• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved optimal steering law for SGCMG and adaptive attitude control of fl xible spacecraft

    2015-02-11 03:39:13

    School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

    Improved optimal steering law for SGCMG and adaptive attitude control of fl xible spacecraft

    Lu Wang1,Yu Guo2,*,Liping Wu3,and Qingwei Chen4

    School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

    The issue of attitude maneuver of a f exible spacecraft is investigated with single gimbaled control moment gyroscopes (SGCMGs)as an actuator.To solve the inertia uncertainty of the system,an adaptive attitude control algorithm is designed by applying a radial basis function(RBF)neural network.An improved steering law for SGCMGs is proposed to achieve the optimal output torque.It enables the SGCMGs not only to avoid singularity, but also to output more precise torque.In addition,global,uniform, ultimate bounded stability of the attitude control system is proved via the Lyapunov technique.Simulation results demonstrate the effectiveness of the new steering law and the algorithm of attitude maneuver of the fl xible spacecraft.

    fl xible spacecraft,adaptive,steering law,attitude control.

    1.Introduction

    In recent years,more and more spacecraft adopt single gimbaledcontrolmomentgyroscopes(SGCMGs)as anactuator.Though the SGCMGs have many advantages,there exists configuratio singularity issue in practical applications.Moreover,there exists a lot of uncertainties due to the change of inertia and various environmental disturbances.Also,the vibration caused by the strong coupling between hub and fl xible appendages influence the attitude control performance seriously.Actually,the attitude control system of fl xible spacecraft is an multiple input multiple output(MIMO)nonlinear system with strong rigid fl xible coupling effect.

    Recentlytheuncertaintyissue inspacecraftattitudecontrol system has attracted a great deal of attention.Jiang et al.used a neural network control method to compensate the saturation nonlinearity of actuator and the adaptive controlmethodis also used to estimate the boundof uncertainties[1].Jiao et al.presented an adaptive output feedback controller to suppress the disturbance,but the dynamic of actuator is not considered[2].Jia et al.discussed the attitude maneuverof spacecraft whose actuators are reaction wheels,and designed an adaptive control law[3]. Yoon et al.proposed an adaptive attitude tracking control law for spacecraft in which the actuator dynamics is involved[4].However,in the control law,a lot of uncertain parametersneed to be estimated.Taking accountof the uncertainties of inertia,MacKunis et al.designed a nonlinear adaptive controller,but this controller is only workable for rigid spacecrafts[5].Singla et al.proposed a model reference adaptive controller to cope with the parametric disturbancesas well as attitude measurement errors[6].However,the dynamics of actuator is not involved.To avoid singularityofSGCMGs,Nazarethet al.proposeda Moore-Penrose pseudo inverse steering law with a non-directional null-motion algorithm and an singularity robust inverse steering law for redundant SGCMGs.And the singularity robust inverse steering law allowed torqueerrors to be produced in the vicinity of singular states to provide better steering law performance[7].Wie presented an improved generalized singularity robust inverse steering law to provide singularity avoidance at the cost of certain torque errors which worsens the performance of the control system [8].To minimize the torque error and avoid the singularity,Tekinalp et al.proposed a blended inverse steering law which blends the expected gimbal rates and the required torque in a weighted form,and the system can be driven to a desired gimbal configuratio[9].Yasuyuki et al.presentedanewCMGsteeringlawusingpreferredinitialgimbalanglesandnullmotiontoachieveaccurateattitudecontrol for an agile spacecraft[10].Zhang et al.proposed an installation scheme for SGCMGs to avoid singularity,in which a rotator for the support bracket of each control moment gyrois adoptedandits applicationon reconfiguratioand singular escape is discussed[11].Besides,Kojima did the research in an adaptive-skew pyramid-type CMG(ASCMG)systemanddevelopedanovelsteeringlaw,inwhich the skew angle is one of the control variables for generating torque for a rigid spacecraft[12].It’s known that steering laws are grouped as the dynamic inverse method,offline planning,angular momentum constraining and so on. However,the off-lineplanningnecessitates bruteforcecalculationandis thereforetime-consuming.With the angular momentum constraining method,the angular momentum workspaceofthis methodis muchsmaller than the original maximum workspace,which means that the momentum workspaceofthesystemisnoteffectivelyusedandtheeffi ciency of the actuator is also decreased.Thus the dynamic inverse steering law is more widely used.In addition,it is well known that the attitude in a f exible spacecraft is more likely to vibrate than that in a rigid one because of the coupling effects between hub and fl xible appendages. For this reason,it is necessary to study the availability of thesteeringlawto theSGCMGs in a f exiblespacecraft.To the best of our knowledge,up to now there does not exist such a powerful steering law which can consider singularity avoidance,outputaccuracy,as well as vibrationrestrain for the SGCMGs in fl xible spacecrafts together.

