• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficienc improvement of ant colony optimization in solving the moderate LTSP

    2015-02-11 03:39:19

    School of Business Administration,South China University of Technology,Guangzhou 510641,China

    Efficienc improvement of ant colony optimization in solving the moderate LTSP

    Munan Li*

    School of Business Administration,South China University of Technology,Guangzhou 510641,China

    In solving small-to medium-scale travelling salesman problems(TSPs)of both symmetric and asymmetric types,the traditional ant colony optimization(ACO)algorithm could work well,providing high accuracy and satisfactory efficienc.However, when the scale of the TSP increases,ACO,a heuristic algorithm, is greatly challenged with respect to accuracy and efficienc.A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed.In comparison with the traditional strategy of the ACO in several experiments,the proposed strategy shows advantages in performance.Therefore,this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficienc with less iteration time in real optimization applications.Moreover,this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.

    ant colony optimization(ACO);travelling salesman problem(TSP);time-complexity of algorithm;pheromone-trail updating.

    1.Introduction

    The ant colony optimization(ACO)algorithm,an abstraction of ant colony foraging behavior,embodies the distributed-computing and self-organization features of group behavior.Since Dorigo firs used the ACO algorithmtosolvethe travellingsalesmanproblem(TSP),there have been many attempts to apply ACO to different combinational optimization problems,such as the job-shop scheduling problem,quadratic assignment problem,path planning,network routing optimization,and optimization of control parameters[1–6].In recent years,some scholars have extended ACO to continuous function optimization and achieved relatively satisfactory results[7].

    Large-scale TSP is a typical NP-C problem[8,9].At present,algorithms for solving TSP can be divided into two categories:accuracy algorithms and heuristic algorithms[9].Usually,a structural algorithm is used to solve small TSPs by findin the optimal solution;while a heuristic algorithm is adopted to solve medium and large TSPs. Several heuristic algorithms for solving the TSP come from nature-inspired swarm intelligence,such as the ACO model,PSO model,and evolutionary computation model [9–11].A heuristic algorithm model generally follows simple control rules,attempting to obtain a satisfactory solution through multiple iterations and random walk strategies.To accelerate the convergence rate and accuracy of the algorithm,quite a few scholars used hybrid algorithms to improve the current heuristic calculation mode[12–14].Generally speaking,in TSPs,an object with 100–1 000 nodes is define as a medium-scale TSP(MTSP), while objects with over1 000 nodesbelongto a large-scale TSP(LTSP).So far,the largest recorded LTSP has been the large-scale very large scale integration(VLSI)solder joint path optimization with 85 900 nodes.Current single heuristic algorithms have the disadvantages of slow convergence and poor accuracy in solving LTSP.Thus,when dealing with LTSP,currently available single heuristic algorithms need to be further mixed and improved[15–17].

    Overall,there are many research works on the applications of ACO and other heuristic algorithms,but the literature on efficien y and reducing the time-complexity of ACO algorithms is relatively few.Mohammed compared the performances of the foraging algorithm and the evolution algorithm,but the benchmark for this test was only the set of continuous functions,and the comparison did not consider combination or discrete optimization field[18].Zhou discussed the runtime of ACO based on a constrained-modelmax-min ant algorithm(MMAA)andthought that the efficien y of ACO could be observed and measured under constrained situations[19].

    From the current literature,there is a common view that ACO has certain advantages in solving the small-scale TSP,but with an increasing number of TSP nodes,the algorithm accuracy and efficien y decreases rapidly.Therefore,the basic ACO must be combined with other algorithms to solve real application problems[20].In fact, many issues pertaining to basic ACO remain secret and are waiting to be unveiled,e.g.the convergence,efficien yand complexity of ACO.In this paper,we attempt to explore the time-complexity of ACO and fin an efficien strategy to reduce the run-time of basic ACO in a real discrete optimization process.

    2.Basic ACO algorithm in solving large-scale TSP

    The basic ACO algorithmhas the advantagesof quickconvergenceandhighaccuracywhensolvingsmallscaleproblems.However,when the node number of the TSP reaches or exceeds 100,the basic ACO algorithm can only fin a local optimization solution most of the time,and its rate of convergence decreases as the number of nodes increases, which makes it very difficul to meet the requirements of combinatorial optimization.

    2.1Basic concept and steps of ACO algorithm

    The ACO algorithm’s basic conceptual computation steps are described[1,2]as follows.

    Definitio1TSP:SupposeC={c1,c2,...,cn}is a set ofNnodes,L={lij|ci,cj∈C}is the set of connections between every two nodes in setC,anddij(i,j=1,2,...,n)is theEuclideandistance oflij,then

    G=(C,L)is a directed graph.The TSP for this problem is to fin the shortest Hamiltonian ring,i.e.the shortest closed circle that traversesNelements amongConly once.The TSP can be divided into symmetric and asymmetric types,according to whether the distance between any two nodes is the same or not.Here,we study only the symmetric TSP.

