with a time interval of 15 minutes,isanalyzedwithafocuson21–36hoursofmodelintegration,when the TC intensity is highest and relatively stable.Vertical velocities,water vapor convection[-w(?q/?t), whereqis the water vapor mixing ratio],inward radial wind (IRW)and dry air density are averaged in the updraft region to examine the sequences of the high-frequency oscillations. Here,the de fi nition of the updraft region and IRW are illustrated in Fig.10.The updraft region is determined by the structure of the time-averaged secondary circulation of the TC shown in Fig.10a.It is the vertical ascending motion area(withw>0)extending from the TC center to a radius of 90 km.The IRW is determined by the TC’s horizontal winds,which can be divided into tangential and radial components. As shown in Fig.10b,the IRW is directed toward the TC center.The calculation of water vapor convection is based on the equation for the condensation rate:

    whereCis condensation andEis evaporation.Because most of the vapor concentrates in the boundary layer,the water vapor convection makes a dominant contribution to the condensation rate in the upper atmosphere.

    Variables such as vertical velocity,water vapor convection,IRW and dry air density at a certain height and averaged overtheupdraftregion,areanalyzedthroughcalculatingtheir normalized departures and the NWPS.

    Take the variableA(x,y,z,t)(x=x0,x1,...,xX,y=y0, y1,...,yY,z=z0,z1,...,zZ,t=t0,t1,...,tT)for example.It is fi rst averaged in the updraft region at a certain height:

    whereX,Y,Z,andTdenotes the numbers of the grid points within the eyewall region.Then,(z,t)is used to calculate the normalized departure and the NWPS for further analysis. The normalized departureA′(z,t)is the departure of(z,t) from its time-averaged value(z)divided by its standard deviationσ(z),i.e.,

    5.2.Sequences of the high-frequency oscillations

    Figure 11 shows the normalized departure of vertical velocities,water vapor convection,IRW and air density calculated by Eq.(6).In Fig.11a,an increase(decrease)of water vapor convection generally corresponds to an increase(decrease)of upward vertical motion,suggesting that convection is largely driven by upward motion.The upward motion contains signi fi cant high-frequency oscillations with periods of about 2 hours and propagating upwards.Figures 11b and c show that high-frequency oscillations also occur in IRW and air density.

    Figures 11a–c also suggest that the oscillations of these variables follow a certain order.For example,a decrease of air density is usually followed by intensi fi ed convergence in the PBL,which enhances the upward motion at the top of the PBL.When strong upward motion reaches the height of 8–10 km,the MWS begins to increase and subsequently reaches its peak value.Based on CISK(conditional instability of second kind)theory,the strengthening of TC intensity is controlled by warming associated with condensation around the TC center(the warm core)of the upper layer,which is located at the height of 8–10 km( fi gure not shown).Because the water vapor convection controlled by upward motion makes a dominant contribution to the condensation rate,the TC intensity increases after strong upward motion reaches the height of the warm core.

    Through examining the time series of high-frequency oscillations shown in Fig.11,sequences of high(peak)and low (valley)values for these variables are identi fi ed.The results are summarized schematically in Fig.12.In a typical cycle shown in the left column,the drop of density in the PBL is followed by an increase in IRW;this enhanced frictional convergence causes an increase in density,followed by a decrease in IRW.Next,we examinethe consequence oftheIRW increase,illustrated by the top row.The increase in convergence in the PBL causes an increase of updraft at the top of the PBL,followed by high vertical velocity at high altitudes of 8–10 km,and then an increase of the MWS.The consequence of the decrease in IRW in the PBL,shown in the bottom row,is the mirror image of that shown in the central column.The average time interval between two adjacent events is denoted by“Ave.?t”.The values of“Ave.?t”in different boxes are all around 1.8 hours,suggesting that periods of oscillations for different variables are nearly the same.