    In this paper,we investigate the dynamic friction existed in the dynamics of SGCMGs in a f exible spacecraft, and improve the blended inverse steering law by minimizing a new mixed quadratic cost function,which enables the SGCMGs to escape singularities in a f exible spacecraft as well as to output precise torque nearly without vibration.As for the attitude control system of the fl xible spacecraft,an adaptive attitude control algorithm is given by applying a radial basis function(RBF)neural network to cope with the inertia uncertainty.In addition,the global, uniform,ultimate bounded stability of the attitude control system is proved via the Lyapunov theory.The simulation results show that the stability of attitude maneuver of a fl xible spacecraft is improved.The paper is organized as follows.Section 2 states the mathematical model of a f exible spacecraft and SGCMGs.Section 3 presents an attitude control law based on an RBF neural network and an improved optimal steering law.In Section 4,the results of numerical simulation are presented.Finally,the paper is completed with some concluding comments.

    2.Mathematical model

    2.1Attitude kinematics

    The quaternion kinematics equations of a spacecraft attitude[13]are governed by

    If we defin the algebraic quaternionq=q1i+q2j+q3k+q4,then its inverse isq?1=?q1i?q2j?q3k+q4. Withqdas a desired attitude quaternion vector andωdas a desired angular velocity vector,the attitude error quaternion vector can be written aswhere?is multiplication of quaternion.Then we have

    In addition,the angular velocity error vector is denoted asand

    is a transformational matrix based on quaternion.

    2.2Attitude dynamics

    Attitude dynamics of a f exible spacecraft[13]is governed by

    whereJ∈R3×3is the inertia matrix of the spacecraft which is positive definit and symmetric,andC∈Rn×3is the coupling matrix between hub and fl xible appendages,η∈Rn×1is the modal coordinate vector of the fl xible appendages,wherenis the number of fl xible modes considered,τcmg∈R3×1is the control torque exerted on the hub,andTd∈R3×1is the external disturbance torque,whose magnitude‖Td‖is bounded withTdmax.‖·‖denotes 2-norm of a vector.ζ∈Rn×nandΛ∈Rn×nare the damping ratio matrix and mode frequency matrix,respectively.

    Besides,accordingto the coupling relationship between the hub and fl xible appendages in the attitude dynamics of the spacecraft,it can be deduced clearly that the angu-lar acceleration of the hub affects the fl xible modes and deform the appendages,and in return the vibration of the fl xible modes affects the attitude of hub simultaneously.

    2.3Dynamics of SGCMG

    In this paper a pyramid-type SGCMGs is considered.Dynamics of the SGCMGs including the dynamic friction of the SGCMGs[5]are governed by

    whereFdis a coefficien matrix of friction of the SGCMGs,andhcmgis the angular momentum of the SGCMG system.The angle vector of the gimbals isδ= [δ1δ2δ3δ4]T,whereδi(i=1,2,3,4)is theith angle of the gimbals.˙δis a angular velocity vector of the gimbal; ˙hcmgis the derivative of angular momentum with respect to time and it has the following relationship:

    wherehais the constant magnitude of angular momentum of each SGCMG;Ais the Jacobian matrix[14],which is described as

    whereβis the skew angle of the SGCMG.

    3.Attitude control law and improved optimal steering law design

    3.1Attitude control law based on RBF neural network

    Aiming at reducing the adverse impact of the inertia uncertainty to the stability of the system,we design an adaptive attitude control algorithm with a RBF neural network. To avoid the singularity of SGCMGs and output more precise torque,we improve the blended inverse steering law [9].Moreover,we design a novel attitude control system with initial attitude guidance[15]as depicted in Fig.1,in which,qv0andω0are the initial attitude quaternion and the initial angular velocity,respectively,whileqvrandωrare the desired quaternionand the desired angularvelocity, respectively.

    Fig.1 Structure of attitude control system

    We defin a vectorras follows:

    whereρis a positive number.Furthermore,as is mentioned above,it can be deducedso we have

    MultiplyingJon both sides of(9)and substituting(3)and (4)into it,we have

    Consideringthe inertia uncertainty,we definwhereJ0is the nominal inertia,andis the inertia uncertainty.Here,we defin a nominal function

    along with a functiony(w,r)which contains the uncertainty of inertia as follows:

    Moreover,an adaptive attitude control algorithm is designed to estimatey(w,r)by applying the RBF neural network with a middle layer of fve neurons described by

    wherew=[w1w2···w5]T∈R5×1is the weight vector;h=[h1h2···h5]Tis the radial basis vector;ci=[ci1ci2ci3]Tis the central vector of theith node;biis a positive constant.

    To estimate the weight vector,an adaptive law is designed as

    whereΓ1andΓ2are positive numbers andis the estimation of the weight vector.

    Based on the error of attitude angular velocity and the attitude quaternion,we design the control law as follows:

    wherekv,kn,wM>0 and they are the gains that can be chosen by designer.The bound ofwMmust satisfystands forF-norm of a vector.