    It is assumed thatfi(t)is the number of ants at nodeiat momentt,τijis the pheromone value of path(i,j)at momentt,nis the node scale of TSP,andmis the total number of ants,then

    The path residual information of nodes at momenttis given by the following formula:

    During the search procedure,antk(k=1,2,...,m) calculates the transition probability based on the information amount of each path and its heuristic function information,as shown by

    In(4),allowedk={C-tabuk}indicates the city node set fromwhich antkcan chooseelements for the next step,αis the pheromone information factor or weight,representing the relative importance of pheromone in the path, andβis the expectation factor,representing the influenc ofdistance betweentwo nodeson the decisionmade byantk.The general form of the heuristic function is shown as

    To avoid the impact of residual information in the path thatwouldoverwhelmthe heuristicfunctioncompletely,in everyiterativeprocess,itis necessarytoupdatetheresidual pheromone trail when all ants finis traversing all nodes. The pheromoneupdate strategy refers to a characteristic of human memory by which,as time passes,old memories fade away or are even forgotten.Therefore,the pheromone evaporation rateρis added to ACO,and the pheromone update rule is given by(6)and(7).

    Dorigo and other scholars proposed three different models identifie by their different pheromone updating strategies:the ant-cycle model,ant-quantity model,and ant-density model,whose updating formulae are given respectively by

    In most research works on ACO algorithms and their applications,the ant-cycle model is selected as the most favorable pheromone trail updating strategy[2,21,22]. Therefore,we also chose the ant-cycle model as the object of the control experiment.

    2.2Time complexity analysis of ACO algorithm

    The complexity of an algorithm is frequently mentioned in the literature,and this term actually includes both time complexityand space complexity.Time-complexityanalysis aims to determine the computing time scale,which is usually used to explain the number of program execution steps and,thus,to estimate the algorithm’s efficien y.

    Assume thatnis the node scale of TSP,mis the number of ants,and the maximum iteration isImax.Then,the time complexity analysis of the ACO algorithm for the solution of the TSP is shown in Table 1.

    Table 1 Time complexity analysis of ACO algorithm

    From the algorithm steps in Table 1,it can be seen that afterImaxgenerations,the time complexityof the standard ACO algorithm can be estimated by

    Under a similar method of estimation,the space complexity of the ACO algorithm seems simpler,shown as

    From(11)and(12),if we choose a more appropriate iteration and ant number,the space complexity and time complexity of the algorithm can be partially decreased in real optimization applications.Although the time complexity and space complexity may be only slightly reduced,there is a positive significanc and practical value for solving LTSP.For example,when dealing with the large-scale welding path optimization problem with over 10 000 solder joints in VLSI,if the iteration time can be reducedunder some situations,the real runningtime of the algorithm may decrease somewhat.

    Methods to reduce ACO running time include discovering the appropriate iteration time and identifying the minimum population size of the ant colony.For basic ACO, Dorigo proposed three pheromone trail updating models. In practical applications,most scholars choose the antcycle model recommended by Dorigo because the antcycle model has better performance compared with the othertwo updatingstrategies[1,2].We asked the following question:can a better pheromonetrail updatingstrategy be found?A better pheromone updating model means that under the same environment,the ACO convergence rate can be increased,while the algorithm accuracy remains unchangedor the loss of accuracy can be ignored.This updating strategy seems to be of little significanc to smallto medium-scale TSP problems.However,in solving the large-scale combination optimization problem,when the iteration number of the running algorithm can be reduced from 1 000 to 500 with almost unchanged accuracy,in a sense,the time complexity of the algorithm actually has decreased by 50%.

    Although the literature comparing the three traditional pheromone updating models(ant-cycle,ant-quantity and ant-density)is limited,experientially,it appears that it is possible to speed up the convergence of ACO when the greedy philosophy,a classic global pheromone updating model,is added to the ant-cycle model;the accuracy may also be satisfying.Therefore,a novel strategy for global pheromone updating,named ant-cycle-quantity,is proposed as given by(13),which is a hybrid model combing the global and local updating pheromone trail approaches in ACO.

    In(13),Qhas the same meaning as those traditional strategies of pheromone updating,representing one constant of the total pheromone.Lkrepresents the passing length of thekth ant.Thedijis the distance between theith point and thejth point.λis a constant or a random function that is greater than 1.In the traditional antcycle model,the pheromone trail is updated evenly in theKth(t)path,without considering the local path information,while the ant-quantity model only considers the local path weight,depending on the greedy algorithm instead of thewhole-pathinformation.Based onwhole-pathinformation,the ant-cycle-quantity model takes the local path information into consideration,implementing this conside-ration in the pheromone trail updating computational step of the basic ACO algorithm.

    3.Control experiments solving the TSP based on the ant-cycle-quantity model

    3.1 Experimental design

    First,we chose the benchmark data from TSPLIB95 and select(pr1002,d1291,fl1400 as the test set for the LTSP. At the same time,to observe the possible fluctuatio in efficien y when going from small scale to large scale,we chose(bays29,ctsp31,ch130)as the test set for the solution of the small-to medium-scale TSP.The simulation softwarefor the experimentis Matlab 7.0and the hardware is a LENOVA laptop(CPU:M460,2.53 MHZ,Memory: 4 GB)and a TOSHIBA laptop(CPU:M370,2.40 MHZ, Memory:2GB).Theparameterschosenforthe basicACO algorithm are shown in Table 2.