    Note that processes in the PBL are much more complex than those in the free atmosphere.For some events,variables in the PBL experience two high and low values in one cycle, while variables in the free atmosphere only have one high and low value in each cycle.Moreover,the times taken for different variables to increase/decrease is also different.In Fig.12, an event number is assigned when a particular value starts to increase or decrease,and the values that follow are the model times when this value reaches the peak or valley.Because of differences in acceleration/deceleration,a variable that starts to increase/decrease earlier may reach its peak/valley behind another variable that starts to increase/decrease later.Hence, further statistical analysis is required to more accurately reveal the relationship among oscillations of various variables.

    5.3.The wavelet power spectrum

    The wavelet transform is applied to the vertical velocities at different levels,IRW and dry air density in the boundary layer and averaged in the updraft region,and the intensity of the simulated Typhoon Hagupit(2008).The analysis results are presented in Fig.13.The high-frequency oscillations aresigni fi cant in all of these components,except for the central pressure.Surface pressure represents the total mass of the air column above the surface and its values change only slightly when the air within the column moves up and down.Hence, compared with winds,the surface pressure shows insigni ficant high-frequency oscillations.

    As discussed in section 3,the period of 2 hours corresponds to a spatial scale of about 10 km for high-frequency oscillations.Based on the sequences of the high-frequency oscillations,this scale is related to the vertical depth of the updraft region of the TC and the radial range of the horizontal convergence area of the radial winds near the boundary layer(Fig.10a).

    Comparing Figs.13a–c tells us that the oscillations of TC intensity lag those of other components by several hours. This suggests that it takes time for the TC intensity to respond to oscillations in the eyewall.

    6. Conclusions and discussion

    6.1.Conclusions

    This paper reports the phenomenon of high-frequency oscillations in TCs.The observational evidence is obtained by applying the wavelet transform to the minutely wind speeds observed at Shangchuan Station during three TCs.At periods of about 2 hours,which corresponds to a scale of about 10 km,the spectral energy is signi fi cantly different from that of a red-noise process.The high-frequency oscillations are signi fi cant near the eyewalls and eyes of the TCs.

    The simulation results for Hagupit(2008),during 15 hours when the TC intensity is highest and relatively stable, are analyzed.High-frequency oscillations are also found in the TC intensity,vertical motion,convective activity and air density.A visual inspection of the time series(Fig.11)shows that the sequences of oscillations for different variables follow certain orders,which are summarized in Fig.12.In a typical cycle,the drop of density in the PBL is followed by an increase in the IRW;this enhanced frictional convergence causes an increase in density,followed by a decrease in the IRW.The increase in convergence in the PBL causes an increaseofupdraftatthetopofthePBL,followedbyhighvertical velocity at high altitudes of 8–10 km,and then an increase of the MWS,and vice versa.

    6.2.Discussion

    Therelationshipsbetweenthehigh-frequencyoscillations and waves in the eyewall of TCs,such as the vortex Rossby waves,inertia gravity waves,and the fi ne-scale spatial rainbands,which are associated with Kelvin–Helmoltz instability and inertial-buoyancy waves,are worth discussing.On the one hand,because high-frequency oscillation is signi fi cant in variables averaged in the updraft region,this oscillation is a combination of large amounts of small-scale vortexes generated by the waves in the eyewall.On the other hand, both the high-frequency oscillations and waves in the eyewall affect the surface winds of the TC.The link between high-frequency oscillations and waves in the eyewall of TCs needs to explored in future studies.

    Another question is what causes the density in the PBL to decrease after the IRW decreases.We speculate that a“trigger”mechanism may be at work,which is worthy of further study.

    The present study mainly provides a descriptivepicture of the high-frequency oscillations in TCs.The schematic summary provides a hint of the relationships among oscillations of different variables that deserves more in-depth investigation of the underlying dynamics,and the in fl uences of these oscillations on TC intensities.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(Grant Nos.41375050, 41405048 and 41205032)and the China National Basic Research Program(Grant Nos.2011CB403500 and 2014CB953904).We thank the two anonymous reviewers for their constructive comments on the original manuscript.

    REFERENCES

    Charney,J.G.,and A.Elliassen,1964:On the growth of the hurricane depression.J.Atmos.Sci.,21,68–75.

    Chen,Y.,G.Brunet,and M.K.Yau,2003:Spiral bands in a simulated hurricane.Part II:Wave activity diagnostics.J.Atmos. Sci.,60,1239–1256.