    3.2Improved optimal steering law

    To design the improved optimal steering law,individual gimbal angular velocityshould be close to the desired gimbal angular velocityMeanwhile,the output torque error is expected to be minimal as far as possible.Tekinalp designed the blended inverse via mixed quadratic cost function[9]described as minwhere theQandPare symmetric positive definit matrices;in whichare the desired gimbal angular velocity and desired torque respectively.

    Because of the dynamic friction,the torque producing capacity of SGCMGs deteriorates over time due to the changes in the dynamics such as bearing degradation and increased friction in the gimbals.The aftereffect of SGCMGs’friction accumulation include increasing power consumptiondue to energy dissipation.These all may lead to serious problems which may even cause actual satellite failures.In Tekinalp’s method,an idealized model is utilized.In this paper,we investigate the dynamic friction existed in the SGCMGs in a f exible spacecraft,and improve the blended inverse steering law by minimizing a new mixed quadratic cost function,which enables the SGCMGs to escape singularities in fl xible spacecraft as well as to output smoothly precise torque nearly without error.

    The attitude maneuver of the spacecraft is considered in the dynamics of the SGCMGs,with the skew-symmetric matrix of angular velocity of spacecraftω×.These improvements make it convenient for actual application. Moreover,based on the mixed quadratic cost function and optimization method,different values of the diagonal entries of the weighting matricesQandPcan be acquired by a trial and error approach to restrain the errorandTe,which enable the SGCMGs to escape singularities in a f exible spacecraft.According to(6)and(7),we use a mixed quadratic cost function as follows:

    whereQ,Pare symmetric positive definit matrices.

    To minimizeL,letting?L/?˙δ=0 yields

    Therefore,we have

    whereΓ3is a positive matrix.This law compensates the friction uncertainty.

    Thedesired gimbalangularvelocity isis theith desired gimbal angular velocity,fori=1,2,3,4.The error betweenδiandδdiisΔδdi=arccos(〈hi,hdi〉/‖hi‖2)·sgn(〈hi×hdi,gi〉),?π≤Δδdi≤π.hiis the angular momentum of single SGCMG;hdi=gi×Tc/‖gi×Tc‖is the desired angularmomentumof each SGCMG[16],giis a gimbal axis vector.

    whereWi>0(i=1,2,3,4),ε=ε0sin(ω0t+φ), α1=α10e?μD,α2=α20e?μD,the singularity measurementD=det(AAT),ω0,μ,ε0,α10,α20>0 and they can be chosen by designer.

    3.3Stability proof

    Assumingw?∈R5×1is the ideal identificatio weight vector ofy,we haveand the modeling error of neural network is

    According to(11)and(16),the equation of closed-loopattitude control system leads to

    Denoting the estimation error of the weight vector of the neural network asand the total disturbance to the system asthen(21)can be rewritten as

    We assume that the disturbance is bounded[17],then we can have

    withc0,c1andc2as known positive constants.

    Lemma 1[18] Suppose that a positive define LyapunovfunctioncandidateV(t)satisfieβ0,whereλ>0 andβ0>0 are constants,then the system is globally,uniformly,ultimately bounded and stable.

    Theorem1Forthe system in(4)and(5),assumingthat the disturbanceis boundedwith the attitude controlsystem of the fl xible spacecraft described by(4),(5)and(11), then the adaptivecontrol law(20)as well as controller(16) are globally,uniformly,ultimately bounded and stable.

    ProofConsider the following Lyapunov function candidate:

    According to(3),(11)and(16),the derivative ofValong the trajectories of the system is

    From the Lyapunov function candidate,we can see thatwhereλ2is the maximum eigenvalue ofJand

    Therefore,according to Lemma 1,the attitude control system of fl xible spacecraft is globally uniformly ultimately bounded and stable.

    4.Simulation results

    4.1Simulation of SGCMGs optimal steering law

    To verify numerically the results provedin this section,we considerthe pyramid-typeSGCMGs givenin(6).The constant magnitude of angular momentum of each SGCMGha=1.The true value of SGCMG friction uncertaintyFd=0.1I4and the skew angle of the SGCMG isβ= 53.13°.The initial gimbal angular velocity of SGCMGs iss and the initial gimbal angle of SGCMGs isδ0=[0 0 0 0]T.The desired torque isτu= [1 N·m 0.5 N·m 0.2 N·m]T.The parameters in the optimal steering law areεi=0.1cost,α20=0.01,α10= 0.01,μ=10,Wi=i(i=1,2,3,4).

    From Fig.2,we can see that,the estimation of the SGCMG frictionuncertaintycan convergeto its truevalue. In contrast to the optimal steering law,we adopt the blended inverse steering law which did not consider the compensation of the SGCMG friction uncertainty[9].The simulation results are depicted in Figs.3–6,which can also show the effectiveness of the adaptive law.

