• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical research on the performances of slot hydrofoil*

    2015-02-16 06:43:32WEIQun魏群CHENHongxun陳紅勛ZHANGRui張睿
    關(guān)鍵詞:張睿

    WEI Qun (魏群), CHEN Hong-xun (陳紅勛), ZHANG Rui (張睿)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Institute of Civil Engineering, Nanchang University, Nanchang 330031, China, E-mail: qunwei@shu.edu.cn

    Numerical research on the performances of slot hydrofoil*

    WEI Qun (魏群)1,2, CHEN Hong-xun (陳紅勛)1, ZHANG Rui (張睿)1

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Institute of Civil Engineering, Nanchang University, Nanchang 330031, China, E-mail: qunwei@shu.edu.cn

    (Received December 21, 2013, Revised July 3, 2014)

    The paper presents an numerical study of the hydraulic and cavitating characteristics of a slot hydrofoil at the angle of incidence ofo

    hydrofoil, performance, optimal design, cavitation inhibition

    Introduction

    Hydrofoil is the key factor of axial-flow pump’s design, foil section has direct effect on the performance. The high efficiency working area of axial-flow pump is very narrow, with the change of external operation environment it may work on low efficiency condition, companying by greater hydraulic loss and system instability. To improve the performance of axial-flow pumps at low flow rate, Chen applied slotted technology[1]on 791 hydrofoil and Zhang designed a slot hydrofoil[2]by hydraulic optimization design, which applied in the design of an axial-flow pump. It’s validated that the efficiency of this axial pump with slot blades increases at low flow rate by numerical and experimental means.

    Cavitation can give rise to hydraulic performance deterioration, noise, vibration and erosion damage, so cavitating character is another indicator evaluating the performance of a pump. In present paper, the research aiming at cavitating characteristics of this slot hydrofoil at the angle of incidence of 6° will be performed.

    Cavitation flow around a hydrofoil is often a multiphase flow associated with turbulence, unsteady flows and phase change, etc. Many researches have been carried out to simulate the cavitation flow and noticeable progresses have been made in recent years. A common approach to modeling cavitation is the homogeneous flow theory, where the mixture density is introduced and only one single set of mass and momentum equations is solved. Different approaches have been proposed to generate the variable density field. One of those is adopting arbitrary barotropic equation of state for density[3-5]. Another approach is transport equation model(TEM), fulfilled by a supplementary equation or the simplified Rayleigh-Plesset equation controlling the convection of the vapor[6-10]. TEM models have similar format but with different source terms. Frikh et al.[11]analyzed the influence of different models on the simulation of cloud cavitation on 2-D foil section, the results showed a large resemblance between most of models and modifying parameters change the cavity shape and structure. Many experiences[12-14]have proved that CFD simulation can be used to analyze the cavitating behavior successfully with coupling suitable cavitation and turbulence models.

    In this paper, the cavitating behavior of the slothydrofoil will be investigated by a homogeneous model on comparison with 791 hydrofoil for 6oattack angle. Furthermore, to achieve good hydraulic and cavitation performances, optimal research of the slot hydrofoil will be conducted with Ansys Workbench12.1, in which the cavitation index is introduced as another optimization goal besides hydraulic parameters.

    Fig.1 Geometry of hydrofoils

    1. Geometry of hydrofoil

    The research object of this work is an optimal slot hydrofoil based on 791 hydrofoil (C =0.158 m). 791 hydrofoil (Fig.1(a)) was verified to have good hydraulic performance and cavitation resistence through production practice, which was proposed by Guan[15]. The slot hydrofoil (Fig.1(b)) was designed by Zhang through optimization for maximum lift-drag ratio with constraint of lift.

    2. Numerical methods

    In order to figure out the cavitation performance of the slot hydrofoil, numerical simulations were carried out. The numerical model solved the unsteady Navier-Stokes equations, coupled with SST turbulence model and the Bakir[16]Rayleigh Plesset cavitation model with automatic near-wall treatment which can automatically switch from wall functions to a low-Re near wall formulation as the mesh is refined. The saturation pressure was 3 574 Pa. All simulations were done with general purpose CFD code ANSYS CFX 12.1. Equations were discretized on the element-based finite-volume, the second-order high resolution scheme and second-order backward Euler scheme were used separately for the advection term and transient term. Unsteady simulations were carried out with the initial values of corresponding steady simulation results.

