• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    十氫萘/空氣混合物高溫著火延遲的激波管測量

    2015-02-18 12:06:40何九寧李有亮張昌華李象遠
    物理化學學報 2015年5期
    關鍵詞:李萍四川大學成都

    何九寧 李有亮 張昌華 李 萍,* 李象遠

    (1四川大學原子與分子物理研究所,成都610065;2四川大學化學工程學院,成都610065)

    1 lntroduction

    Real hydrocarbon fuels are complex mixtures containing hundreds of chemical constituents.The chemical species contained in these fuels belongs to only four classes:alkanes,alkenes,cycloalkanes,and aromatics.1The oxidation characteristics of alkanes have been well investigated.2,3However,only a few studies were performed on the oxidation characteristics of cycloalkanes.4,5Decalin,C10H18,is a typical bicyclic compound in liquid hydrocarbon fuels.It is usually chosen as a representative component of cycloalkanes for surrogate diesel fuels.6-8Decalin is a primary constituent of petroleum feedstocks and found in automotive fuels,aircraft fuels,and proposed additive package for these various fuels.9Moreover,it is also considered as an endothermic fuel with potential capability for engine cooling.10Therefore,investigations on the oxidation property of decalin are necessary.

    Previous experimental studies of decalin mostly involved in its oxidation and pyrolysis characteristics.Zhuet al.9studied the pyrolysis and oxidation of decalin in a shock tube between 769-1202 K,for pressures of 11.82×105-51.71×105Pa and equivalence ratios(Φ)of 0.5,1.0,and 2.0.They observed the negative temperature coefficient behavior of decalin auto-ignition at temperature below 920 K.Dagautet al.11investigated the decalin oxidation and pyrolysis in a jet-stirred reactor at pressures of 1.01×105and 10.10×105Pa.They measured the stable species concentration profiles from the oxidation of decalin.Stewartet al.12investigated the supercritical decalin pyrolysis in terms of product distribution and probable reaction pathways in a flow reactor.Pressures and temperatures varied over ranges from 2.02×105to 10.10×106Pa and 700 to 810 K.The oxidation chemistry of decalin was investigated by Yang and Boehman13in a motored engine at low to intermediate temperatures,and decalin showed significant low temperature reactivity.Ignition delay time measurements of decalin at elevated pressures were performed in a shock tube for temperatures ranging from 990 to 1300 K by Oehlschlaegeret al.14For kinetic study,a semi-detailed kinetic sub-mechanism was proposed for describing the high temperature pyrolysis and oxidation of decalin by Oehlschlaegeret al.14The mechanism is the only one available for decalin from literature.The validation of this mechanism was performed in high pressures by Zhuet al.9and the experimental data were overpredicted.Up to now,the ignition delay data of decalin at low pressures are scarce.

    In order to understand the ignition delay characteristics of decalin and validate its kinetic mechanism,ignition delay time of decalin/air mixtures was measured behind reflected shock waves in a heated shock tube.The experimental conditions are as follows:temperatures of 950-1395 K,pressures of 1.82×105-16.56×105Pa,and equivalence ratios of 0.5,1.0,and 2.0.The effects of temperature,pressure,and equivalence ratio on the ignition delay time were investigated.Comparisons between the measured data and predictions of available kinetic mechanism were conducted.Furthermore,sensitivity analysis was performed to identify important reactions in the decalin/air ignition process.

    2 Experimental

    Ignition delay time measurements were carried out in a heated stainless-steel shock tube with an internal diameter of 10 cm,which consists of a 6 m driver and a 5 m driven sections.Two sections were separated by a double diaphragm section.Diaphragms of different gauges were chosen to obtain various reflected shock pressures.The details of the shock tube facility have been described elsewhere.15,16High-purity helium(>99.99%purity)was used as the driver gas.Prior to each run,the shock tube was evacuated down to 10 Pa or better using a vacuum pump system.Meanwhile,the initial temperature of driven section was uniformly heated to 120°C using six electro-thermal circuits and controllers with uncertainty within±3 °C.Mixtures of gas phase decalin/synthesis air(21%O2and 79%N2)mixtures were prepared in a stainless-steel mixing tank of 40 L.Purities of N2and O2are higher than 99.99%.The mixing tank can be pumped down to pressures below 10 Pa.In order to prevent condensation of the fuel,the mixing tank was preheated and maintained at 150°C.Additionally,all connecting delivery lines were also evaporated below 10 Pa by the vacuum system before preparing the mixtures to be investigated.Neat decalin was directly injected into the tank,after evaporation,synthesis air was added to prepare the desired mixtures.Pressures of gas phase decalin in the tank were monitored by a thin-film capacitance manometer.Oxygen and nitrogen were measured by a pressure gauge.