    Fig.2 Estimation of SGCMG friction uncertainty

    Fig.3 Output torque of improved steering law

    Fig.4 Singularity measurement of improved optimal steering law

    Fig.5 Output torque of blended inverse steering law

    Fig.6 Singularity measurement of blended inverse steering law

    From Figs.3–4,we can see that when the singularity measurementDchanges fast and tends to the vicinity of zero,it means the SGCMGs are nearly singularity, and the small torque error is utilized to avoid singularity. Since then,though in the presence of SGCMG friction uncertainty,the error of output torque is still almost zero. Besides,the singularity measurementDbecomes steady and is away from zero,which verifie that the singularity is avoided.From Figs.5–6,in contrast,we can see that the blended inverse steering law does not perform well in the presence of SGCMG friction uncertainty.The torque error always exists.The system can not output torque as exact as the desired output torque.The singularity measurementDstill changes fast and this is manifested as the continuous appearance of output torque error.Therefore, the results show that the improved optimal steering law can output torque much more smoothly and precisely than the blended inverse steering law though in the presence of SGCMG friction uncertainty,and meanwhile it does well in avoiding singularity.

    4.2 Simulation of attitude maneuver control of flexibl spacecraft

    To illustrate the results presentedin this paper,we consider the system dynamics in(4)and(5),with the parameters given in[19].

    Numerical simulations for a f exible spacecraft with the proposed attitude control scheme have been completed.

    The initial gimbal angle of the SGCMGs isδ0= [0 0 0 0]Tand the initial gimbal angular velocity is ˙δ0=[0 0 0 0]T.The parameters of the steering law areα10=0.01,α20=0.01,εi=0.1cost,μ=10,ha=10 andWi=i(i=1,2,3,4),and the skew angle of the SGCMG isβ=53.13°,ω0=[0 0 0]T.The initial attitude angle of the spacecraft is[60°20°15°]Tand the corresponding initial attitude quaternion is calculated as[0.468 6 0.213 4 0.197 4 0.834 2]T.The desired attitude angle vector isωd=[0°0°0°]T.The parame-ters in the attitude controller are set asΓ1=10,Γ2=5,wM=100,kv=15,kz=1,kn=15,ρ=1.Simulation results are shown in Fig.7.

    Fig.7 Response of the proposed attitude control system

    From Fig.7(a)–(c),we can see that,by guiding the initialattitude,theEulerangleandtheerrorofattitudequaternion converge much more smoothly during the maneuver. Zooming in the figures during 100–300 s,the attitude pointing accuracy is better than 0.005°,while the stability of attitude angular velocity is better than 0.001(°)/s.It means that the spacecraft maneuvers rapidly and steadily with high pointing accuracy and stability.From the modes of fl xible appendages in Fig.7(d),it can be seen that the appendages’vibrations are rapidly suppressed.

    For comparison,a PID control method with initial attitude guidance is also used to show the advantage of the attitude control law based on an RBF neural network.The simulation results are shown in Fig.8.It can be seen that compared with the PID control law,the proposed control law has better attitude pointing accuracy and stability of attitude angular velocity.From Fig.7(d)and Fig.8(d),we can see that with the proposed control law the vibration suppression process is much faster,which means that the proposed control law has a much better vibration suppression property.

    Fig.8 Response of PID attitude control system

    5.Conclusions

    In this paper,an adaptive attitude control algorithm is designed by applying an RBF neural network for inertia uncertainty of the system.A new improved optimal steering law considering the dynamic friction and the attitude maneuver of the spacecraft existed in the dynamics of SGCMGs in a f exible spacecraftis proposedforSGCMGs to escape singularities in fl xible spacecraft and output torque with high precision as well.The simulation results show that with the new optimal steering law,the SGCMGs can output precise torque.It can be concluded that,with the proposed attitude control scheme,high-precision,high stability of attitude maneuver of fl xible spacecraft can be achieved.However,the static friction in the SGCMGs dynamics is not considered,which should be further investigated in fl xible spacecraft control system design.

    [1]Y.Jiang,Q.L.Hu,G.F.Ma.Intelligentadaptive variable structure attitude maneuvering control for fl xible spacecraft with actuator saturation.Journal ofAstronautics,2009,30(1):188–193.

    [2]X.H.Jiao,L.Y.Zhang.Adaptive output feedback control of attitudemaneuver and vibration suppression for fl xible spacecraft.Electric Machines and Control,2011,15(7):94–100.

    [3]F.L.Jia,W.Xu,H.N.Li,et al.Design of controller for spacecraft attitude large angle maneuver with three reaction wheels.Flight Dynamics,2010,28(2):78–81.

    [4]H.Yoon,P.Tsiotras.Adaptive spacecraft attitudetracking control with actuator uncertainties.Journal of Astronautic Sci-ences,2008,56(2):251–268

    [5]W.MacKunis,K.Dupree,N.Fitz-Coy,et al.Adaptive satellite attitudecontrolinthepresence ofinertiaandCMGgimbalfriction uncertainties.The Journal of the Astronautical Sciences, 2008,56(1):121–134.