    2.1 Validation of the numerical methods

    Leroux et al.[17]had taken researches on NACA 66 mod hydrofoil by both experimental and numerical means. To verify the validity of numerical methods, the adopted numerical methods were used to simulate the cavitation flow around NACA66 mod hydrofoil at two same conditions to experiments done by Leroux. Geometry was simplified to 2-D problem witho>6 attack angle, and the grid was generated with structured grid with 27 006 nodes (Fig.2). Figure 3 shows the predicted pressure distribution on the suction side of the hydrofoil for σ=1.41, in which the pressure distribution agrees well with the experimental data. For =1.25σ, the calculation results display that the cavity undergoes the growth and shedding process with main frequency of 3.57 Hz, and the experimental value is 3.625 Hz. From the above, it can be concluded that the numerical methods adopted in this paper can correctly simulate the cavitation flow around hydrofoil.

    Fig.2 General view of the grid around NACA 66 mod foil

    Fig.3 Pressure distribution on suction side of NACA 66 (α= 6o, σ=1.41)

    Fig.4 General view of the grid around foils

    2.2 Boundary condition , grid and time resolution

    The geometry was simplified to 2-D problem, which is fixed within a 11C long and 4C wide square cross test section. The slot foil was designed to improving the hydraulic performance at low flow rate, so the angle of incidence of the foil in this research is setto beo6. The mesh were generated with H type structured grids, show in Fig.4. The boundary conditions for incompressible flows were applied: fixed inlet velocity and specified outlet pressure according to the cavitation number, the non-slip wall was set for the wall boundary condition, free stream velocity was 6 m/s.

    Table1 Grid discretization error estimation of hydrofoil

    Fig.5 Drag and lift coefficients, lift-drag ratio for various cavitation number α=6o

    In order to get grid-convergent results, a criterion based on the Richardson Extrapolation Technique[18]was used to improve the grid resolution, in which the truncation error and accuracy were systematically evaluated. Three sets of grids were generated, the drag coefficient and lift coefficient were chosen as the key variables. The values were based on the steady simulation at a non-cavitation condition, showed in Table 1. The grid monotonic convergence results were obtained according to the key variables’ variation. Both relative errors were below 0.5%, and the grid convergence index was estimated to be less than 0.5%. Thus grid N1 was used as the final computation which was referenced as the base of the grid generation of the slot hydrofoil.

    Fig.6 Pressure distribution around the hydrofois =2.5σ

    Fig.7 The contour of void fraction on two hydrofoils versus various σ

    Fig.8 Instantaneous void fraction evolution during one cycle for 791 hydrofoil =0.8σ

    Fig.9 Instantaneous void fraction evolution during one cycle for slot hydrofoil =0.8σ

    In transient simulation, the time duration and time step were referenced based on the NACA66 hydrofoil. The time step was 2×10-4s, the total time was 60Tref, where Tref=Lref/Vrefwith Lref=0.158 m being the chord length and Vref=6 m/s being the inlet flow velocity.

    3. Cavitation performance comparison

    Figure 5 shows the lift, drag coefficient and liftdrag ratio varying with cavitation number. Before cavitation occurring, the lift-drag ratio of the slot hydrofoil is over 20% higher than the original 791 hydrofoil, with lift coefficient lower less than 4%. Figure 6 shows that the pressure difference between the two sides of the slot hydrofoil is a little less than that of the 791 hydrofoil, so the lift force decrease slightly. But the drag force decreases notablely because of the attack angle and position of the vice hydrofoil.

    The contour of void fraction on two type hydrofoils at different cavitation number are showed in Fig.7. For 791 hydrofoil, cavitation occurred at the leading edge of the suction side from σ=1.25, and both the lift force and drag force decrease slightly, which induces the increasing of the lift-drag ratio in a narrow range. With σ decreasing, cavitation develops, the lift force remains steady and the drag force increases slightly, which results in little reduce of the lift-drag ratio. For σ=1.6-1.2the cavity generated on the suction side grows bigger, both the lift and drag force increase simultaneously, the lift-drag ratio remains constant. For σ=2.15-1.2cavity length is less than 0.5C, the closure of the cavity experienced small variations, but the general length varies little and the cavity can be stated as stable. For =1.0σ the cavity grows larger than 0.5C, the length of vapor varies and vapor cloud sheds periodically, and the lift and drag force deteriorate sharply. Figure 8 displays a periodical vapor evolution process for =0.8σ. It is found that a cavity generates at the leading edge of the suction side of foil, when the cavity length reaches up to about 0.6C, the reentrant jet appears which cuts the cavity partially from the bottom. With the reentrant flow developed, the vapor break off completely and causes shedding vapor cloud, then the reentrant flow begins to spread forward upstream which causes the residual vapor to contract and when it crosses the limit of the cavity, the residual cavity collapse. The vapor cloud sheds at a frequency of 5.57 Hz.