    Table 2 Experimental parameters

    The iteration number of the ant-cycle-quantity model is half that of the typical ant-cycle model.In the small-to medium-scale TSP solution experiment,the iteration number of the ant-cycle model was set to 100,and the iteration number of the ant-cycle-quantity model was 50.To solve the LTSP,the iteration number of ant-cycle was set to 200, and the iteration number of ant-cycle-quantity was equal to 100.The results of the experiment with the model of ant-cycle-quantityare shown in Fig.1–Fig.12.

    Fig.1 The shortest length vs average length of path(Bays29,iteration=50,ant-cycle-quantity)

    Fig.2 Path planning of Bays29 based on ant-cycle-quantity(iteration=50)

    Fig.3 Shortest length vs average length of path(Ctsp31,iteration=50,ant-cycle-quantity)

    Fig.4 Path planning of Ctsp31 based on ant-cycle-quantity(iteration=50)

    Fig.5 The shortest length vs average length of path(ch130,iteration=50,ant-cycle-quantity)

    Fig.6 Path planning of ch130 based on ant-cycle-quantity(iteration=50)

    Fig.7 The shortest length vs average length of path(fr1400,iteration=100,ant-cycle-quantity)

    Fig.8 Path planning of fr1400 based on ant-cycle-quantity(iteration=100)

    Fig.9 The shortest length vs average length of path(d1291,iteration=100,ant-cycle-quantity)

    Fig.10 Path planning of d1291 based on ant-cycle-quantity(iteration=100)

    Fig.11 The shortest length vs average length of path(pr1002,iteration=100,ant-cycle-quantity)

    Fig.12 Path planning of pr1002 based on ant-cycle-quantity(iteration=100)

    3.2 Analysis of the comparison experiments between the two models

    Results of the control experiments are shown in Table 3 and Table 4.

    From Table 3,while solving the selected small-to medium-size TSPs,the ant-cycle-quantity model shortens the running time of basic ACO by 50%with accuracy almost unchanged.

    From the experimental results shown in Table 4,we could easily reach the same conclusion that the ant-cyclequantity model requires fewer iterations than the traditional ant-cycle model to achieve similar accuracy in solving LTSPs.When solving LTSPs based on basic ACO,the global optimization solution is very difficul to reach. Under the same situation,except for the iteration number, these two distinct strategies can achieve very similar optimal results,equivalent to approximately 80%of the theoretical optimal value.In fact,whether the basic ACO algorithm can eventually reach the theoretical optimal value in solving the large-scale,or even the medium-scale,TSP remains to be proven[21,22].

    To further validate the results of the control experiments,the statistical product and service solutions(SPSS) tool was used for the one-way analysis of variance on the simulation results shown in Table 3 and Table 4.

    Table 3 Result of solving small-to medium-scale TSP(ant-cycle&ant-cycle-quantity)

    Table 4 Result of solving lTSP(ant-cycle&ant-cycle-quantity)

    The analysis of variance for the experimental results for the solution of small-to medium-size TSPs,as shown in Table 3,is given below.

    (i)All experimentaldata(bays29,ctsp31,ch130)shown in Table3 canpass thenormalityandhomogeneityhypothesis test.Therefore,the analysis of varianceis conceivable.

    (ii)With a significanc level of 0.05(α=0.05),the results of the analysis of variance(ANOVA)are shown in Table 5,Table 6 and Table 7.

    Table 5 ANOVA(Bays29)

    Table 6 ANOVA(ctsp31)

    Table 7 ANOVA(ch130)

    From the ANOVA results in Table 5,Table 6 and Table 7,the actual significanclevels are higher than the given significanc level.Therefore,the results of thesecontrol experiments show that the control experiment passes the test of significance From these results,the antcycle-quantity model seems to be more efficien in solving small-to medium-scaleTSPs than the classic ant-cycle model.

    The conclusions from the analysis of variance regarding the solution of LTSPs,shown in Table 4,are as follows.

    (i)All data from the comparative experiments(pr1002, d1291,fl1400 showninTable4canpassthenormalityand homogeneity hypothesis test;therefore,analysis of variance could be undertaken.

    (ii)With a significanc level of 0.05(α=0.05),the results of the analysis of variance are shown in Table 8, Table 9 and Table 10.

    Table 8 ANOVA(pr1002)

    Table 9 ANOVA(d1291)

    Table 10 ANOVA(fl1400

    From ANOVA results in Table 8,Table 9 and Table 10, in solving the selected LTSPs,the ant-cycle-quantity model can reach similar accuracy to the ant-cycle model in half the running time.In a sense,the results of the control experiments show that the ant-cycle-quantity model seems to be more efficien than the classic ant-cycle model in solving TSPs and,in particular,more useful and valuable in solving LTSPs,requiring fewer iterations to reach similar optimal values,even when only the local optimal solution is reached.