    Chen,Y.,E.E.Ebert,K.J.E.Walsh,and N.E.Davidson,2013: Evaluation of TRMM 3B42 precipitation estimates of tropicalcyclone rainfall using PACRAIN data.J.Geophys.Res.,118, 2184–2196,doi:10.1002/jgrd.50250.

    Christopher,T.,and G.P.Compo,1998:A practical guide to wavelet analysis.Bull.Amer.Meteor.Soc.,79,61–78.

    Davis,C.A.,and S.Low-Nam,2001:The NCAR-AFWA Tropical Cyclone Bogussing Scheme.A Report Prepared for the Air Force Weather Agency(AFWA).[Available online at http:// www.mmm.ucar.edu/mm5/mm5v3/tc-report.pdf.]

    DeMaria,M.,C.R.Sampson,J.A.Knaff,and K.D.Musgrave, 2014:Is tropical cyclone intensity guidance improving?Bull. Amer.Meteor.Soc.,95,387–398.

    Dudhia,J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model.J.Atmos.Sci.,46,3077–3107.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I,Steady state maintenance.J.Atmos.Sci.,43, 585–605.

    Emanuel,K.A.,1989:The fi nite-amplitude nature of tropical cyclogenesis.J.Atmos.Sci.,46,3431–3456.

    Emanuel,K.A.,1997:Some aspects of inner-core dynamics and energetic.J.Atmos.Sci.,54,1014–1026.

    Emanuel,K.A.,1999:Thermodynamic control of hurricane intensity.Nature,401,665–669.

    Emanuel,K.A.,2000:A statistical analysis of tropical cyclone intensity.Mon.Wea.Rev.,128,1139–1152.

    Hendricks,E.A.,M.T.Montgomery,and C.A.Davis,2004:The role of“vortical”hot towers in the formation of tropical cyclone Diana(1984).J.Atmos.Sci.,61,1209–1232.

    Hong,S.-Y.,and J.-O.J.Lim,2006:The WRF Single-Moment 6-Class microphysics scheme(WSM6).J.Korean Meteor.Soc., 42,129–151.

    Hong,S.Y.,J.Dudhia,and S.H.Chen,2004:A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation.Mon.Wea.Rev.,132,103–120.

    Islam,Md.N.,and H.Uyeda,2005:Comparison of TRMM 3B42 products with surface rainfall over Bangladesh.Proceedings in the IEEE International Geoscience and Remote Sensing Symposium(IGARSS05),IEEE,Seoul,412–415.

    Kain,J.S.,2004:The Kain-Fritsch convective parameterization: An update.J.Appl.Meteor.,43,170–181.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802.

    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme.Meteor. Monogr.,24,165–170.

    Ki,M.O.,and H.Y.Chun,2011:Inertia gravity waves associated with deep convection observed during the summers of 2005 and 2007 in Korea.J.Geophys.Res.,116(D16),doi: 10.1029/2011JD015684.

    Knapp,K.R.,and M.C.Kruk,2010:Quantifying interagency differences in tropical cyclone best-track wind speed estimates.Mon.Wea.Rev.,138,1459–1473.

    Kurihara,Y.,1976:On the development of spiral bands in a tropical cyclone.J.Atmos.Sci.,33,940–958.

    Li,J.N.,G.Wang,W.S.Lin,Q.H.He,Y.R.Feng,and J. Y.Mao,2013:Cloud-scale simulation study of Typhoon Hagupit(2008).Part I:Microphysical processes of the inner core and three-dimensional structure of the latent heat budget.Atmospheric Research,120–121,170–180.

    Li,Q.,Y.Duan,H.Yu,and G.Fu,2010:Finescale spiral rainbands modeled in a high-resolution simulation of Typhoon Rananim (2004).Adv.Atmos.Sci.,27,685–704,doi:10.1007/s00376-009-9127-y.

    Low-Nam,S.,and C.Davis,2001:Development of a tropical cyclone Bogussing Scheme for the MM5 system.The 11th PSU/NCAR Mesoscale Model User’s Workshop,130–134.