    The incident shock velocity was measured through four piezoelectric pressure transducers(PCB113B),which are equally spaced alongside the test section.The distance of each two pressure transducers was 18.9 cm.The velocity at the end wall was obtained by extrapolating the three wave velocities.The ignition temperature(T)and pressure(p)behind the reflected shock wave were obtained using the one-dimensional(1D)normal shock equations with respect to the measured initial temperature in the driven section,the measured incident shock wave velocity,and the thermodynamic properties of the reactant mixtures.Light emission was detected through a quartz optical fiber located at side wall 15 mm away from the end wall.The fiber was connected with a grating monochromator(Zolix Omni-λ3009)coupled with photomultiplier tubes(PMT).The monochromator was set to 431 nm to capture electronically excited CH*emission from theA2Δ-X2Пtransition.The optical signal was recorded by a digital phosphor oscilloscope(Tektronix TDS5054B),and four pressure signals transmitted through pressure transducers were recorded by another oscilloscope(Tektronix DPO5054).

    The ignition delay time(τ)is defined as the time interval between arrival of the reflected shock wave and the onset of ignition at the side-wall observation location(15 mm from the end wall).The arrival of the reflected shock wave is determined by the jump of pressure signal,while the steepest increase of the CH*emission means the onset of ignition.Fig.1 shows an example of ignition delay time determination.The uncertainty in measured ignition delay time is estimated within±20%based on combined uncertainties in reflected shock temperature and pressure measurement,and uncertainty in the ignition delay time determination from the measured pressure and emission signals.

    3 Results and discussion

    3.1 lgnition delay time

    Ignition delay time of decalin/air mixtures was obtained for pressures of 1.82×105-16.56×105Pa,temperatures of 950-1395 K,equivalence ratios of 0.5,1.0,and 2.0.The measured data are listed in Table 1 and shown in Fig.2.The data in Fig.2 are scaled to 2.02×105,5.05×105,and 15.15×105Pa using the power-law relationship(τ∝p-1),thisp-1dependence has been observed in many previous studies with different experimental facilities.17Present results show that an increasing temperature or pressure results in a decrease in ignition delay time.However,there is no law to describe the effect of equivalence ratio on the ignition delay time directly,and an opposite behavior of the ignition delay dependence on equivalence ratio at pressures of 2.02×105and 15.15×105Pa was observed.

    At pressure of 2.02×105Pa,fuel-rich mixture(Φ=2.0)gives the longest ignition delay time,and ignition delay time of stoichiometric and fuel-lean mixtures(Φ=1.0,0.5)exhibit a crossover at temperature of~1200 K.The fuel-lean mixture has the shortest ignition delay time in excess of 1200 K.This indicates that the ignition delay time increases with the increase of the fuel concentration at relatively high temperatures,showing a positive dependence on the equivalence ratio.The phenomenon was also found for 2,4-dimethylpentane,2,5-dimethylhexane,and isooctane at high temperature and low pressure.18At these conditions,the ignition delay is mostly controlled by the chain-branching reaction H+O2=OH+O.The reaction has a promoting influence on the ignition delay time,which will be discussed later.

    At pressure of 15.15×105Pa,contrary to the results at 2.02×105Pa,the fuel-rich mixture gives the shortest ignition delay time,and fuel-lean mixture presents the longest one.It demonstrates that the ignition delay time decreases with increase of the fuel concentration,and exhibits a negative dependence on equivalence ratio.Similar behavior for fuels at high temperatures was commonly found.9,19,20

    Fig.1 Example of decalin/air ignition delay time(τ)determination

    Table 1 Measured ignition delay time(τ)data of decalin/air mixtures at different equivalence ratios(Φ)

    Fig.2 Current ignition delay time of decalin/air mixtures

    For measured data at pressure of 5.05×105Pa,a reduction in the fuel concentration leads to a bit increase in ignition delay time at temperatures below1152 K,but leads to a bit decrease when temperature is higher than 1152 K.This intermediate pressure behavior of ignition delay time was seldom reported.

    Overall,the effect of equivalence ratio on the ignition delay time of decalin/air is complex,and there is no definite law to describe it.At pressure of 2.02×105Pa with temperatures higher than 1200 K,the effect of equivalence ratio on ignition delay time is positive(τ∝Φ+n).At 15.15×105Pa,the equivalence ratio dependence is negative(τ∝Φ-n)over the current temperature range.This shift in decalin/air ignition delay time dependence on equivalence ratio at 2.02×105and 15.15×105Pa was observed for the first time.At pressure of 5.05×105Pa,it seems that ignition delay time influenced by equivalence ratio and temperature simultaneously.A discussion about the cause of the shift in the ignition delay dependence on equivalence ratio is provided in sensitivity analysis section later.

    Fig.2 also shows that the sensitivity of ignition delay time on temperature varies with equivalence ratio or pressure.In order to compare the sensitivities of ignition delay time on temperature,an Arrhenius temperature dependence equationτ=A×exp(Ea/RT)was used to correlate measured data,whereAis the pre-exponential factor,Eais the global activation energy(kJ?mol-1)which indicates the sensitivity of ignition delay time on temperature,Tis the ignition temperature in K,andRis the universal gas constant(8.314 J?mol-1?K-1).The correlated results are shown in Table 2,wherer2is a correlation coefficient.Table 2 shows that global activation energy of decalin/air mixture decreases with the increase of pressure for same equivalence ratio.It indicates that the change of ignition delay time at low pressures is more sensitive to the variations of temperature.These trends have been observed for other hydrocarbon fuels in shock tube experiments,21,22and it may due to different chemistry controlling the ignition process at different pressures.