    4.Theoretical analysis of ant-cycle-quantity model

    4.1Global convergence analysis of ant-cycle-quantity model

    Gutjahr firs provedthe convergenceof ACO from the perspective of directed graph theory under a set of predefine situations[23].St¨uezle and Dorigo proposed a new MAXMIN model of the ACO algorithm and proved that the algorithm could reach the optimum solution when the computation time sequence of the ACO algorithm became infi nite[24].Duan define the firs reaching-time conceptual frameworkforthe ACO algorithmand suggestedthat if the ACOalgorithmwas usedforoptimumsolutiongtimes,the probability of the optimum solution being touched at least once before the moment wasg?T0,and the probability of that having happenedwas no less than(1?1/c),whereT0represented the time for the basic ACO algorithm to finis one iteration[25].

    Theorem 1When the path vectorC(t)of an individualant nearlyapproachestheoptimumpathvectorC?(t) everywhere in the search periodt,and ift→∞,its evolutionary process can be taken as the inhomogeneous Markov chain,and the residual pheromone vectorτ(t) tends toward the optimal valueτ?(A.S.),whereA.S.means almost surely,shown as

    ProofIn a sense,the distribution of search paths in iteration(t?1)only depends onignoring the influenc of the heuristic function based on the distance matrix.However,it is easy to reason thatare the determinants of the distribution ofby the rule of pheromone trail updating. Therefore,the probability distribution ofwholly depends onWhen the set of the path vector belongs to the finitset,the optimal path vector also belongs to the finitset.Then,whencan be considered equivalent to

    This theorem can partly explain why the convergence speedofthe ant-cycle-quantitymodelis faster thanthe antcycle model.However,the upper and lower bounds of the convergence speed on this new model remain difficul to define so the model must be further explored in a subsequent study.

    4.2Regarding the full path adjustment factorλ

    The full path adjustment factor introduced in this paper is an empirical valueλ,and it is difficul to comprehensively analyze the impact of this factor on the model.The value range ofλis calculated by

    From(15),after each iteration,the update amplitude of the pheromone track is adjusted byλ;thus,it is called thefull path adjustment factor.Whenλ>Lmax,the amplitude of pheromone updating is less than that of the antcycle model.Thus,a general and empirical recommendation range ofλis[1,Lmax).

    In addition,if we relax the restrictions of(λ≥1)and allowλ∈(0,+∞),then when(16)is constructed,the ant-cycle-quantity model can be approximated as the traditional ant-quantity model.

    Similarly,when(17)is constructed,the ant-cyclequantity model can be approximatedby another traditional model:the ant-density model.

    From the above reasoning,the new strategy of pheromone trail updating sounds better in terms of the generalization ability,and the three traditional models of pheromonetrail updatingin the ACO algorithm(ant-cycle, ant-quantity and ant-density)can be summarized as special cases of the new strategic model.Although there have been many improved models for pheromone trail updating,e.g.the elitist ant system(EAS),reinforcement learning approach,MAX-MIX ant system,strong local search, fruit fl optimization[2,21,26–28],the ant-cycle-quantity model may still be helpful to deeply understand the timecomplexityof the basic ant colonyoptimization algorithm.

    5.Conclusions

    Solving large-scale combinatorial optimization problems is the common challenge for all natural heuristic algorithms.In this paper,we explore the computational efficien y of the basic ACO and propose a novel strategy of pheromone trail updating,called the ant-cycle-quantity model.Through several simulation experiments,the new model shows better performance compared with the traditional ant-cycle model.In fact,the three models of pheromone trail updating in traditional ACO—ant-cycle, ant-quantity and ant-density—can be regarded as the special cases of the new model.Therefore,the ant-cyclequantity model seems to have better generalization ability. Although the results of comparison experiments are somewhat exciting and even somewhat amazing,the theory for the analysis of ant-cycle-quantityis still not strong enough andrequiresfurtherexplorationinfuturework.Inaddition, more comparisons and combinations with other improved ACO models and heuristic algorithms should be considered in the next work.

    [1]M.Dorigo,V.Maniezzo,A.Colorni.Ant system:Optimization by a colony of cooperating agents.IEEE Trans.on Systems,Man and Cybernetics—Part B,1996,26(1):29–41.

    [2]M.Dorigo,T.Sti¨utzle.Ant colony optimization.Cambridge: MIT Press,2004.

    [3]J.B.K.Michael,B.Jean-Bernard,K.Laurent.Ant-like task and recruitment in cooperative robots.Nature,2000, 406(6799):992–995.

    [4]G.F.Deng,W.T.Lin.Ant colony optimization-based algorithmfor airlinecrew scheduling problem.Expert Systems with Applications,2011,38(5):5787–5793.

    [5]Z.G.Ren,Z.R.Feng,A.M.Zhang.Using ant colony optimization with Lagrangian relaxation for the multiple-choice multidimensional knapsack problem.Information Sciences, 2012,182(1):15–29.