    Menelaou,K.,and M.K.Yau,2014:On the role of asymmetric convective bursts to the problem of hurricane intensi fi cation: Radiation of vortex Rossby waves and wave-mean fl ow interactions.J.Atmos.Sci.,71,2057–2077.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono and S.A. Clough,1997:Radiative transfer for inhomogeneous atmosphere,RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682.

    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc., 123,435–465.

    Montgomery,M.T.,M.E.Nicholls,T.A.Cram,and A.B.Saunders,2006:A vortical hot tower route to tropical cyclogenesis.J.Atmos.Sci.,63,355–386.

    Montgomery,M.T.,N.V.Sang,R.K.Smith,and J.Persing,2009: Do tropical cyclones intensify by WISHE?Quart.J.Roy.Meteor.Soc.,135,1697–1714.

    Reasor,P.D.,M.T.Montgomery,F.D.Marks Jr.,and J.F. Gamache,2000:Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar.Mon.Wea.Rev.,128,1653–1680.

    Romine,G.S.,and R.B.Wilhelmson,2006:Finescale spiral band features within a numerical simulation of Hurricane Opal (1995).Mon.Wea.Rev.,134,1121–1139.

    Rotunno,R.,and K.A.Emanuel,1987:An air-sea interaction theory for tropical cyclones.Part II:Evolutionary study using a nonhydrostatic axisymmetricnumerical model.J.Atmos.Sci., 44,542–561.

    Schecter,D.A.,2008:The spontaneous imbalance of an atmospheric vortex at high Rossby number.J.Atmos.Sci.,65, 2498–2521.

    Shapiro,L.J.,and H.E.Willoughby,1982:The response of balanced hurricanes to local sources of heat and momentum.J. Atmos.Sci.,39,378–394.

    Skamarock,W.C.,and Coauthors,2008:A description of the Advanced Research WRF Version 3,1–113.[Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw v3.pdf.]

    Wang,B.,and J.C.L.Chan,2002:How strong ENSO events affect tropical storm activity over the western North Paci fi c.J. Climate,15,1643–1658.

    Willoughby,H.E.,1976:Inertia-Buoyancy waves in hurricanes.J. Atmos.Sci.,34,1028–1039.

    Ying,M.,W.Zhang,H.Yu,X.Lu,J.Feng,Y.Fan,Y.Zhu,and D.Chen,2014:An overview of the China Meteorological Administration tropical cyclone database.J.Atmos.Oceanic Technol.,31,287–301,doi:10.1175/JTECH-D-12-00119.1

    Zhong,W.,D.-L.Zhang,and H.-C.Lu,2009:A theory for mixed vortex Rossby-gravity waves in tropical cyclones.J.Atmos. Sci.,66,3366–3381.

    Zhu,P.,J.A.Zhang,and F.J.Masters,2010:Wavelet analyses of turbulence in the hurricane surface layer during landfalls.J. Atmos.Sci.,67,3793–3805.

    :Chen,S.M.,Y.Y.Lu,W.B.Li,and Z.P.Wen,2015:Identi fi cation and analysis of high-frequency oscillations in the eyewalls of tropical cyclones.Adv.Atmos.Sci.,32(5),624–634,

    10.1007/s00376-014-4063-x.

    (Received 8 April 2014;revised 22 August 2014;accepted 15 September 2014)