    [6]P.Singla,K.Subbarao,J.L.Junkins.Adaptiveoutputfeedback control for spacecraft rendezvous and docking under measurement uncertainty.Journal of Guidance,Control,and Dynamics,2006,29(4):892–902.

    [7]N.S.Bedrossian,J.Paradiso,E.V.Bergmann.Steering law design for redundant single-gimbal control moment gyroscopes.Journal of Guidance,Control,and Dynamics,1990, 13(6):1083–1089.

    [8]B.Wie.New singularity escape/avoidance steering logic for control moment gyro systems.Journal of Guidance,Control, and Dynamics,2005,28(5):948–956.

    [9]O.Tekinalp,E.Yavuzoglu.A new steering law for redundant control moment gyroscope clusters.Aerospace Science and Technology,2005,9(7):626–634.

    [10]Y,Nanamori,M,Takahashi.Steering law of control moment gyros using optimization of initial gimbal angles for satellite attitude control.Journal of System Design and Dynamics, 2011,5(1):30–41.

    [11]J.R.Zhang,J.Jin,Z.Z.Liu.An improved installation for control moment gyros and its applications on reconfiguratio and singular escape.Acta Astronautica,2013,85(1):93–99.

    [12]H.Kojima.Singularity analysis and steering control laws for adaptive-skew pyramid-type control moment gyros.Acta Astronautica,2013,85(1):120–137.

    [13]P.C.Hughes.Spacecraft attitude dynamics.New York: Courier Dover Publications,2012.

    [14]R.W.Zhang.Dynamics and control of satellite orbit and attitude.Beijing:Beijing University of Aeronautics and Astronautics Press,1998:278–293.

    [15]A.F.Lai,Y.Guo,L.J.Zheng.Active disturbance rejection control for spacecraft attitude maneuver and stability.Control Theory and Application,2012,29(3):401–407.

    [16]Z.Y.Sun,G.Jin,K.Xu,etal.Steering law design for SGCMG based on optimal output torque capability.Chinese Journal of Space Science,2012,32(1):113–122.

    [17]F.L.Lewis,A.Yesildirek,K.Liu.Multilayer neural-net robot controller with guaranteed tracking performance.IEEE Trans. on Neural Networks,1996,7(2):388–399.

    [18]Z.Qu,D.M.Dawson,S.Y.Lim.A new class of robust control laws for tracking of robots.The International Journal of Robotics Research,1994,13(4):355–363.

    [19]Q.Hu.Robust adaptive backstepping attitude and vibration control with L2-gain performance for fl xible spacecraft under angular velocity constraint.Journal of Sound and Vibration, 2009(327):285–298.

    Biographies

    Lu Wangwas born in 1990.He received his B.S. degree in 2012 in Electrical Engineering and Automation from Nanjing University of Science and Technology.He is currently a Ph.D.degree candidate in Control Theory and Control Engineering at Nanjing University of Science and Technology. His research interests include design of singlegimbaled control moment gyroscopes(SGCMGs) steering law,spacecraft attitude control considering actuator and nonlinear control.

    E-mail:timwang21@126.com

    Yu Guoreceived her B.S.degree and M.S.degree in Automation,both from Huazhong University of Science and Technology in 1984,1987 respectively. She received her Ph.D.degree in Control Science and Engineering from Nanjing University of Science and Technology.In 1987,she joined the faculty of the School of Automation,Nanjing University of Science and Technology,and is currently a professor of automatic control there.Her major research interests are adaptive control,robust control,nonlinear control and multi-object optimization for complicated systems.Now she is interested in fl xible spacecraft attitude control and servo control system with high accuracy.

    E-mail:guoyu@njust.edu.cn

    Liping Wuwas born in 1990.She received her B.S. degree in 2013 in Automation from Nanjing University of Science and Technology.She is currently a Ph.D.degree candidate in control theory and control engineering at Nanjing University of Science and Technology.Her research interests include spacecraft attitude control and spacecraft orbit control.

    E-mail:wulp0724@163.com

    Qingwei Chenreceived his M.S.degree and Ph.D. degree in control science and engineering,both from Nanjing University of Science and Technology.In 1988,he joined the faculty of the School of Automation,Nanjing University of Science and Technology, and is now a professor of automatic control.His major research interests are intelligent control,nonlinear control,network control systems,high accuracy servo systems and optimization for complicated systems.

    E-mail:cqw1002@sina.com

    10.1109/JSEE.2015.00139

    Manuscript received December 30,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61473152)and the China Scholarship Council and the Educational Innovation Project for Graduate Students of Jiangsu Province (KYLX15 0399).