    3.2 Comparison with previous data and mechanism predictions

    To our knowledge,there have been no previous decalin ignition delay time measurements at 2.02×105and 5.05×105Pa for comparison to the current study.The measured ignition time forΦ=1.0,0.5 at 15.15×105Pa is compared to the data of Zhu9and Oehlschlaeger14et al.in Fig.3 and Fig.4.Error bars(Zhu:±15%,Oehlschlaeger:±20%,and current work:±20%)have been added into these figures.In Fig.3,the data of Zhuet al.at 12.12×105and 20.20×105Pa and Oehlschlaegeret al.at 12.12 ×105Pa are scaled to 15.15×105Pa usingτ∝p-0.78given by those authors.In Fig.4,the data of Zhuet al.at 20.20×105Pa and Oehlschlaegeret al.at 12.12×105Pa are scaled to 15.15 ×105Pa using the same scaling factor.Results show that current data agree with previous data reasonably.ForΦ=1.0 with temperatures in excess of 1120 K,the three sources of data are in good agreement with each other,but for lower temperatures,Zhuet al.obtained slightly longer ignition delay time than measured data here,and Oehlschlaegeret al.given the longest data.Similarly,forΦ=0.5,data of Oehlschlaegeret al.are the longest and present data are the shortest.Presumably the discrepancy between three sources of data is mainly due to uncertainties of these experiments.

    Table 2 Correlated results for decalin ignition data

    Fig.3 Comparison of current ignition delay time for decalin/air at 15.15×105Pa and Φ=1.0 with previous experimental data

    Fig.4 Comparison of current ignition delay time for decalin/air at 15.15×105Pa and Φ=0.5 with previous experimental data

    Asemi-detailed kinetic mechanism proposed by Oehlschlaegeret al.14is the only one available for describing the oxidation of decalin.This mechanism was recently improved by them,which contains 200 species and 6826 reactions(online at www.chem.polimi.it/CRECKModeling/).Predictions of this mechanism for decalin ignition delay were carried out by using the program of CHEMKIN,23and the zero dimensional model and adiabatic constant volume constraint were applied.The criterion of maximum CH radical concentration as the ignition delay time was adopted in current work.The predictions and comparison with current experimental data are shown in Fig.5.At 2.02×105Pa,the mechanism well predicts global activation energies of experiments.The predictions show that ignition delay time have a crossover forΦ=1.0 andΦ=2.0,and the fuel-rich mixture is the slowest to ignite.At 5.05×105Pa,predictions indicate that the fuellean mixture gives longer ignition delay time at relatively low temperatures,but the fuel-lean mixture gives shorter ones at higher temperatures.At 15.15×105Pa,predictions show that the fuel-rich mixture is the fastest to ignite.In summary,the trends of experimental data were captured quite well by the mechanism under all conditions investigated,and the shift in the ignition delay dependence on equivalence ratio at 2.02×105and 15.15×105Pa was also obtained.However,the mechanism over-predicts the ignition delay time of decalin/air at all current experimental conditions.The discrepancy of model predictions and experimental data may partly due to rate parameters of some key reactions in the decalin oxidation system being not accurate enough in the mechanism,and partly due to the experimental data having±20%uncertainty.Since the mechanism captured all trends of experimental results,it was used to perform sensitive analysis whose results are given in the next section.

    Fig.5 Comparison of current data with predictions from Oehlschlaeger mechanism for decalin/air ignition delay at different pressures

    3.3 Sensitivity analysis

    Sensitivity analysis was carried out by using the Oehlschlaeger mechanism to identify the important reactions on the ignition of decalin/air mixtures.The percent change in ignition delay time[τ(2ki)-τ(ki)]/τ(ki)×100%(kiis the reaction rate constant)is taken as the sensitivity of each reaction to the ignition delay time.24,25A positive coefficient indicates that the corresponding reaction has an inhibiting effect on the reactivity of the fuel and leads to an increase in ignition delay time,while a negative coefficient has a promoting effect.Fig.6 and Fig.7 demonstrate the results of the sensitivity analyses at typical conditions of 2.02×105Pa at 1320 K and 15.15×105Pa at 1100 K,respectively.