    ?Corresponding author:LI Weibiao

    Email:eeslwb@mail.sysu.edu.cn

    亚洲欧美精品综合久久99| 免费在线观看视频国产中文字幕亚洲| 一区二区三区精品91| 国产精品久久久av美女十八| 国产成+人综合+亚洲专区| 啦啦啦韩国在线观看视频| www国产在线视频色| 亚洲天堂国产精品一区在线| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| 18禁美女被吸乳视频| tocl精华| 国产极品粉嫩免费观看在线| 这个男人来自地球电影免费观看| 少妇粗大呻吟视频| 少妇 在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美国产日韩亚洲一区| 视频区欧美日本亚洲| 18禁黄网站禁片免费观看直播| 又黄又爽又免费观看的视频| 国产1区2区3区精品| 人妻丰满熟妇av一区二区三区| 十分钟在线观看高清视频www| 欧美激情 高清一区二区三区| 亚洲精品一区av在线观看| 亚洲国产毛片av蜜桃av| 一进一出抽搐gif免费好疼| 日韩免费av在线播放| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 亚洲五月天丁香| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲片人在线观看| www.www免费av| 国产精品永久免费网站| 亚洲 欧美 日韩 在线 免费| 日本精品一区二区三区蜜桃| 又大又爽又粗| 人人妻人人澡人人看| 亚洲成av人片免费观看| 搡老妇女老女人老熟妇| 天堂√8在线中文| 久久婷婷人人爽人人干人人爱| 久久天堂一区二区三区四区| 日韩欧美一区视频在线观看| 国产精品久久久人人做人人爽| 亚洲无线在线观看| 亚洲精品中文字幕一二三四区| 一进一出好大好爽视频| 伊人久久大香线蕉亚洲五| 欧美一区二区精品小视频在线| 午夜激情av网站| 亚洲av片天天在线观看| 久久午夜综合久久蜜桃| 色av中文字幕| 在线观看舔阴道视频| 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 好看av亚洲va欧美ⅴa在| 香蕉久久夜色| 亚洲中文日韩欧美视频| x7x7x7水蜜桃| 国产国语露脸激情在线看| 欧美色视频一区免费| a在线观看视频网站| 国产高清有码在线观看视频 | 久久精品国产综合久久久| 免费无遮挡裸体视频| 女同久久另类99精品国产91| 国产亚洲精品久久久久久毛片| 亚洲国产欧美网| xxx96com| 欧美久久黑人一区二区| bbb黄色大片| 首页视频小说图片口味搜索| 国产高清有码在线观看视频 | 巨乳人妻的诱惑在线观看| 一a级毛片在线观看| 久久久久久九九精品二区国产 | 精品福利观看| 成年版毛片免费区| 成人一区二区视频在线观看| 成人三级做爰电影| 国产成人啪精品午夜网站| 9191精品国产免费久久| 好男人电影高清在线观看| 国产av一区二区精品久久| 亚洲欧美日韩无卡精品| 亚洲一区中文字幕在线| 久久精品亚洲精品国产色婷小说| 亚洲欧美精品综合一区二区三区| 久久久久国产精品人妻aⅴ院| 国产免费男女视频| 成人欧美大片| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 国产精品免费一区二区三区在线| 国产精品爽爽va在线观看网站 | 欧美中文日本在线观看视频| 国产成人精品无人区| 大型av网站在线播放| 久久久久久大精品| 亚洲成av人片免费观看| 伦理电影免费视频| 亚洲在线自拍视频| 亚洲专区字幕在线| 精品久久久久久久人妻蜜臀av| 国产激情偷乱视频一区二区| 国产免费男女视频| 国产精品综合久久久久久久免费| 亚洲专区中文字幕在线| 一区二区三区高清视频在线| 国产精品乱码一区二三区的特点| 女性被躁到高潮视频| 午夜视频精品福利| 性色av乱码一区二区三区2| 99精品欧美一区二区三区四区| av视频在线观看入口| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 国产精品一区二区精品视频观看| 97碰自拍视频| 美国免费a级毛片| 色老头精品视频在线观看| 777久久人妻少妇嫩草av网站| 欧美精品啪啪一区二区三区| 精品国产超薄肉色丝袜足j| 日韩精品青青久久久久久| 草草在线视频免费看| 香蕉av资源在线| 国产一区二区激情短视频| 99精品久久久久人妻精品| 亚洲av成人一区二区三| 黄色女人牲交| 国产亚洲av嫩草精品影院| 欧美另类亚洲清纯唯美| 免费在线观看日本一区| 国产片内射在线| 免费在线观看日本一区| 国产精品电影一区二区三区| 91九色精品人成在线观看| 婷婷亚洲欧美| 伊人久久大香线蕉亚洲五| www日本黄色视频网| 