    亚洲午夜理论影院| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 久久热在线av| 亚洲人成网站在线播放欧美日韩| 欧美黑人精品巨大| 亚洲五月天丁香| 精品欧美一区二区三区在线| 欧美乱码精品一区二区三区| 日韩欧美国产一区二区入口| 免费高清在线观看日韩| 无人区码免费观看不卡| 亚洲中文日韩欧美视频| 国产av在哪里看| 亚洲精品美女久久av网站| 国产成人影院久久av| 亚洲男人的天堂狠狠| 日本熟妇午夜| 欧美黑人精品巨大| 日韩大码丰满熟妇| 国产人伦9x9x在线观看| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 好男人电影高清在线观看| 长腿黑丝高跟| 国产成人av教育| 亚洲 欧美一区二区三区| 999久久久精品免费观看国产| 亚洲激情在线av| a级毛片在线看网站| 99热这里只有精品一区 | 国产精品美女特级片免费视频播放器 | 久久久国产精品麻豆| 99在线视频只有这里精品首页| 久久人妻av系列| 国产精品亚洲一级av第二区| 亚洲国产欧洲综合997久久, | 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 午夜福利在线观看吧| 99热这里只有精品一区 | 法律面前人人平等表现在哪些方面| 超碰成人久久| 久久狼人影院| 丝袜人妻中文字幕| 国产人伦9x9x在线观看| 午夜视频精品福利| 精品久久久久久久毛片微露脸| 一进一出抽搐动态| 国产精品亚洲美女久久久| 午夜影院日韩av| 色综合站精品国产| 国产单亲对白刺激| 一级a爱视频在线免费观看| avwww免费| 人成视频在线观看免费观看| 日韩欧美国产在线观看| 午夜福利高清视频| 露出奶头的视频| 国内精品久久久久久久电影| 曰老女人黄片| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 中文资源天堂在线| 久久精品夜夜夜夜夜久久蜜豆 | 一级作爱视频免费观看| 亚洲av成人一区二区三| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 91老司机精品| 亚洲精品在线观看二区| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 日韩精品中文字幕看吧| 久久中文看片网| 给我免费播放毛片高清在线观看| 黑人操中国人逼视频| 久久人人精品亚洲av| 久久人妻福利社区极品人妻图片| 久久伊人香网站| 亚洲成人免费电影在线观看| videosex国产| 午夜福利成人在线免费观看| 一区二区三区激情视频| 波多野结衣高清作品| 午夜精品在线福利| 91在线观看av| 久热这里只有精品99| 欧美成人一区二区免费高清观看 | 日韩欧美在线二视频| 少妇 在线观看| 国产一卡二卡三卡精品| 女警被强在线播放| 久久国产精品人妻蜜桃| 国产爱豆传媒在线观看 | 日韩一卡2卡3卡4卡2021年| 麻豆一二三区av精品| av天堂在线播放| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 国产精品国产高清国产av| 亚洲片人在线观看| 中文字幕人妻熟女乱码| 亚洲国产日韩欧美精品在线观看 | 50天的宝宝边吃奶边哭怎么回事| 最好的美女福利视频网| 亚洲黑人精品在线| 久久青草综合色| 97碰自拍视频| 精品免费久久久久久久清纯| 91老司机精品| 亚洲国产精品999在线| 大型av网站在线播放| 亚洲天堂国产精品一区在线| 精品人妻1区二区| 18禁美女被吸乳视频| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 深夜精品福利| 国产精品亚洲av一区麻豆| 免费无遮挡裸体视频| 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 欧美精品啪啪一区二区三区| 免费高清视频大片| www国产在线视频色| 免费在线观看视频国产中文字幕亚洲| 久久99热这里只有精品18| 亚洲成av人片免费观看| 在线观看舔阴道视频| 欧美在线黄色| 午夜免费激情av| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 黄片大片在线免费观看| 成人永久免费在线观看视频| 亚洲精品色激情综合| 一进一出抽搐动态| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 午夜久久久久精精品| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 色av中文字幕| 999久久久国产精品视频| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 波多野结衣av一区二区av| 日本免费a在线| 欧美国产日韩亚洲一区| 国产av在哪里看| 最近最新免费中文字幕在线| 一级毛片精品| 香蕉av资源在线| 欧美色视频一区免费| 日日夜夜操网爽| 村上凉子中文字幕在线| 免费看十八禁软件| 亚洲专区字幕在线| 99在线人妻在线中文字幕| 久久这里只有精品19| 久久久久国产精品人妻aⅴ院| 亚洲男人天堂网一区| xxxwww97欧美| 999精品在线视频| 亚洲九九香蕉| 国内精品久久久久精免费| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 亚洲激情在线av| 很黄的视频免费| 国产精品一区二区精品视频观看| 欧美性猛交╳xxx乱大交人| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 国产真实乱freesex| 欧美精品啪啪一区二区三区| 欧美性猛交黑人性爽| 校园春色视频在线观看| 天天躁夜夜躁狠狠躁躁| 麻豆av在线久日| 久久久久久久久中文| 一区福利在线观看| xxxwww97欧美| 久久久久久人人人人人| 一本久久中文字幕| 国产精品国产高清国产av| 变态另类丝袜制服| 伦理电影免费视频| 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 每晚都被弄得嗷嗷叫到高潮| 亚洲精华国产精华精| 成人精品一区二区免费| 男女床上黄色一级片免费看| 国产久久久一区二区三区| 日本免费一区二区三区高清不卡| 99riav亚洲国产免费| 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 