    For slot hydrofoil, cavitation occurs for =1.9σ,since then the lift and drag force deteriorate rapidly. When σ deduced from 1.9-1.2, cavitation developed quickly, the cavity grows larger and keeps so called“stable”. From 1.2σ≤, the lift and drag force degrades sharply. For 1.0σ≤, cavitating behavior gets unstable and cycle cavity developing can be observed. Figure 9 displays the vapor clouds shedding process for =0.8σ. Results show that the reverse flow occurs at nearly 0.5C from the trailing edge which cuts the cavity partially from the bottom either, then followed by the growing of both two parts. With the reentrant flow continuously developing, two parts connecting to top of each other break off and vapor cloud shedding occurs, when the reentrant flow begins to flow upstream forward which results in the contraction of the residual vapor and collapse finally. The frequency of periodical vapor cloud shedding is 8.626 Hz, higher than that of 791 hydrofoil.

    From above, it shows that when cavitation occurs, even the cavity is much thinner and smaller on the slot hydrofoil than that on 791 hydrofoil at the same cavitation number, the performances of slot hydrofoil deteriorate sharply(Fig.7) yet. For 791 hydrofoil, performances doesn’t get worse until the cavity length is greater than 0.5C and the cavity area extends to the downstream section (negative slope) of the suction side, when cavitating behavior became unstable with reentrant flow and vortex occurring. For slot hydrofoil, the low pressure area and cavity locates in the downstream area of the suction side and the performance damage appears from the beginning of cavitation. So analysis supports that the bigger upstream slope of the main foil of slot hydrofoil accounts for the bad cavitation inhibition, that is small upstream slop of suction side would suppress the hydraulic performance loss for cavitation.

    4. Optimization research of slot hydrofoil

    According to above results, it’s obvious that the form of splitting curve is critical to cavitation performance. To improve the hydraulic and cavitation performance, the curve will be ameliorated, and optimization research will be conducted to find an optimum position of the vice foil.

    Fig.10 The sketch of new slot hydrofoil

    4.1 Geometry and optimization problem

    A new slot hydrofoil is displayed in Fig.10, with smaller upstream slope of main hydrofoil. Numerical optimization calculation was carried out on Workbench of Ansys 12.1 by transferring the vice hydrofoil relative to the main one. The design variables are x, y, θ referenced, where x was the horizonal distance, y was the vertical distance, θ was the rotating angle relative to the horizontal direction. The

    objective functions were lift-drag ratio (Cl/Cd), lift coefficient (Cl) and cavitation index at cavitating condition. Wherein cavitation index is the volume average of water vapor of a specific domain, which is consisted of negative slope area (downstream) of the suction side of the main foil, because the cavity on upstream part of the suction side doesn’t damage the performance until it extends to the downstream section.

    The optimization problem reads:

    Multiple objective functions

    Wherein the importance of Min (Cav-index) is set higher, the importance Max (Cl/Cd) is set lower, and the value of lC was set not less than791lC as hard constraint.

    Fig.11 Geometry of the optimized slot hydrofoil

    Fig.12 Drag and lift coefficients, Lift-Drag ratio for various cavitation number α=6o

    Fig.13 Contrast figures of streamline and void fraction isosurface (α=0.1) around hydrofoil

    The constraint condition

    4.2 Optimization method and results

    Custom plus sampling type was used in design of experiments with total 100 samples, standard response-full 2-nd order polynomials type was set for response surface, and screening optimization method was adopted in the Goal Driven Optimization. The final optimized design result is displayed in Fig.11 (x=-0.043825 m , y=-0.004735 m , θ=4.6).

    4.3 The cavitation behavior of the optimized slot hydrofoil

    Numerical simulations had been conducted from non-cavitating condition to cavitating condition for several σ ato6 attack angle. Figure 12 shows that for the optimized foil, the lift-drag ratio is 40% higher, the lift coefficient is 2% higher and the drag coefficient is 29.3% lower than those of 791 foil at non-cavitating condition.