19禁男女啪啪无遮挡网站| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 国产一区二区激情短视频| 免费女性裸体啪啪无遮挡网站| 老鸭窝网址在线观看| 在线观看免费日韩欧美大片| 久久精品成人免费网站| 精品无人区乱码1区二区| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 国产精品影院久久| 嫁个100分男人电影在线观看| 日日爽夜夜爽网站| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 亚洲中文日韩欧美视频| 1024香蕉在线观看| 别揉我奶头~嗯~啊~动态视频| 久久人妻av系列| 国产精品亚洲一级av第二区| 国产精品久久久av美女十八| 亚洲熟妇中文字幕五十中出| 国产午夜精品久久久久久| 人成视频在线观看免费观看| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日本99.免费观看| 成年女人毛片免费观看观看9| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 午夜视频精品福利| 亚洲av成人av| 极品教师在线免费播放| 淫秽高清视频在线观看| 大型av网站在线播放| 国产真实乱freesex| 久久久国产成人精品二区| 午夜久久久在线观看| 日韩大尺度精品在线看网址| 国产免费男女视频| 国产私拍福利视频在线观看| 十分钟在线观看高清视频www| 在线观看免费视频日本深夜| 搡老妇女老女人老熟妇| 亚洲在线自拍视频| 亚洲国产欧美日韩在线播放| 国产一区在线观看成人免费| 丰满的人妻完整版| 免费在线观看完整版高清| 免费看美女性在线毛片视频| 可以在线观看的亚洲视频| 久久热在线av| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 这个男人来自地球电影免费观看| 两性夫妻黄色片| 精品久久蜜臀av无| 欧美久久黑人一区二区| 不卡av一区二区三区| 白带黄色成豆腐渣| 成人国产一区最新在线观看| 亚洲av熟女| 啦啦啦观看免费观看视频高清| 国产又爽黄色视频| 国产麻豆成人av免费视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 怎么达到女性高潮| 久久久久久人人人人人| 哪里可以看免费的av片| 免费看十八禁软件| 热99re8久久精品国产| 国产高清videossex| 波多野结衣巨乳人妻| 天天躁夜夜躁狠狠躁躁| 久热这里只有精品99| 色综合站精品国产| 日本免费a在线| 老司机福利观看| 国产精品综合久久久久久久免费| 在线观看午夜福利视频| 日日摸夜夜添夜夜添小说| 好男人电影高清在线观看| 免费电影在线观看免费观看| 日本免费a在线| 亚洲成av人片免费观看| 欧美久久黑人一区二区| 日本成人三级电影网站| 他把我摸到了高潮在线观看| 久久亚洲真实| 中出人妻视频一区二区| 免费无遮挡裸体视频| 欧美黑人精品巨大| 天天添夜夜摸| 香蕉国产在线看| 国产亚洲欧美精品永久| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 久久久水蜜桃国产精品网| 久久精品国产亚洲av高清一级| av福利片在线| 99精品在免费线老司机午夜| 老司机在亚洲福利影院| 久久中文字幕一级| 精品国产国语对白av| 亚洲久久久国产精品| 久久精品国产99精品国产亚洲性色| 丝袜在线中文字幕| 男人的好看免费观看在线视频 | 成年版毛片免费区| 国产精品久久久人人做人人爽| 国产成人影院久久av| 国产视频内射| 中文字幕高清在线视频| 夜夜看夜夜爽夜夜摸| 一区福利在线观看| 黄频高清免费视频| 非洲黑人性xxxx精品又粗又长| 中文字幕av电影在线播放| 色婷婷久久久亚洲欧美| 人人妻,人人澡人人爽秒播| 青草久久国产| 亚洲五月色婷婷综合| 免费观看人在逋| 日韩大尺度精品在线看网址| 国产精品二区激情视频| 制服人妻中文乱码| 男人舔奶头视频| 亚洲性夜色夜夜综合| 狂野欧美激情性xxxx| 看黄色毛片网站| 精品电影一区二区在线| 宅男免费午夜| 一级作爱视频免费观看| 欧美另类亚洲清纯唯美| 亚洲色图av天堂| 免费在线观看完整版高清| 在线观看午夜福利视频| 国产人伦9x9x在线观看| 少妇被粗大的猛进出69影院| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看 | 国产高清videossex| 久久国产精品男人的天堂亚洲| 欧美色视频一区免费| 男男h啪啪无遮挡| 国产在线观看jvid| 黄色视频,在线免费观看| 两性夫妻黄色片| 久久久久久久久免费视频了| 亚洲中文字幕日韩| 久久久国产欧美日韩av| 天天添夜夜摸| 国产视频内射| 色综合婷婷激情| 天天躁狠狠躁夜夜躁狠狠躁| 又大又爽又粗| 国产精品亚洲一级av第二区| 日韩大码丰满熟妇| 