    As shown in Fig.6,among the 12 high-sensitivity elementary reactions,the reaction H+O2=OH+O exhibits the strongest promoting effect on the ignition delay time.Reactions having negative coefficients are the decomposition of C10H17(RDECALIN)to form cyclohexane(CYC6H10)and C4H7radicals,molecular oxygen and vinyl radicals(C2H3)to form oxygen atoms and vinoxy radicals(CH2CHO),and the decomposition of C10H17to form hydrogen atoms and 3-cyclopentylcyclopentene(DCYC5).These reactions also have promoting influences on the ignition.The decomposition of C10H17to form allyl radicals(C3H5),ethylene(C2H4),and pentadiene(C5H8)has the strongest inhibiting effect on the ignition delay time.Since the ignition process is mainly controlled by the promoting reaction H+O2=OH+O at 1320 K and 2.02×105Pa,and theΦ=2.0 system has the less sensitivity thanΦ=0.5,1.0 systems to this reaction under the conditions,this may be the one of reasons for the fuel-rich mixture having the longest ignition delay time as shown in Fig.2.

    Fig.6 Sensitivity of different reactions to the ignition delay time for decalin/air at p=2.02×105Pa,T=1320 K,and Φ=0.5,1.0,2.0 using the Oehlschlaeger mechanism

    At a pressure of 15.15×105Pa and a temperature of 1100 K,sensitivity analysis results shown in Fig.7 are not the same as above.The decomposition of C10H17to form C4H7radical and cyclohexane,abstraction by hydroperoxy radical from decalin molecule(HO2+decalin=H2O2+RDECALIN),HO2+CH2CHCH2=OH+CH2O+C2H3are the three most influential reactions.These reactions have promoting effects on the overall reactivity and reduce the ignition delay time.However,the chain branching reaction H+O2=O+OH is much less sensitive than that at 2.02×105Pa.ForΦ=2.0 system,negative coefficient reactions are the most sensitive ones and have the strongest promoting effects on the ignition.Referring to positive coefficient reactions,the decomposition of C10H17to form allyl radical,ethylene and pentadiene plays the greatest inhibiting role in the ignition delay time.Reactions also exhibiting positive coefficients are hydrogen atoms and allyl radicals to form propylene(C3H6),and hydroperoxy radicals to form hydrogen peroxide(H2O2)and molecular oxygen.These positive coefficient reactions have stronger inhibiting influence on the ignition delay time for fuel-lean mixture.Considering the effects of promoting and inhibiting reactions on ignition process at 15.15×105Pa and 1100 K comprehensively,that fuel-rich mixture has the shortest ignition delay time is reasonable as got in the experiments.

    Fig.7 Sensitivity of different reactions to the ignition delay time for decalin/air at p=15.15×105Pa,T=1100 K,and Φ=0.5,1.0,2.0 using the Oehlschlaeger mechanism

    4 Conclusions

    Ignition delay time has been measured in a shock tube for decalin/air mixtures for temperatures of 950-1395 K,pressures of 1.82×105-16.56×105Pa,and equivalence ratios of 0.5,1.0,and 2.0.Results show that an increase in temperature or pressure leads to a decrease in the ignition delay time.A shift in ignition delay time dependence on equivalence ratio for decalin/air mixture at different pressures was observed for the first time.Under pressure of 2.02×105Pa,the fuel-rich mixture has the longest ignition delay time.However,at 15.15×105Pa,fuel-rich mixture presents the shortest ignition delay time,fuel-lean mixture has the longest one.Predictions of Oehlschlaeger mechanism can capture the trends of present experimental data quite well under all conditions investigated,however the predictions overestimated the ignition delay time.Several important reactions influencing the ignition delay time were identified by sensitivity analyses.The branching reaction H+O2=OH+O has the strongest promoting effect on the ignition at 2.02×105Pa,1320 K,and equivalence ratio of 0.5,this contributes most to fuel-rich mixture having the longest ignition delay time.However,reactions of RDECALIN=C4H7+CYC6H10and HO2+DECALIN=H2O2+RDECALIN play the most important promoting role to promote the ignition at 15.15×105Pa and 1100 K.Current results are valuable to understand the ignition characteristics of decalin,and provide new experimental data for the development and validation of decalin kinetic mechanisms at low to intermediate pressures.

    (1) Ranzi,E.Energy Fuels2006,20,1024.doi:10.1021/ef060028h

    (2) Simmie,J.M.Prog.Energy Combust.Sci.2003,29,599.doi:10.1016/S0360-1285(03)00060-1

    (3) Westbrook,C.K.;Pitz,W.J.;Herbinet,O.;Curran H.J.;Silke,E.J.Combust.Flame2009,156,181.doi:10.1016/j.combustflame.2008.07.014

    (4) Silke,E.J.;Pitz,W.J.;Westbrook,C.K.;Ribaucour,M.J.Phys.Chem.A2007,111,3761.doi:10.1021/jp067592d

    (5) Vanderover,J.;Oehlschlaeger,M.A.Int.J.Chem.Kinet.2009,41,82.doi:10.1002/kin.v41:2

    (6) Eddings,E.G.;Yan,S.;Ciro,W.;Sarofim,A.F.Combust.Sci.Technol.2005,177,715.doi:10.1080/00102200590917248