    Figure 13 displays the streamlines around the main foil and the vapor isosurface (αv=0.1), it shows that the streamline is much more fitted because of the guidance of the vice foil. So even great vapor cavity generates for 791 hydrofoil when =1.2σ, no vapor occurs on the slot hydrofoil. When =1.0σ, cavitating behavior around 791 hydrofoil is unstable and vapor cloud shedding occurred, instead a little steady vapor cavity generates on the downstream of suction side of the slot hydrofoil. But even steady and relative weak cavitation on the negative section of the suction side of optimal slot foil destroys the performance. Comparing to the slot foil by Zhang, the lift-drag ratio is 16% higher, the lift coefficient is 5% higher and the drag coefficient is 10% lower at non-cavitating condition, and the cavitation occurs at much lower σ. In general, not only the lift, drag and the lift-drag ratio are more superior, but also the cavitation inhibition is more excellent.

    5. Conclusion

    Numerical researches were carried out on the performances of a slot hydrofoil ato6 attack angle. Computations indicates that the hydraulic performance of the slot hydrofoil is better than 791 hydrofoil at non-cavitating condition, however when small cavity occurs, the hydraulic performances deteriorated sharply. Instead, for 791 hydrofoil the cavity always locates on the upstream part of the suction side, only when cavity length developing up to over 0.5C and extending to the negative slope section of the foil, the hydraulic performance starts to decline. It can be deduced that the big upstream slope of the suction side of the main hydrofoil accounts for the damage of performance when the cavity generating at the negative slope of the suction side. To improve the performance of this slot hydrofoil, new splitting curve was designed, and computational optimization of vice foil location was carried out on the Workbench of Ansys 12.1. Through numerical simulation, it’s verified thatthe optimized slot hydrofoil achieves better hydraulic and cavitation performances at certain incident angle.

    [1] Chen Hong-xun, HUO Cong-cong and LIU Wen-mei. Study on control of multi-element airfoil based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 20(5): 513-516(in Chinese).

    [2] ZHANG Rui. Research on the stall and cavitation flow characteristics and the performance improvement of Axial-flow pump[D]. Doctral Thesis, Shanghai, China: Shanghai University, 2014(in Chinese).

    [3] VENTIKOS Y., TZABIRAS G. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Computers and Fluids, 2000, 29(1): 63-88.

    [4] WANG Guo-yu, FANG Tao and CAO Shu-liang et al. Numerical modeling of unsteady viscous cavitation flows[J]. Journal of Engineering Thermophysics, 2004, 25(5): 783-789(in Chinese).

    [5] EDWARDS J. R., FRANKLIN R. K. Low-diffusion flux-splitting method for real fluid flows with phase transitions[J]. AIAA Journal, 2000, 38(9): 1624-1633.

    [6] SINGHAL A. K., ATHAVALE M. M. and LI H. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [7] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. The Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [8] SCHNERR G. H., SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]. The Fourth International Conference on Multiphase Flow. New Orland, USA, 2001.

    [9] KUNZ R. F., BOGERA D. A. and TINEBRINGA D. R. et al. A preconditioned Navier-Stokes method for twophase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [10] SENOCAK I., SHYY W. Interfacial dynamics-based modeling of turbulent cavitating flows, Part I: Model development and steady-state computations[J]. International Journal for Numerical Methods of Fluids, 2004, 44(9): 975-995.

    [11] FRIKHA S., COUTIER-DELGOSHA O. and ASTOLFIJ. A. Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section[J]. International Journal of Rotating Machinery, 2009, 2008: 146234.

    [12] ZHAO Jing, WEI Ying-jie and ZHANG Jia-zhong et al. Effect of various turbulence models on simulated results of cavitating flow[J]. Engineering Mechanics, 2009, 26(8): 233-238(in Chinese).

    [13] HUANG Biao, WANG Guo-yu and ZHANG Bo et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202(in Chinese).

    [14] HAO Zong-rui, WANG Le-qin and WU Da-zhuan. Numerical simulation of unsteady cavitating flow on hydrofoil[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(5): 1043-1048(in Chinese).

    [15] GUAN Fan-xing. Modern pump technical manuals[M]. Beijing, China: Aerospace press. 1998(in Chinese).

    [16] BAKIR F., REY R. and GERBER A. G. et al. Numerical and experimental investigations of the cavitating behavior of an inducer[J]. International Journal of Rotating Machinery, 2004, 10(1): 15-25.

    [17] LEROUX J. B., ASTOLFI J. A. and BILLARD J. Y. An experimental study of unsteady partial cavitation[J]. Journal of Fluids Engineering, 2004, 126(1): 94-101.