国产一区二区三区在线臀色熟女| 免费在线观看日本一区| 国产欧美日韩一区二区三| 在线看三级毛片| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 中文字幕久久专区| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 婷婷亚洲欧美| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av| 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 91大片在线观看| 亚洲国产精品sss在线观看| 成年人黄色毛片网站| 日本熟妇午夜| 一个人免费在线观看的高清视频| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 国产成人av教育| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 中文字幕av电影在线播放| 午夜福利一区二区在线看| 国产日本99.免费观看| 日韩中文字幕欧美一区二区| 日本 欧美在线| 香蕉久久夜色| 视频区欧美日本亚洲| 国产人伦9x9x在线观看| 欧美黑人精品巨大| 成人亚洲精品av一区二区| 日韩一卡2卡3卡4卡2021年| 在线观看66精品国产| 少妇裸体淫交视频免费看高清 | 中文字幕精品免费在线观看视频| a级毛片a级免费在线| 午夜久久久久精精品| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 99久久无色码亚洲精品果冻| 欧美 亚洲 国产 日韩一| 日韩三级视频一区二区三区| 国产在线精品亚洲第一网站| 在线永久观看黄色视频| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 午夜激情福利司机影院| 日韩欧美 国产精品| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看 | 叶爱在线成人免费视频播放| 看片在线看免费视频| 1024香蕉在线观看| 伦理电影免费视频| 国产免费av片在线观看野外av| 欧美中文日本在线观看视频| 最好的美女福利视频网| 99久久精品国产亚洲精品| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 无限看片的www在线观看| 女性生殖器流出的白浆| 窝窝影院91人妻| 日韩欧美三级三区| 精品第一国产精品| 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| 国产在线观看jvid| 中出人妻视频一区二区| 成人三级黄色视频| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区 | 十八禁人妻一区二区| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区黑人| 欧美性长视频在线观看| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 高清在线国产一区| 一进一出好大好爽视频| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| e午夜精品久久久久久久| 男人舔女人的私密视频| 三级毛片av免费| 欧美一区二区精品小视频在线| 91国产中文字幕| 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| av电影中文网址| 国产精品爽爽va在线观看网站 | 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 精品人妻1区二区| 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 日本一区二区免费在线视频| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆久久精品国产亚洲av| 男人的好看免费观看在线视频 | 亚洲男人天堂网一区| 制服人妻中文乱码| 国产91精品成人一区二区三区| 亚洲第一电影网av| 久久中文看片网| 天堂影院成人在线观看| 宅男免费午夜| 人人澡人人妻人| 精品乱码久久久久久99久播| 日本一本二区三区精品| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 欧美激情极品国产一区二区三区| 啦啦啦韩国在线观看视频| 一二三四社区在线视频社区8| 人人澡人人妻人| 亚洲av美国av| 日韩大尺度精品在线看网址| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 午夜免费鲁丝| av有码第一页| 91在线观看av| 一夜夜www| 天天一区二区日本电影三级| 免费搜索国产男女视频| 日本成人三级电影网站| 久久久久九九精品影院| 国产一级毛片七仙女欲春2 | 午夜免费成人在线视频| 首页视频小说图片口味搜索| 精华霜和精华液先用哪个| avwww免费| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 精品第一国产精品| 99在线人妻在线中文字幕| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 国产精品 国内视频| 一二三四在线观看免费中文在| 视频在线观看一区二区三区| 国产99白浆流出| 1024手机看黄色片| 91字幕亚洲| 很黄的视频免费| 欧美日本亚洲视频在线播放| 老司机福利观看| 精华霜和精华液先用哪个| 精品日产1卡2卡| 日本 av在线| 高清在线国产一区| 亚洲久久久国产精品| 一级毛片女人18水好多| 视频区欧美日本亚洲| 91在线观看av| av视频在线观看入口| 曰老女人黄片| 亚洲五月婷婷丁香| 日韩免费av在线播放| 99热6这里只有精品| 男女午夜视频在线观看| 精品欧美一区二区三区在线| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久 | 亚洲avbb在线观看| 丰满的人妻完整版| 欧美最黄视频在线播放免费| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区 | 人人妻人人看人人澡| 久久中文字幕一级| 手机成人av网站| 在线观看午夜福利视频| 