    [6]H.Ergezer,K.Leblebicioglu.Pathplanning for UAVs for maximum information collection.IEEE Trans.on Aerospace and Electronic Systems,2013,49(1):502–520.

    [7]K.Socha,M.Dorigo.Ant colony optimization for continuous domains.European Journal of Operational Research,2008, 185(3):1155–1173.

    [8]B.Manthey.On approximating multicriteria TSP.ACM Trans. on Algorithms,2012,8(2):1–17.

    [9]M.Osca,D.F.Javier,etal.Combinatorial complexity problem reduction by the use of artificia vaccines.Expert Systems with Applications,2013,40(5):1871–1879.

    [10]T.K¨otzing,F.Neumann,H.R¨oglin,et al.Theoretical analysis of two ACO approaches for the traveling salesman problem.Swarm Intelligence,2012,6(1):1–21.

    [11]Y.Marinakisa,M.Marinaki.A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem.Computers&Operations Research,2012, 37:432–442.

    [12]N.Yuichi,K.Shigenobu.A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem.INFORMS Journal on Computing,2012,25(2):346–363.

    [13]G.F.Dong,W.W.Guo,T.Kevin.Solving the traveling salesman problem using cooperative genetic ant systems.Expert Systems with Applications,2012,39(5):5006–5011.

    [14]N.Zhao,Z.L.Wu,Y.Q Zhao,et al.Ant colony optimization algorithm with mutation mechanism and its applications.Expert Systems with Applications,2012,37(7):4805–4810.

    [15]M.C.Pintea.Parallel ACO with a ring neighborhood for dynamic TSP.Journal of Information Technology Research, 2012,5(4):1–13.

    [16]M.Mavrovouniotis,S.X.Yang.A memetic ant colony optimization algorithm for the dynamic travelling salesman problem.Soft Computing,2011,15(7):1405–1425.

    [17]X.F.Zhou,R.L.Wang.Self-evolving ant colony optimization and its application to traveling salesman problem.International Journal of Innovative Computing,Information and Control,2012,8(12):8311–8321.

    [18]E.A.Mohammed.Performance assessment of foraging algorithms vs.evolutionary algorithms.Information Sciences, 2012,182(1):243-263.

    [19]Y.R.Zhou.Runtime analysis of an ant colony optimization algorithm for TSP instances.IEEE Trans.on Evolutionary Com-putation,2009,13(5):1083–1092.

    [20]Y.Zhang,M.Zhang,X.Q.Li,etal.Some practicalsolutions to the uncertainties of the ant colony optimization.International Journal of Computer Applications in Technology,2012,43(4): 327–334.

    [21]M.Dorigo,C.Blum.Antcolony optimizationtheory:asurvey.Theoretical Computer Science,2005,344(2/3):243–278.

    [22]M.B.Chandra,R.Baskaran.A survey:ant colony optimization based recent research and implementation on several engineering domain.Expert Systems with Applications,2012, 39(4):4618–4627.

    [23]W.J.Gutjahr.ACO algorithm with guaranteed convergence to the optimal solution.Information Processing Letters,2002, 82(3):145–153.

    [24]T.St¨utzle,M.Dorigo.A short convergence proof for a class of ant colony optimization algorithms.IEEE Trans.on Evolutionary Computation,2002,6(4):358–365.

    [25]H.B Duan,D.B.Wang.Research and improvement on the global convergence of ant colony algorithm.Systems Engineering and Electronics,2004,26(10):1506–1509.(in Chinese)

    [26]T.St¨utzle,H.H.Hoos.MAX-MIN ant system.Future Generation Computer Systems,2000,16(8):53–66.

    [27]M.N.Li.Three-dimensional path planning of robots in virtual situations based on an improved fruit floptimization algorithm.Advances in Mechanical Engineering,2014,314797: 1–12.(DOI:10.1155/2014/314797)

    [28]L.M.Gambardella,R.Montemanni,D.Weyland.Coupling ant colony systems with strong local searches.European Journal of Operational Research,2012,220(3):831–843.

    Biographies

    Munan Liwas born in 1974.He received his B.S. degree from North China University of Technology in 1997,M.S.degree and Ph.D degree from South China University of Technology in 2002 and 2006,respectively.He is now working in South China University of Technology.His current research interests include operation management,information technology etc.

    E-mail:limn@scut.edu.cn

    10.1109/JSEE.2015.00142

    Manuscript received September 28,2014.

    *Corresponding author.

    This work was supported by the Fundamental Research Funds for the Central Universities(2015XZD15),the Soft Science Research Project of Guangdong Province(2015A070704015),the Guangdong Province Key Laboratory Open Foundation(2011A06090100101B),and the Technology Trading System and Science&Technology Service Network Construction Project of Guangdong Province(2014A040402003).