    [18] CELIK B. I., GHIA U. and ROACHE P. J. et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001.

    10.1016/S1001-6058(15)60462-0

    * Project supported by the National Natural Science Foundation of China (Grant No. 51379120), the Science and Technology Plan of Zhejiang Province (Grant No. 2011C11068), and the Shanghai Program for Innovative Research Team in University.

    Biography: WEI Qun (1978-), Female, Ph. D., Lecturer

    CHEN Hong-xun, E-mail: chenhx@shu.edu.cn

    6. Results indicate that the performance of this slot hydrofoil is better than the original hydrofoil at non-cavitation condition, but deteriorates sharply once cavitation occurred. To improve the performance, a new splitting scheme was put forward and optimization research was carried out at the same indicent angle, numerical results show that the optimized slot hydrofoil achieves better hydraulic and cavitation performances.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    爺爺?shù)膼?ài)
    The dilemma and development of industrial design in contemporary life
    Gravity and Spin Forces in Gravitational Quantum Field Theory?
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    波多野结衣av一区二区av| 亚洲av熟女| 午夜福利在线免费观看网站| 成人亚洲精品一区在线观看| 国产精品成人在线| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 亚洲伊人色综图| 人人妻人人爽人人添夜夜欢视频| tocl精华| 9色porny在线观看| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 国产成人精品无人区| av片东京热男人的天堂| 精品国产国语对白av| 国产无遮挡羞羞视频在线观看| 精品一品国产午夜福利视频| 日韩人妻精品一区2区三区| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看 | 亚洲九九香蕉| 老司机午夜十八禁免费视频| 午夜日韩欧美国产| 亚洲成人精品中文字幕电影 | 最近最新中文字幕大全电影3 | 亚洲欧洲精品一区二区精品久久久| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 天天添夜夜摸| x7x7x7水蜜桃| 国产免费男女视频| 国产精品影院久久| 一夜夜www| 性欧美人与动物交配| 香蕉久久夜色| 欧美日本亚洲视频在线播放| 国产午夜精品久久久久久| 成人亚洲精品一区在线观看| 国产一区二区激情短视频| 叶爱在线成人免费视频播放| 中国美女看黄片| 欧美人与性动交α欧美精品济南到| 日本撒尿小便嘘嘘汇集6| 成人三级做爰电影| 琪琪午夜伦伦电影理论片6080| 亚洲熟妇中文字幕五十中出 | 日日爽夜夜爽网站| 不卡av一区二区三区| 天堂俺去俺来也www色官网| 伊人久久大香线蕉亚洲五| 国产一区在线观看成人免费| 欧美午夜高清在线| 国产免费现黄频在线看| 亚洲黑人精品在线| 麻豆国产av国片精品| 99久久综合精品五月天人人| 成人影院久久| 中文字幕精品免费在线观看视频| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区| 中亚洲国语对白在线视频| 多毛熟女@视频| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲精品不卡| 国产色视频综合| 国产aⅴ精品一区二区三区波| 亚洲精品成人av观看孕妇| 欧美午夜高清在线| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 久久欧美精品欧美久久欧美| 亚洲狠狠婷婷综合久久图片| 最新在线观看一区二区三区| 精品福利观看| 午夜福利,免费看| 成年人黄色毛片网站| 看免费av毛片| 亚洲美女黄片视频| 日本a在线网址| 久99久视频精品免费| 操美女的视频在线观看| 成人亚洲精品av一区二区 | 久久中文看片网| 国产精品日韩av在线免费观看 | 中文欧美无线码| 欧美黄色淫秽网站| 