一区二区三区激情视频| www.www免费av| 可以在线观看毛片的网站| 成人三级黄色视频| 久久久国产精品麻豆| 亚洲人成电影免费在线| 免费观看精品视频网站| 欧美成人午夜精品| 此物有八面人人有两片| 亚洲国产看品久久| 一二三四社区在线视频社区8| 一本久久中文字幕| 日韩大尺度精品在线看网址| 亚洲成av片中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩精品免费视频一区二区三区| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 后天国语完整版免费观看| 成人永久免费在线观看视频| 久久国产精品男人的天堂亚洲| 国产三级黄色录像| 国产国语露脸激情在线看| 亚洲 欧美一区二区三区| 国产野战对白在线观看| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 久久久水蜜桃国产精品网| 国产精品美女特级片免费视频播放器 | 国产精品99久久99久久久不卡| 日韩欧美三级三区| 一进一出抽搐动态| 激情在线观看视频在线高清| 亚洲国产精品999在线| 国产一区二区三区在线臀色熟女| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 男人的好看免费观看在线视频 | 高清在线国产一区| 精品电影一区二区在线| 热99re8久久精品国产| 91字幕亚洲| 女警被强在线播放| 嫩草影视91久久| 国产成人av教育| 久久久久久人人人人人| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 欧美黄色淫秽网站| 好男人电影高清在线观看| 夜夜爽天天搞| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 久久中文字幕一级| 午夜成年电影在线免费观看| 国产精品免费视频内射| 香蕉av资源在线| 99久久国产精品久久久| 日本熟妇午夜| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 精品福利观看| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 欧美性猛交╳xxx乱大交人| 丁香六月欧美| 国产免费av片在线观看野外av| 麻豆成人午夜福利视频| 日日夜夜操网爽| 黄色视频,在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 色老头精品视频在线观看| 宅男免费午夜| 最新在线观看一区二区三区| 日本成人三级电影网站| 国产午夜精品久久久久久| 热99re8久久精品国产| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 午夜久久久在线观看| 妹子高潮喷水视频| 淫秽高清视频在线观看| 性欧美人与动物交配| 少妇 在线观看| 久久久久久久午夜电影| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看 | 中亚洲国语对白在线视频| 久久精品国产综合久久久| 男女做爰动态图高潮gif福利片| 日韩一卡2卡3卡4卡2021年| 色播在线永久视频| 国产精品久久久av美女十八| 久久精品91无色码中文字幕| 亚洲av片天天在线观看| 97人妻精品一区二区三区麻豆 | 久久这里只有精品19| 在线观看66精品国产| 长腿黑丝高跟| 国内精品久久久久精免费| 亚洲,欧美精品.| 亚洲avbb在线观看| 999久久久国产精品视频| 午夜福利免费观看在线| 91麻豆av在线| 精品不卡国产一区二区三区| 叶爱在线成人免费视频播放| 一级毛片精品| 一区二区三区高清视频在线| 久久精品国产亚洲av高清一级| 久久青草综合色| 日韩精品青青久久久久久| 精品免费久久久久久久清纯| 色综合婷婷激情| 欧美黑人欧美精品刺激| 国内久久婷婷六月综合欲色啪| 色在线成人网| 亚洲国产精品成人综合色| 我的亚洲天堂| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 亚洲免费av在线视频| 美女午夜性视频免费| 欧美国产日韩亚洲一区| 亚洲精品美女久久av网站| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 亚洲男人的天堂狠狠| 成人国产一区最新在线观看| 丝袜人妻中文字幕| 亚洲最大成人中文| 免费高清视频大片| 99热这里只有精品一区 | 国内揄拍国产精品人妻在线 | 热re99久久国产66热| 精华霜和精华液先用哪个| 成年女人毛片免费观看观看9| 亚洲人成电影免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 天堂影院成人在线观看| 亚洲av日韩精品久久久久久密| 