    (7) Agosta,A.;Cernansky,N.P.;Miller,D.L.;Faravelli,T.;Ranzi,E.Exp.Therm.Fluid Sci.2004,28,701.doi:10.1016/j.expthermflusci.2003.12.006

    (8) Mueller,C.J.;Cannella,W.J.;Bruno,T.J.;Bunting,B.;Dettman,H.D.;Franz,J.A.;Huber,M.L.;Natarajan,M.;Pitz,W.J.;Ratcliff,M.A.;Wright,K.Energy Fuels2012,26,3284.doi:10.1021/ef300303e

    (9) Zhu,Y.;Davidson,D.F.;Hanson,R.K.Combust.Flame2014,161,371.doi:10.1016/j.combustflame.2013.09.005

    (10) Edwards,T.J.Propul.Power2003,19,1089.doi:10.2514/2.6946

    (11) Dagaut,P.;Ristori,A.;Frassoldati,A.;Faravelli,T.;Dayma,G.;Ranzi,E.Proc.Combust.Inst.2013,34,289.doi:10.1016/j.proci.2012.05.099

    (12) Stewart,J.;Brezinsky,K.;Glassman,I.Combust.Sci.Tech.1998,136,373.doi:10.1080/00102209808924178

    (13)Yang,Y.;Boehman,A.L.Combust.Flame2010,157,495.doi:10.1016/j.combustflame.2009.08.011

    (14) Oehlschlaeger,M.A.;Shen,H.P.S.;Frassoldati,A.;Pierucci,S.;Ranzi,E.Energy Fuels2009,23,1464.doi:10.1021/ef800892y

    (15) Zhang,C.H.;Li,P.;Guo,J.J.;Li,X.Y.Energy Fuels2012,26,1107.doi:10.1021/ef201611a

    (16)Tang,H.C.;Zhang,C.H.;Li,P.;Wang,L.D.;Ye,B.;Li,X.Y.Acta Phys.-Chim.Sin.2012,28,787.[唐洪昌,張昌華,李萍,王利東,葉 彬,李象遠.物理化學學報,2012,28,787.]doi:10.3866/PKU.WHXB201202161

    (17)Vasu,S.S.;Davidson,D.F.;Hanson,R.K.Combust.Flame2008,152,125.doi:10.1016/j.combustflame.2007.06.019

    (18)Li,S.;Campos,A.;Davidson,D.F.;Hanson,R.K.Fuel2014,118,398.doi:10.1016/j.fuel.2013.11.028

    (19) Darcy,D.;Tobin,C.J.;Yasunaga,K.Combust.Flame2012,159,2219.doi:10.1016/j.combustflame.2012.02.009

    (20) Shen,H.P.S.;Vanderover,J.;Oehlschlaeger,M.A.Proc.Combust.Inst.2009,32,165.doi:10.1016/j.proci.2008.05.004

    (21)Daley,S.M.;Berkowitz,A.M.;Oehlschlaeger,M.A.Int.J.Chem.Kinet.2008,40,624.doi:10.1002/kin.v40:10

    (22) Vasu,S.S.;Davidson,D.F.;Hong,Z.Energy Fuels2009,23,175.doi:10.1021/ef800694g

    (23)Egolfopoulos,F.N.;Zhang,H.;Zhang,Z.Combust.Flame1997,109,237.doi:10.1016/S0010-2180(96)00152-6

    (24) Zhang,C.H.;Tang,H.C.;Zhang,C.Z.;Zhao,Y.;Li,P.;Li,X.Y.Chem.Phys.Lett.2013,556,13.doi:10.1016/j.cplett.2012.11.023

    (25)Kumar,K.;Mittal,G.;Sung,C.J.;Law,C.K.Combust.Flame2008,153,343.doi:10.1016/j.combustflame.2007.11.012