亚洲精品久久午夜乱码| 老司机深夜福利视频在线观看| 色哟哟哟哟哟哟| 在线观看一区二区三区| 淫秽高清视频在线观看| 黄片大片在线免费观看| 久久久久久亚洲精品国产蜜桃av| 超碰成人久久| 久久中文看片网| 真人一进一出gif抽搐免费| 国产精品电影一区二区三区| 在线观看一区二区三区激情| 久久精品亚洲av国产电影网| 中文字幕高清在线视频| 午夜免费成人在线视频| 亚洲国产欧美一区二区综合| 日韩大尺度精品在线看网址 | 午夜影院日韩av| 婷婷六月久久综合丁香| 国产熟女xx| 成人特级黄色片久久久久久久| 另类亚洲欧美激情| 国产一区二区三区在线臀色熟女 | 一级a爱视频在线免费观看| 国产精品综合久久久久久久免费 | 好男人电影高清在线观看| 91麻豆精品激情在线观看国产 | 亚洲va日本ⅴa欧美va伊人久久| 成人特级黄色片久久久久久久| 丰满的人妻完整版| 国产成人精品久久二区二区91| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 精品国产亚洲在线| 欧美老熟妇乱子伦牲交| 18禁国产床啪视频网站| 中文字幕另类日韩欧美亚洲嫩草| 久9热在线精品视频| 精品国内亚洲2022精品成人| 少妇 在线观看| 久久国产乱子伦精品免费另类| 国产一区二区在线av高清观看| 亚洲五月婷婷丁香| 国产高清videossex| 黄色成人免费大全| 欧美av亚洲av综合av国产av| 成人免费观看视频高清| 桃红色精品国产亚洲av| 视频区图区小说| 国产精品一区二区在线不卡| 91九色精品人成在线观看| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 国产精品秋霞免费鲁丝片| 黄片播放在线免费| 九色亚洲精品在线播放| 男女午夜视频在线观看| 亚洲中文av在线| 亚洲人成电影观看| www.熟女人妻精品国产| 99国产精品一区二区三区| 国产av一区二区精品久久| 欧美成狂野欧美在线观看| 色播在线永久视频| 免费av毛片视频| 久久香蕉激情| 手机成人av网站| 美女高潮喷水抽搐中文字幕| 狂野欧美激情性xxxx| 欧美性长视频在线观看| 久久久久亚洲av毛片大全| 女生性感内裤真人,穿戴方法视频| 夜夜爽天天搞| 免费不卡黄色视频| 在线国产一区二区在线| 一级,二级,三级黄色视频| 另类亚洲欧美激情| 51午夜福利影视在线观看| 日本vs欧美在线观看视频| 欧美大码av| 亚洲专区国产一区二区| 天天影视国产精品| 免费观看人在逋| 久9热在线精品视频| 亚洲欧洲精品一区二区精品久久久| av网站免费在线观看视频| 香蕉国产在线看| 黑人猛操日本美女一级片| 欧美人与性动交α欧美软件| 免费看a级黄色片| 99在线人妻在线中文字幕| 又大又爽又粗| 国产av一区在线观看免费| 曰老女人黄片| 日本欧美视频一区| 欧美日韩乱码在线| 桃色一区二区三区在线观看| 在线观看舔阴道视频| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女 | 亚洲第一av免费看| 别揉我奶头~嗯~啊~动态视频| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 女人精品久久久久毛片| 女人被躁到高潮嗷嗷叫费观| 一级片免费观看大全| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 欧美激情极品国产一区二区三区| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 久热这里只有精品99| 一进一出抽搐动态| 国产视频一区二区在线看| videosex国产| 国产成人av激情在线播放| 精品久久久久久,| 国产精华一区二区三区| 国产精品国产高清国产av| 国产成年人精品一区二区 | 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 久久久久久久久免费视频了| 美女大奶头视频| 国产av又大| 亚洲自偷自拍图片 自拍| 午夜福利,免费看| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 国产成人精品无人区| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 十分钟在线观看高清视频www| 中文字幕精品免费在线观看视频| 国产精品一区二区三区四区久久 | 亚洲av熟女| 日日爽夜夜爽网站| 亚洲av美国av| 成人18禁在线播放| 精品一区二区三卡| 两人在一起打扑克的视频| 久久精品91蜜桃| 天堂中文最新版在线下载| 怎么达到女性高潮| 久久亚洲精品不卡| 精品欧美一区二区三区在线| 亚洲伊人色综图| 国产精品偷伦视频观看了| 99国产精品一区二区三区| 欧美日本中文国产一区发布| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 人人妻人人澡人人看| 欧美成人午夜精品| a级毛片在线看网站| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 黑人猛操日本美女一级片| 亚洲精品一区av在线观看| 两性夫妻黄色片| 久久精品亚洲熟妇少妇任你| 久久中文字幕人妻熟女| 看片在线看免费视频| av视频免费观看在线观看| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 国产一区二区三区视频了| 免费搜索国产男女视频| 咕卡用的链子| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费现黄频在线看| xxx96com| 亚洲片人在线观看| 99久久综合精品五月天人人| 久久国产乱子伦精品免费另类| 国产熟女午夜一区二区三区| 国产99白浆流出| 母亲3免费完整高清在线观看| 色综合婷婷激情| 国产精品一区二区三区四区久久 | 丝袜人妻中文字幕| 国产精品1区2区在线观看.