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 波多野结衣高清无吗| 国产97色在线日韩免费| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 国产一卡二卡三卡精品| 黄色毛片三级朝国网站| av在线天堂中文字幕| 日本熟妇午夜| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站 | bbb黄色大片| 国产三级在线视频| 亚洲国产精品久久男人天堂| 岛国视频午夜一区免费看| 一级毛片精品| 欧美日韩亚洲综合一区二区三区_| 搞女人的毛片| 免费看十八禁软件| 国产爱豆传媒在线观看 | 欧美绝顶高潮抽搐喷水| 在线观看午夜福利视频| 午夜福利高清视频| 国产精品av久久久久免费| 色婷婷久久久亚洲欧美| 日韩高清综合在线| 日本免费一区二区三区高清不卡| 国产单亲对白刺激| 1024香蕉在线观看| 波多野结衣巨乳人妻| 久久人妻福利社区极品人妻图片| 国产精品1区2区在线观看.| 日韩高清综合在线| 大型黄色视频在线免费观看| 久久久久国产一级毛片高清牌| 国产蜜桃级精品一区二区三区| 制服人妻中文乱码| www.999成人在线观看| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| 国产久久久一区二区三区| 国产精品二区激情视频| 久久久久免费精品人妻一区二区 | 看片在线看免费视频| 制服丝袜大香蕉在线| 白带黄色成豆腐渣| 欧美人与性动交α欧美精品济南到| ponron亚洲| av福利片在线| 身体一侧抽搐| av视频在线观看入口| 精品一区二区三区四区五区乱码| 国产亚洲精品久久久久久毛片| 在线观看免费日韩欧美大片| 在线观看www视频免费| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 99久久国产精品久久久| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 嫩草影视91久久| 免费在线观看黄色视频的| 日韩免费av在线播放| 可以在线观看的亚洲视频| 久久久久久免费高清国产稀缺| 精品久久久久久久末码| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 在线播放国产精品三级| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 国产男靠女视频免费网站| 国产成人av教育| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 一进一出抽搐gif免费好疼| 欧美色视频一区免费| 国产高清视频在线播放一区| 操出白浆在线播放| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区色噜噜| av福利片在线| 好男人电影高清在线观看| 人人妻人人澡人人看| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲avbb在线观看| 精品国产一区二区三区四区第35| 三级毛片av免费| 亚洲av成人不卡在线观看播放网| 无人区码免费观看不卡| 男人舔奶头视频| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| svipshipincom国产片| 亚洲男人天堂网一区| 我的亚洲天堂| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 欧美激情极品国产一区二区三区| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 美国免费a级毛片| 满18在线观看网站| 国产黄片美女视频| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 久久香蕉激情| 日韩免费av在线播放| aaaaa片日本免费| 午夜福利18| 狂野欧美激情性xxxx| 日本五十路高清| www国产在线视频色| 精品久久久久久,| 亚洲av电影不卡..在线观看| 精品久久久久久,| 亚洲avbb在线观看| 宅男免费午夜| 亚洲avbb在线观看| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器 | 亚洲片人在线观看| 久久久久精品国产欧美久久久| 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 少妇裸体淫交视频免费看高清 | 国产激情欧美一区二区| 变态另类丝袜制服| 亚洲午夜理论影院| 亚洲av熟女| 国产精品亚洲一级av第二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av在哪里看| 色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 精品第一国产精品| 久久久水蜜桃国产精品网| 色综合婷婷激情| 51午夜福利影视在线观看| av免费在线观看网站| 久久九九热精品免费| 12—13女人毛片做爰片一| 非洲黑人性xxxx精品又粗又长| 亚洲成人精品中文字幕电影| 校园春色视频在线观看| 亚洲成人国产一区在线观看| 久久青草综合色| 国产精品自产拍在线观看55亚洲| 国产亚洲精品一区二区www| 欧美zozozo另类| 麻豆成人av在线观看| 一级作爱视频免费观看| 男女午夜视频在线观看| 色av中文字幕| 91麻豆精品激情在线观看国产| 免费观看精品视频网站| 亚洲人成77777在线视频| 成人永久免费在线观看视频| 亚洲精华国产精华精| 国产午夜福利久久久久久| 久久久精品国产亚洲av高清涩受| 亚洲成人精品中文字幕电影| 亚洲国产精品久久男人天堂| 波多野结衣高清作品| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人澡欧美一区二区| 成熟少妇高潮喷水视频| 国产精品免费一区二区三区在线| 国产成人av激情在线播放| av有码第一页| 老司机深夜福利视频在线观看| 一个人观看的视频www高清免费观看 | 一区福利在线观看| 国产在线精品亚洲第一网站| 露出奶头的视频| 亚洲色图av天堂| 成年人黄色毛片网站| 91成人精品电影| 国产人伦9x9x在线观看| 国产精品日韩av在线免费观看| 欧美国产精品va在线观看不卡| 嫁个100分男人电影在线观看| 国产精品久久久久久亚洲av鲁大| 精品久久久久久成人av| 久久精品影院6|