    猜你喜歡
    李萍四川大學成都
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    穿過成都去看你
    青年歌聲(2019年2期)2019-02-21 01:17:20
    數(shù)看成都
    先鋒(2018年2期)2018-05-14 01:16:16
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    成都
    汽車與安全(2016年5期)2016-12-01 05:21:56
    四川大學華西醫(yī)院
    找春天
    四川大學信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    一级毛片高清免费大全| 欧美在线黄色| 国产在视频线精品| 亚洲中文日韩欧美视频| 亚洲精品国产色婷婷电影| 大码成人一级视频| 精品无人区乱码1区二区| 在线观看免费午夜福利视频| 91国产中文字幕| 大香蕉久久成人网| 久久精品亚洲av国产电影网| 亚洲黑人精品在线| 最近最新中文字幕大全免费视频| 高清毛片免费观看视频网站 | av超薄肉色丝袜交足视频| 国产成人一区二区三区免费视频网站| 一级毛片精品| 日本黄色视频三级网站网址 | 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院 | 欧洲精品卡2卡3卡4卡5卡区| 欧美精品亚洲一区二区| 亚洲视频免费观看视频| 国产精品久久视频播放| 久久久久精品国产欧美久久久| 久久精品亚洲熟妇少妇任你| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 日韩免费高清中文字幕av| 亚洲一区中文字幕在线| 女同久久另类99精品国产91| 黄色成人免费大全| 欧美激情久久久久久爽电影 | 国产午夜精品久久久久久| 美女高潮到喷水免费观看| 高清视频免费观看一区二区| 久久精品国产亚洲av香蕉五月 | 夜夜夜夜夜久久久久| 久久精品国产99精品国产亚洲性色 | 色综合欧美亚洲国产小说| 777米奇影视久久| 99久久综合精品五月天人人| 中文字幕最新亚洲高清| 国产99久久九九免费精品| 91在线观看av| 久久国产精品影院| 日韩中文字幕欧美一区二区| 中文亚洲av片在线观看爽 | 欧美激情高清一区二区三区| 欧美黄色片欧美黄色片| 国产一区二区激情短视频| 国产亚洲欧美在线一区二区| 国产伦人伦偷精品视频| cao死你这个sao货| 男女下面插进去视频免费观看| 欧美精品人与动牲交sv欧美| 十八禁人妻一区二区| 99热国产这里只有精品6| 少妇的丰满在线观看| 久久久久精品国产欧美久久久| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| 免费在线观看亚洲国产| av不卡在线播放| 亚洲欧美色中文字幕在线| 少妇裸体淫交视频免费看高清 | 精品一区二区三卡| 亚洲全国av大片| av天堂在线播放| 国产不卡一卡二| 99国产精品免费福利视频| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 看免费av毛片| 久久天躁狠狠躁夜夜2o2o| 国产成人精品无人区| 俄罗斯特黄特色一大片| 亚洲av第一区精品v没综合| 夜夜爽天天搞| 亚洲一区二区三区欧美精品| 亚洲人成电影免费在线| 欧美一级毛片孕妇| 久久久久久久久免费视频了| 日日夜夜操网爽| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 自线自在国产av| 日本欧美视频一区| 亚洲av美国av| 狠狠狠狠99中文字幕| 国产成人av教育| 午夜日韩欧美国产| 国产淫语在线视频| 国产精品成人在线| 一级毛片精品| 国产xxxxx性猛交| 国产精品 国内视频| av天堂久久9| 又黄又爽又免费观看的视频| 自线自在国产av| 国产一区有黄有色的免费视频| 日韩成人在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 欧美午夜高清在线| 亚洲av电影在线进入| 最近最新免费中文字幕在线| 国产精品秋霞免费鲁丝片| 99国产精品99久久久久| 精品亚洲成国产av| 性色av乱码一区二区三区2| 大码成人一级视频| 少妇猛男粗大的猛烈进出视频| av天堂在线播放| 日本a在线网址| 欧美国产精品一级二级三级| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女 | 大码成人一级视频| 国产精品久久久久久精品古装| 国产午夜精品久久久久久| 很黄的视频免费| 亚洲专区字幕在线| 宅男免费午夜| 免费在线观看亚洲国产| 少妇 在线观看| 99精品欧美一区二区三区四区| 午夜精品久久久久久毛片777| 91精品国产国语对白视频| 午夜影院日韩av| 国产成人精品无人区| 中文字幕最新亚洲高清| 日本五十路高清| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 午夜福利免费观看在线| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 91成年电影在线观看| 久久久久视频综合| 一二三四在线观看免费中文在| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 日本撒尿小便嘘嘘汇集6| 成年人午夜在线观看视频| 欧美老熟妇乱子伦牲交| 超色免费av| 久久国产亚洲av麻豆专区| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 亚洲全国av大片| 男女之事视频高清在线观看| 精品第一国产精品| 午夜福利视频在线观看免费| 男人的好看免费观看在线视频 | 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看吧| 啦啦啦在线免费观看视频4| 国产在线观看jvid| 久9热在线精品视频| av电影中文网址| 国产蜜桃级精品一区二区三区 | 国产亚洲精品第一综合不卡| 精品福利永久在线观看| 色综合婷婷激情| 美女午夜性视频免费| 一区二区三区精品91| 91精品国产国语对白视频| 99re在线观看精品视频| 18禁黄网站禁片午夜丰满| 又黄又粗又硬又大视频| 午夜免费观看网址| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 他把我摸到了高潮在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久久免费高清国产稀缺| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 十八禁高潮呻吟视频| av网站免费在线观看视频| 人人澡人人妻人| 新久久久久国产一级毛片| 一边摸一边抽搐一进一小说 | 国产成人精品无人区| 日韩欧美在线二视频 | 