| 99国产综合亚洲精品| av国产精品久久久久影院| 在线永久观看黄色视频| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| tocl精华| 国产精品免费视频内射| 欧美精品亚洲一区二区| 成在线人永久免费视频| 真人做人爱边吃奶动态| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 男女下面进入的视频免费午夜 | 国产精品av久久久久免费| 午夜免费鲁丝| 国产成年人精品一区二区 | 美女高潮到喷水免费观看| 国产aⅴ精品一区二区三区波| 久久狼人影院| 大码成人一级视频| 成人三级黄色视频| 亚洲一区高清亚洲精品| 久久欧美精品欧美久久欧美| 久久久精品国产亚洲av高清涩受| 99久久国产精品久久久| 又黄又爽又免费观看的视频| 亚洲成av片中文字幕在线观看| 99国产精品一区二区蜜桃av| 亚洲黑人精品在线| 色播在线永久视频| 亚洲视频免费观看视频| 日本wwww免费看| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 精品人妻在线不人妻| 69精品国产乱码久久久| 成人永久免费在线观看视频| 免费在线观看完整版高清| x7x7x7水蜜桃| 久久香蕉精品热| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 法律面前人人平等表现在哪些方面| 精品国产亚洲在线| 亚洲av日韩精品久久久久久密| 国产区一区二久久| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 亚洲熟妇中文字幕五十中出 | 亚洲欧美日韩另类电影网站| 亚洲精品美女久久久久99蜜臀| 欧美黄色淫秽网站| 在线观看66精品国产| 91精品三级在线观看| 亚洲免费av在线视频| 18禁观看日本| 久9热在线精品视频| 欧美日韩黄片免| 国产精品偷伦视频观看了| 国产精品亚洲一级av第二区| 91国产中文字幕| 国产亚洲精品久久久久久毛片| 老鸭窝网址在线观看| 亚洲国产精品合色在线| 欧美在线一区亚洲| 国产精品99久久99久久久不卡| cao死你这个sao货| 欧美精品亚洲一区二区| 日韩高清综合在线| 亚洲 欧美 日韩 在线 免费| 成人黄色视频免费在线看| 999久久久精品免费观看国产| 久久性视频一级片| 成人av一区二区三区在线看| 一进一出抽搐动态| 亚洲少妇的诱惑av| 久久久国产成人精品二区 | 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看| 久久国产精品人妻蜜桃| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 国产午夜精品久久久久久| 日日夜夜操网爽| 在线天堂中文资源库| 午夜免费鲁丝| 国产精品九九99| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 美国免费a级毛片| 亚洲九九香蕉| 欧美国产精品va在线观看不卡| 欧美日韩乱码在线| 欧美日韩av久久| 日韩人妻精品一区2区三区| 亚洲色图av天堂| 中亚洲国语对白在线视频| 黄色成人免费大全| 久久性视频一级片| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| 免费看a级黄色片| 女人被狂操c到高潮| 成人三级黄色视频| 多毛熟女@视频| 免费av毛片视频| 久久影院123| 99精品欧美一区二区三区四区| 国产成人av激情在线播放| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av五月六月丁香网| a在线观看视频网站| 热re99久久精品国产66热6| 一区在线观看完整版| 午夜精品国产一区二区电影| 日韩一卡2卡3卡4卡2021年| 亚洲美女黄片视频| www.精华液| 欧美午夜高清在线| 欧美最黄视频在线播放免费 | 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 91精品国产国语对白视频| 久久久精品欧美日韩精品| 亚洲专区字幕在线| 啪啪无遮挡十八禁网站| 丰满饥渴人妻一区二区三| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 夜夜夜夜夜久久久久| 久久国产精品男人的天堂亚洲| 免费久久久久久久精品成人欧美视频| 亚洲激情在线av| 国产成人av激情在线播放| 国产午夜精品久久久久久| 亚洲午夜理论影院| 久久久久久久精品吃奶| 中文亚洲av片在线观看爽| 国产av又大| 亚洲 国产 在线| 亚洲一区高清亚洲精品| 两个人免费观看高清视频| 9色porny在线观看| 淫秽高清视频在线观看| 女性被躁到高潮视频| a级毛片在线看网站| 一区二区三区激情视频| 视频区图区小说| 亚洲自拍偷在线| 午夜久久久在线观看| 亚洲,欧美精品.