    欧美性长视频在线观看| 欧美成人午夜精品| 精品一区二区三区av网在线观看| 少妇被粗大的猛进出69影院| 国产av精品麻豆| 这个男人来自地球电影免费观看| 亚洲人成电影观看| 欧美成人免费av一区二区三区| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| 在线观看舔阴道视频| 久久精品91蜜桃| 欧美av亚洲av综合av国产av| 午夜福利在线免费观看网站| 亚洲人成伊人成综合网2020| 国产精品野战在线观看 | 久久天堂一区二区三区四区| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| 国产主播在线观看一区二区| 欧美激情 高清一区二区三区| 欧美激情 高清一区二区三区| 亚洲成av片中文字幕在线观看| 一个人观看的视频www高清免费观看 | 久久狼人影院| 69av精品久久久久久| 两人在一起打扑克的视频| 黄色片一级片一级黄色片| 长腿黑丝高跟| 真人一进一出gif抽搐免费| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 麻豆久久精品国产亚洲av | 夫妻午夜视频| 黄色成人免费大全| 欧美午夜高清在线| 大香蕉久久成人网| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 久久青草综合色| 日韩中文字幕欧美一区二区| 88av欧美| 99精品久久久久人妻精品| 精品无人区乱码1区二区| 色尼玛亚洲综合影院| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 在线看a的网站| 欧美黄色淫秽网站| 国产精品乱码一区二三区的特点 | 久久人妻福利社区极品人妻图片| 无人区码免费观看不卡| 亚洲av成人一区二区三| 国产亚洲精品第一综合不卡| 男女之事视频高清在线观看| 亚洲成a人片在线一区二区| 国产精品野战在线观看 | 欧美一级毛片孕妇| 亚洲午夜精品一区,二区,三区| 欧美av亚洲av综合av国产av| 免费搜索国产男女视频| 级片在线观看| 色哟哟哟哟哟哟| 88av欧美| 无人区码免费观看不卡| 一本大道久久a久久精品| 亚洲成人免费av在线播放| 露出奶头的视频| 免费在线观看黄色视频的| xxxhd国产人妻xxx| www.自偷自拍.com| 中文字幕人妻丝袜制服| 久久久国产一区二区| 欧美精品啪啪一区二区三区| 久久亚洲精品不卡| 高清毛片免费观看视频网站 | 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 久久精品国产清高在天天线| 制服诱惑二区| 男男h啪啪无遮挡| 999久久久国产精品视频| 十八禁网站免费在线| 99在线视频只有这里精品首页| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址 | 亚洲精品美女久久av网站| 久久午夜亚洲精品久久| 91在线观看av| 国产精品香港三级国产av潘金莲| 超色免费av| 国产在线精品亚洲第一网站| 国产精品影院久久| 香蕉丝袜av| 久久精品国产99精品国产亚洲性色 | 国产aⅴ精品一区二区三区波| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av香蕉五月| 一个人观看的视频www高清免费观看 | 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看 | 亚洲中文日韩欧美视频| 18禁观看日本| 18禁美女被吸乳视频| 成人亚洲精品av一区二区 | 久9热在线精品视频| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区久久| 一区二区日韩欧美中文字幕| 欧美色视频一区免费| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 18禁美女被吸乳视频| 国产精品久久电影中文字幕| 成人av一区二区三区在线看| 亚洲精品中文字幕一二三四区| 免费久久久久久久精品成人欧美视频| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 久久久国产成人精品二区 | 国产av又大| 国产激情欧美一区二区| 搡老岳熟女国产| 一级片免费观看大全| 国产精品永久免费网站| 嫩草影视91久久| 精品欧美一区二区三区在线| 在线观看www视频免费| 女生性感内裤真人,穿戴方法视频| 在线观看免费午夜福利视频| xxx96com| 老熟妇乱子伦视频在线观看| 老司机深夜福利视频在线观看| 色婷婷久久久亚洲欧美| 在线国产一区二区在线| 亚洲色图av天堂| 久久久久久免费高清国产稀缺| 黑人巨大精品欧美一区二区蜜桃| 巨乳人妻的诱惑在线观看| 国产黄a三级三级三级人| 麻豆av在线久日| 大码成人一级视频| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 手机成人av网站| 精品一区二区三区av网在线观看| 久久欧美精品欧美久久欧美| 亚洲五月天丁香| 脱女人内裤的视频| 久久伊人香网站| 侵犯人妻中文字幕一二三四区| 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 老司机亚洲免费影院| 国产主播在线观看一区二区| 精品久久久久久电影网| 国产亚洲av高清不卡| 亚洲av成人av| 亚洲精品国产一区二区精华液| 夜夜看夜夜爽夜夜摸 | 如日韩欧美国产精品一区二区三区| 一级毛片精品| 国产精品久久久av美女十八| 麻豆国产av国片精品| 久久精品国产综合久久久| 日本欧美视频一区| 男人的好看免费观看在线视频 | 久久久久久久精品吃奶| 伦理电影免费视频| 欧美一区二区精品小视频在线| 久久久精品欧美日韩精品| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 欧美亚洲日本最大视频资源| 国产精品爽爽va在线观看网站 | 又大又爽又粗| 国产成+人综合+亚洲专区| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 免费在线观看亚洲国产| 妹子高潮喷水视频| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 国产欧美日韩综合在线一区二区| 亚洲精品成人av观看孕妇| 国产精品爽爽va在线观看网站 | 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 