99精品欧美一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 在线永久观看黄色视频| 大香蕉久久网| 男人的好看免费观看在线视频 | 亚洲精品粉嫩美女一区| 成年人黄色毛片网站| 中文字幕最新亚洲高清| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 一区在线观看完整版| 亚洲欧美日韩高清在线视频| www日本在线高清视频| 啦啦啦在线免费观看视频4| 侵犯人妻中文字幕一二三四区| 午夜福利一区二区在线看| 久久久久久久精品吃奶| 国产亚洲欧美精品永久| 又黄又爽又免费观看的视频| 久久精品熟女亚洲av麻豆精品| 99国产精品一区二区蜜桃av | 免费看a级黄色片| 久久中文字幕一级| 婷婷丁香在线五月| 一本大道久久a久久精品| 国产又爽黄色视频| 欧美激情高清一区二区三区| 精品午夜福利视频在线观看一区| 手机成人av网站| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 女人被狂操c到高潮| 成人永久免费在线观看视频| 日韩欧美国产一区二区入口| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 亚洲国产欧美日韩在线播放| 大型av网站在线播放| 久久青草综合色| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 超碰97精品在线观看| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 亚洲片人在线观看| 欧美黄色淫秽网站| 丝瓜视频免费看黄片| 色精品久久人妻99蜜桃| 欧美 亚洲 国产 日韩一| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区 | 天堂中文最新版在线下载| 免费观看精品视频网站| 亚洲精品一二三| 黄色片一级片一级黄色片| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线 | 日日摸夜夜添夜夜添小说| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 99国产精品一区二区三区| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人精品二区 | 飞空精品影院首页| 人成视频在线观看免费观看| 国产免费男女视频| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 热99久久久久精品小说推荐| av片东京热男人的天堂| 身体一侧抽搐| 一区二区三区精品91| 又黄又爽又免费观看的视频| 久久人妻熟女aⅴ| 精品国内亚洲2022精品成人 | 性少妇av在线| 三上悠亚av全集在线观看| 久久精品成人免费网站| 日韩免费高清中文字幕av| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 亚洲全国av大片| 欧美日韩成人在线一区二区| 国产精品国产高清国产av | 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美在线一区二区| 亚洲色图综合在线观看| 99国产精品免费福利视频| 成人18禁在线播放| 久久精品熟女亚洲av麻豆精品| 99久久精品国产亚洲精品| 不卡一级毛片| 国产精华一区二区三区| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 国产激情欧美一区二区| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 国产高清视频在线播放一区| 成在线人永久免费视频| 欧美成人免费av一区二区三区 | 国产精品免费一区二区三区在线 | 精品一区二区三区av网在线观看| 自线自在国产av| av网站免费在线观看视频| 国产在视频线精品| 欧美激情高清一区二区三区| 一本综合久久免费| 91av网站免费观看| 欧美人与性动交α欧美软件| 免费高清在线观看日韩| 美女福利国产在线| 一二三四社区在线视频社区8| 国产人伦9x9x在线观看| 国产不卡av网站在线观看| 777米奇影视久久| 精品亚洲成a人片在线观看| 一级作爱视频免费观看| 国产高清视频在线播放一区| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 欧美国产精品va在线观看不卡| 亚洲性夜色夜夜综合| 丁香六月欧美| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 男女午夜视频在线观看| 免费在线观看亚洲国产| 亚洲少妇的诱惑av| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看 | 少妇被粗大的猛进出69影院| 欧美午夜高清在线| 夜夜爽天天搞| 多毛熟女@视频| 妹子高潮喷水视频| 亚洲中文av在线| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 麻豆av在线久日| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 久久99一区二区三区| 老司机深夜福利视频在线观看| 亚洲九九香蕉| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 国产精品久久久久成人av| 国产av精品麻豆| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 韩国av一区二区三区四区| 亚洲av电影在线进入| 看片在线看免费视频| 黄色视频不卡| 在线观看免费高清a一片| 日本黄色日本黄色录像| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 香蕉久久夜色| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 精品一品国产午夜福利视频| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 一级黄色大片毛片| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 国产精品.久久久| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 久久中文字幕人妻熟女| www日本在线高清视频| 久久99一区二区三区| 欧美激情久久久久久爽电影 | 国产亚洲欧美在线一区二区| 午夜91福利影院| 天天添夜夜摸| 不卡av一区二区三区| 日本a在线网址| 成年人午夜在线观看视频| 欧美在线一区亚洲| 在线观看66精品国产| 又大又爽又粗| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| www.