| 啦啦啦在线免费观看视频4| 一个人免费在线观看的高清视频| 女性被躁到高潮视频| 视频在线观看一区二区三区| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| 亚洲国产精品sss在线观看 | 欧美最黄视频在线播放免费 | 丰满人妻熟妇乱又伦精品不卡| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 亚洲欧美激情综合另类| 久久亚洲精品不卡| 免费在线观看日本一区| 国产有黄有色有爽视频| 亚洲五月色婷婷综合| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 久久久国产一区二区| 在线免费观看的www视频| 丁香六月欧美| 51午夜福利影视在线观看| 又紧又爽又黄一区二区| av福利片在线| 天天影视国产精品| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 97人妻天天添夜夜摸| 成人手机av| 麻豆久久精品国产亚洲av | 色哟哟哟哟哟哟| 日本免费a在线| 色综合站精品国产| 中文字幕av电影在线播放| 男女床上黄色一级片免费看| 巨乳人妻的诱惑在线观看| 女警被强在线播放| 三上悠亚av全集在线观看| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女 | 久久久久久久精品吃奶| 亚洲一区中文字幕在线| 国产av精品麻豆| 精品国产国语对白av| 亚洲性夜色夜夜综合| 精品久久久精品久久久| 精品免费久久久久久久清纯| 99久久99久久久精品蜜桃| 黄色视频不卡| 丰满迷人的少妇在线观看| 免费高清视频大片| 精品一区二区三区av网在线观看| 亚洲av成人av| 亚洲精品久久午夜乱码| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 在线免费观看的www视频| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出 | 深夜精品福利| 精品第一国产精品| 免费高清视频大片| 免费观看精品视频网站| 女生性感内裤真人,穿戴方法视频| 亚洲精品av麻豆狂野| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 十八禁网站免费在线| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美一区二区综合| 一区二区三区激情视频| 一级作爱视频免费观看| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| av免费在线观看网站| 51午夜福利影视在线观看| 美国免费a级毛片| 久久香蕉国产精品| 精品国产乱子伦一区二区三区| 亚洲视频免费观看视频| 多毛熟女@视频| 99re在线观看精品视频| aaaaa片日本免费| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 日韩人妻精品一区2区三区| 国产成人免费无遮挡视频| 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| videosex国产| 黄片播放在线免费| 天堂√8在线中文| 免费观看精品视频网站| 免费高清视频大片| 丰满迷人的少妇在线观看| 国产蜜桃级精品一区二区三区| 法律面前人人平等表现在哪些方面| av欧美777| 91老司机精品| 丝袜美腿诱惑在线| 麻豆成人av在线观看| 久久久精品国产亚洲av高清涩受| 男女做爰动态图高潮gif福利片 | 50天的宝宝边吃奶边哭怎么回事| 黄频高清免费视频| 国产99白浆流出| 成人国语在线视频| 在线免费观看的www视频| 午夜福利影视在线免费观看| 一边摸一边抽搐一进一小说| 乱人伦中国视频| 在线播放国产精品三级| 成人亚洲精品一区在线观看| 国产精品1区2区在线观看.| 在线观看免费午夜福利视频| 一级a爱片免费观看的视频| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 亚洲成人免费电影在线观看| 国产区一区二久久| 亚洲av美国av| 亚洲一区二区三区不卡视频| www.www免费av| 亚洲伊人色综图| 久久人妻av系列| 99国产综合亚洲精品| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| av在线播放免费不卡| 日日夜夜操网爽| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜 | 亚洲精品国产区一区二| 大码成人一级视频| 天堂√8在线中文| 亚洲午夜精品一区,二区,三区| 在线观看免费午夜福利视频| 欧美黑人精品巨大| 精品高清国产在线一区| 丝袜人妻中文字幕| 午夜影院日韩av| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜制服| 亚洲一区二区三区色噜噜 | 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区| 夜夜爽天天搞| 午夜影院日韩av| 可以在线观看毛片的网站| 久久久久国内视频| 搡老岳熟女国产| 热re99久久国产66热| 成人手机av| 国产高清激情床上av| 咕卡用的链子| 午夜精品久久久久久毛片777| 午夜福利一区二区在线看| 无限看片的www在线观看| 免费在线观看黄色视频的| 18禁国产床啪视频网站| 国产精品乱码一区二三区的特点 | 亚洲午夜理论影院| tocl精华| 国产精品国产av在线观看| 无限看片的www在线观看| 一进一出抽搐动态| 亚洲av美国av| 国产精品一区二区精品视频观看|