一本大道久久a久久精品| 69av精品久久久久久| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| 男男h啪啪无遮挡| 免费高清视频大片| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 91国产中文字幕| 美女国产高潮福利片在线看| av有码第一页| 亚洲精品av麻豆狂野| 欧美黑人精品巨大| aaaaa片日本免费| 亚洲全国av大片| 丝袜人妻中文字幕| 手机成人av网站| 69av精品久久久久久| 夜夜看夜夜爽夜夜摸| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| 国产精品一区二区免费欧美| 草草在线视频免费看| 桃色一区二区三区在线观看| 亚洲精品国产区一区二| 俺也久久电影网| 搞女人的毛片| 国产精品二区激情视频| www.精华液| 午夜福利18| 久久久国产成人精品二区| 美女国产高潮福利片在线看| 日本免费a在线| 国产精品亚洲美女久久久| 日本免费a在线| 国产亚洲精品久久久久久毛片| 三级毛片av免费| 男人舔女人下体高潮全视频| 50天的宝宝边吃奶边哭怎么回事| 免费观看人在逋| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 日韩欧美 国产精品| 香蕉国产在线看| 又紧又爽又黄一区二区| 久久性视频一级片| 婷婷亚洲欧美| 国产精品av久久久久免费| 亚洲在线自拍视频| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 亚洲国产精品999在线| 香蕉国产在线看| 国产精品免费视频内射| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 一个人观看的视频www高清免费观看 | 欧美日韩亚洲综合一区二区三区_| 免费在线观看日本一区| 国产成人精品久久二区二区91| 999精品在线视频| 女警被强在线播放| 亚洲精品一区av在线观看| www国产在线视频色| 午夜福利欧美成人| 国产久久久一区二区三区| 香蕉av资源在线| 两个人看的免费小视频| 1024香蕉在线观看| 天堂影院成人在线观看| 精品电影一区二区在线| 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 母亲3免费完整高清在线观看| 白带黄色成豆腐渣| 十八禁网站免费在线| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| 久久 成人 亚洲| 欧美黑人精品巨大| 成熟少妇高潮喷水视频| 日韩欧美一区视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 9191精品国产免费久久| 波多野结衣av一区二区av| 校园春色视频在线观看| 黄色女人牲交| 两个人看的免费小视频| 国产精品一区二区三区四区久久 | 少妇熟女aⅴ在线视频| cao死你这个sao货| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 亚洲精品在线美女| 亚洲欧美激情综合另类| 国产91精品成人一区二区三区| 国产伦在线观看视频一区| 麻豆av在线久日| 2021天堂中文幕一二区在线观 | 国产精品九九99| 亚洲一区中文字幕在线| 久久久久九九精品影院| 日韩欧美 国产精品| 国产区一区二久久| 久久狼人影院| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影 | 村上凉子中文字幕在线| bbb黄色大片| 天天躁夜夜躁狠狠躁躁| 无人区码免费观看不卡| 91成人精品电影| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 变态另类丝袜制服| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 精品不卡国产一区二区三区| 久久久久九九精品影院| 久久精品91蜜桃| 国产色视频综合| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 国产精品影院久久| 免费在线观看成人毛片| 美女大奶头视频| 伦理电影免费视频| 一二三四社区在线视频社区8| 亚洲av成人一区二区三| 欧美zozozo另类| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 国产野战对白在线观看| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 岛国视频午夜一区免费看| 老司机午夜福利在线观看视频| 午夜影院日韩av| 中文字幕精品亚洲无线码一区 | 999久久久精品免费观看国产| 1024手机看黄色片|