自偷自拍.com| 国产成人免费观看mmmm| 精品国产一区二区三区四区第35| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 日韩三级视频一区二区三区| 热re99久久国产66热| 免费高清在线观看日韩| 一区在线观看完整版| 国产高清视频在线播放一区| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 高清av免费在线| 黄色女人牲交| 高潮久久久久久久久久久不卡| 19禁男女啪啪无遮挡网站| 99国产精品99久久久久| 91av网站免费观看| 国产精品99久久99久久久不卡| 国产黄色免费在线视频| 悠悠久久av| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 国产不卡一卡二| 伦理电影免费视频| 国产一区二区三区综合在线观看| 9191精品国产免费久久| 天堂中文最新版在线下载| 曰老女人黄片| 久久性视频一级片| 午夜精品国产一区二区电影| 欧美黄色淫秽网站| 久久精品国产亚洲av香蕉五月 | 国产一区二区三区在线臀色熟女 | 丁香欧美五月| 成人18禁在线播放| 天堂√8在线中文| 午夜日韩欧美国产| 亚洲av熟女| 亚洲五月色婷婷综合| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 国产亚洲av高清不卡| 欧美色视频一区免费| 亚洲全国av大片| 在线av久久热| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 国产精品av久久久久免费| 岛国在线观看网站| 久久九九热精品免费| 成人国产一区最新在线观看| 国产成人欧美在线观看 | 精品国内亚洲2022精品成人 | 免费在线观看日本一区| 国产av精品麻豆| 亚洲午夜精品一区,二区,三区| 最新的欧美精品一区二区| 午夜视频精品福利| 18禁裸乳无遮挡动漫免费视频| 日韩精品免费视频一区二区三区| 久久热在线av| 免费高清在线观看日韩| 午夜激情av网站| 国产色视频综合| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | av网站免费在线观看视频| 天堂俺去俺来也www色官网| 视频区图区小说| 天天影视国产精品| 两个人看的免费小视频| 黑丝袜美女国产一区| 欧美不卡视频在线免费观看 | 久久人妻av系列| 欧美激情极品国产一区二区三区| 国产精品久久久久成人av| 中国美女看黄片| 免费在线观看影片大全网站| 亚洲成国产人片在线观看| 另类亚洲欧美激情| 啦啦啦视频在线资源免费观看| 午夜亚洲福利在线播放| 精品少妇一区二区三区视频日本电影| 一进一出抽搐动态| 精品一区二区三卡| 午夜免费鲁丝| 国产精品av久久久久免费| 国产精品98久久久久久宅男小说| 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 亚洲欧洲精品一区二区精品久久久| 捣出白浆h1v1| 一本大道久久a久久精品| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 在线十欧美十亚洲十日本专区| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠躁躁| 亚洲avbb在线观看| 国产欧美亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩成人在线一区二区| 婷婷精品国产亚洲av在线 | 国产三级黄色录像| 免费在线观看视频国产中文字幕亚洲| 久久精品亚洲av国产电影网| 精品亚洲成a人片在线观看| 国产片内射在线| 美女高潮到喷水免费观看| 亚洲一区中文字幕在线| 一级作爱视频免费观看| 国产又色又爽无遮挡免费看| 一级毛片女人18水好多| 性色av乱码一区二区三区2| 激情视频va一区二区三区| 亚洲人成伊人成综合网2020| 另类亚洲欧美激情| 在线观看免费高清a一片| 亚洲性夜色夜夜综合| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 在线观看免费高清a一片| 91精品三级在线观看| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 搡老乐熟女国产| 99热只有精品国产| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 国产激情欧美一区二区| 视频区欧美日本亚洲| 9191精品国产免费久久| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 无限看片的www在线观看| 天堂中文最新版在线下载| 久久久久国产精品人妻aⅴ院 | 成年人午夜在线观看视频| a级毛片在线看网站| 国产亚洲一区二区精品| 精品熟女少妇八av免费久了| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 国产不卡一卡二| 在线播放国产精品三级| 黄片小视频在线播放| 怎么达到女性高潮| 午夜福利在线免费观看网站| av不卡在线播放| 1024视频免费在线观看| 国产无遮挡羞羞视频在线观看| 99热国产这里只有精品6| 精品一品国产午夜福利视频| 男男h啪啪无遮挡| 免费看十八禁软件| 精品亚洲成国产av| 黄色怎么调成土黄色| 国产成人精品无人区| 久久久久久久国产电影| 黑人猛操日本美女一级片| 女人久久www免费人成看片| 亚洲专区国产一区二区| 国产亚洲欧美98| 亚洲成av片中文字幕在线观看| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| 性少妇av在线| 亚洲成av片中文字幕在线观看| 成年人午夜在线观看视频| 国产国语露脸激情在线看| 久久久精品免费免费高清| 韩国av一区二区三区四区| 欧美精品一区二区免费开放| 国产精品香港三级国产av潘金莲| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片 | 别揉我奶头~嗯~啊~动态视频| 欧美黑人精品巨大| 咕卡用的链子| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 久久九九热精品免费| 一a级毛片在线观看| 亚洲av片天天在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 国产激情欧美一区二区| 免费看十八禁软件| 国产成人系列免费观看| 国产精品电影一区二区三区 | 亚洲 国产 在线| 正在播放国产对白刺激| 日韩欧美免费精品| 午夜精品国产一区二区电影| 久久午夜综合久久蜜桃| 亚洲国产精品一区二区三区在线| 日韩制服丝袜自拍偷拍| 久久影院123| 99国产精品一区二区蜜桃av | 国产精品 欧美亚洲| 久久人妻福利社区极品人妻图片| 女人被躁到高潮嗷嗷叫费观| 正在播放国产对白刺激| 男女免费视频国产| 乱人伦中国视频| 亚洲精品久久午夜乱码| 1024视频免费在线观看| 亚洲第一av免费看|