国产激情久久老熟女| 999精品在线视频| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 国产成人系列免费观看| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 99精国产麻豆久久婷婷| 国产精品一区二区免费欧美| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 曰老女人黄片| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 精品电影一区二区在线| 国产精品成人在线| 欧美不卡视频在线免费观看 | 欧美日韩av久久| 欧美日本中文国产一区发布| 久久久久精品国产欧美久久久| av天堂在线播放| 99riav亚洲国产免费| 9191精品国产免费久久| 亚洲精品一二三| 最新在线观看一区二区三区| 日韩欧美国产一区二区入口| 18美女黄网站色大片免费观看| 欧美激情久久久久久爽电影 | 日本精品一区二区三区蜜桃| 丝袜人妻中文字幕| 韩国精品一区二区三区| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 在线观看一区二区三区激情| 母亲3免费完整高清在线观看| 国产日韩一区二区三区精品不卡| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 两性午夜刺激爽爽歪歪视频在线观看 | avwww免费| 亚洲五月婷婷丁香| 成年版毛片免费区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 国产免费现黄频在线看| 夜夜躁狠狠躁天天躁| 亚洲第一av免费看| aaaaa片日本免费| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 成人国语在线视频| 自线自在国产av| 亚洲一区二区三区欧美精品| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 久久热在线av| 久热这里只有精品99| 精品久久久久久电影网| 欧美一区二区精品小视频在线| 国产精品久久久久久人妻精品电影| 国产精品野战在线观看 | 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看| 精品午夜福利视频在线观看一区| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 国产99白浆流出| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 免费高清在线观看日韩| 99精品在免费线老司机午夜| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 一夜夜www| 麻豆一二三区av精品| 国产一卡二卡三卡精品| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 色婷婷久久久亚洲欧美| 免费观看人在逋| 91精品国产国语对白视频| 1024香蕉在线观看| 黑人猛操日本美女一级片| 亚洲成人精品中文字幕电影 | 国产亚洲精品久久久久久毛片| 一夜夜www| 99久久99久久久精品蜜桃| 亚洲国产精品一区二区三区在线| 在线播放国产精品三级| 亚洲片人在线观看| 中出人妻视频一区二区| 搡老岳熟女国产| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区蜜桃| 真人一进一出gif抽搐免费| 国产精品98久久久久久宅男小说| 久久亚洲真实| 欧美不卡视频在线免费观看 | 国产精品一区二区精品视频观看| 亚洲av熟女| 91在线观看av| 99国产综合亚洲精品| 可以在线观看毛片的网站| 99精品欧美一区二区三区四区| www.精华液| 久久国产乱子伦精品免费另类| bbb黄色大片| 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看 | 免费在线观看日本一区| 深夜精品福利| 精品第一国产精品| 久久中文看片网| 日韩欧美在线二视频| 日韩成人在线观看一区二区三区| 国产区一区二久久| 免费看a级黄色片| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 久久久国产成人免费| 亚洲熟女毛片儿| 亚洲精华国产精华精| 热99国产精品久久久久久7| 黄色视频,在线免费观看| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| 午夜成年电影在线免费观看| 亚洲片人在线观看| 黄色丝袜av网址大全| 精品一品国产午夜福利视频| 国产精品永久免费网站| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 国产成人欧美在线观看| 最好的美女福利视频网| 国产区一区二久久| 天天影视国产精品| 精品欧美一区二区三区在线| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 在线视频色国产色| 欧美黄色淫秽网站| 国产高清视频在线播放一区| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 精品福利永久在线观看| 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| www.www免费av| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 国产91精品成人一区二区三区| 国产人伦9x9x在线观看| 国产精品二区激情视频| 国产在线精品亚洲第一网站| 亚洲熟妇中文字幕五十中出 | 亚洲狠狠婷婷综合久久图片| 午夜91福利影院| 亚洲九九香蕉| 欧美性长视频在线观看| 人成视频在线观看免费观看| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 成人国产一区最新在线观看| 久9热在线精品视频| 黄色 视频免费看| 久9热在线精品视频| 大型黄色视频在线免费观看| av片东京热男人的天堂| 亚洲国产精品999在线| 亚洲成国产人片在线观看| 成人三级黄色视频| 国产亚洲欧美精品永久| 黄色女人牲交| 午夜免费鲁丝| 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 日本免费a在线| 老司机深夜福利视频在线观看| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 亚洲成人免费电影在线观看| 男人操女人黄网站| 乱人伦中国视频| av片东京热男人的天堂| av在线播放免费不卡| 日韩欧美在线二视频| 欧美老熟妇乱子伦牲交| 丁香六月欧美| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 母亲3免费完整高清在线观看| 一边摸一边做爽爽视频免费| 99香蕉大伊视频| 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区| 欧美黑人精品巨大| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出 | 久久久久久久久久久久大奶| 亚洲欧美激情在线| 午夜精品久久久久久毛片777| 久久人人97超碰香蕉20202| 亚洲欧美激情综合另类| 在线观看一区二区三区| 黄片播放在线免费| 美女高潮到喷水免费观看| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 国产精品1区2区在线观看.| 超色免费av| 老司机靠b影院| 国产成人av教育| 久久人人精品亚洲av| 婷婷丁香在线五月| 亚洲激情在线av| 窝窝影院91人妻| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 十八禁人妻一区二区| 亚洲精品国产区一区二| 国产麻豆69| 久久人人精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品美女久久av网站| 精品卡一卡二卡四卡免费| 性色av乱码一区二区三区2| 一级黄色大片毛片| 操出白浆在线播放| 亚洲国产精品999在线| 国产av一区在线观看免费| 国产成年人精品一区二区 | 免费观看人在逋| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 老熟妇仑乱视频hdxx| 亚洲成a人片在线一区二区| 午夜影院日韩av| 日本三级黄在线观看| 天堂√8在线中文| 精品国产国语对白av| 男女之事视频高清在线观看| 女同久久另类99精品国产91| 精品国产一区二区久久| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看的www视频| 看免费av毛片| 中文字幕人妻丝袜制服| 欧美精品亚洲一区二区| 日韩有码中文字幕| 久久欧美精品欧美久久欧美| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 黄色a级毛片大全视频| 大陆偷拍与自拍| 亚洲av五月六月丁香网| 亚洲人成电影免费在线| 久久狼人影院| 国产成人av激情在线播放| 久久中文字幕一级| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 国产免费av片在线观看野外av| 国产激情欧美一区二区| 51午夜福利影视在线观看| 国产视频一区二区在线看| 免费在线观看黄色视频的| 99re在线观看精品视频| 精品一区二区三区av网在线观看| 中文字幕另类日韩欧美亚洲嫩草| 天堂俺去俺来也www色官网| 国产成人一区二区三区免费视频网站| 亚洲国产看品久久| 国产激情欧美一区二区| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼 | a级片在线免费高清观看视频| 麻豆一二三区av精品| 交换朋友夫妻互换小说| 日韩免费av在线播放| 国产亚洲欧美精品永久| 亚洲精品国产精品久久久不卡| 欧美激情久久久久久爽电影 | 91精品国产国语对白视频| 69av精品久久久久久| 国产一区二区三区视频了| 国产区一区二久久| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 夜夜爽天天搞| 午夜精品国产一区二区电影| √禁漫天堂资源中文www| 女性生殖器流出的白浆| 一边摸一边抽搐一进一出视频| 99香蕉大伊视频| 一a级毛片在线观看| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放 | 欧美性长视频在线观看| 香蕉国产在线看| 午夜影院日韩av| 国产精品一区二区免费欧美| 香蕉丝袜av| 妹子高潮喷水视频| www国产在线视频色| 欧美黄色片欧美黄色片| 精品久久久精品久久久| 欧美精品一区二区免费开放| 精品久久久久久,| 午夜免费鲁丝| 欧美在线一区亚洲| 国产精品综合久久久久久久免费 | 我的亚洲天堂| 一夜夜www| 99久久久亚洲精品蜜臀av| 精品久久蜜臀av无| 亚洲av成人av| 老熟妇乱子伦视频在线观看| 免费在线观看黄色视频的| 久久精品国产亚洲av香蕉五月| 午夜日韩欧美国产| 十八禁人妻一区二区| 亚洲成人精品中文字幕电影 | 他把我摸到了高潮在线观看| 欧美乱码精品一区二区三区| 午夜免费激情av| 美女大奶头视频| 可以在线观看毛片的网站| a级毛片在线看网站| 亚洲av成人不卡在线观看播放网| 男女高潮啪啪啪动态图| 免费高清在线观看日韩| 久久久久久免费高清国产稀缺| 色综合欧美亚洲国产小说| 亚洲熟妇熟女久久| 成年版毛片免费区| 日本撒尿小便嘘嘘汇集6| 久久中文看片网| 超碰成人久久| 久久香蕉激情| 国产精品久久久人人做人人爽| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 亚洲欧美日韩无卡精品| 一级毛片女人18水好多| 69av精品久久久久久| 乱人伦中国视频| 亚洲在线自拍视频| 亚洲av熟女| 久久欧美精品欧美久久欧美| 久久久久久久久免费视频了| 人成视频在线观看免费观看| av天堂在线播放| 国产精品一区二区免费欧美| 人成视频在线观看免费观看| 午夜免费成人在线视频| 亚洲欧美日韩高清在线视频| 大型av网站在线播放| 婷婷精品国产亚洲av在线| 50天的宝宝边吃奶边哭怎么回事| 免费搜索国产男女视频| 新久久久久国产一级毛片| 免费在线观看日本一区| 亚洲一区二区三区欧美精品| 欧美av亚洲av综合av国产av| 国产99久久九九免费精品| 一边摸一边抽搐一进一小说| 亚洲成人免费av在线播放| 一级毛片女人18水好多| 视频在线观看一区二区三区| 色在线成人网| 亚洲 欧美一区二区三区| 一级,二级,三级黄色视频| 亚洲国产毛片av蜜桃av| 一级毛片精品|