• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved multi-target radar TBD algorithm

    2015-02-11 03:39:06,*

    ,*

    1.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110179,China;2.Key Laboratory on Radar System Research and Application Technology of Liaoning Province,Shenyang 110179,China

    Improved multi-target radar TBD algorithm

    Xin Bi1,2,Jinsong Du1,2,Qingshi Zhang1,2,and Wei Wang1,2,*

    1.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110179,China;
    2.Key Laboratory on Radar System Research and Application Technology of Liaoning Province,Shenyang 110179,China

    Considering radar detection for multi-target recognition, a track before detect(TBD)algorithm based on Hough transform is adopted for identifying and tracking multi-target radar.By increasing the dimensions of the target characteristic parameters, the target detection and track accuracy is increased.Also,by multilevel filte ing processing,the diverging points of the echo signal are condensed,which improves the performance of identifying and tracking multiple targets.Simulation results show that compared with traditional TBD algorithms,the presented algorithm has better performance in the aspects of multi-target tracking,detecting and distinguishing.

    track before detect(TBD),Hough transform,multidimensional,Kalman filte.

    1.Introduction

    Usually,radar echo signals contain multi-target information.Itis difficul fortraditionalmethodstoidentifysignals which involvemulti-target.The traditionalmethodto identify radar signals is to undertake detecting firstl and then processing at a single threshold and tracking finall[1,2]. Scholarshaveanalyzedthe performanceof themulti-target tracking algorithm[3,4].While simplifying the tracking data,a lot of potentially useful informationis also ignored. Targets with small signal to noise ratio(SNR)but strong motion characteristic are likely to be discarded.In order to avoid this situation,the track before detect(TBD)algorithm is put forward.

    The present studies of the TBD algorithm mainly include the TBD algorithm based on projection transformation [5],the generalized likelihood ratio test[6,7],the dynamic programming(DP)[8–13] and the particle filte(PF)[14–17].The TBD method based on Hough transform is a typical algorithm based on projection transformation,which is suitable for multi-target tracking detection and does not need the advantages of a priori information of the target.This method maps target information from data space to parameter space,improves the performance of noncoherent accumulation and predicts the next expected action of targets;thus the targets can be tracked before being detected.

    Carlson et al.proposedthe methodof radar target detection based on Hough transform for the firs time and gave the calculation formula of the false alarm rate and the detection probability.The work of[5,18,19]establishes the theoretical basis of Hough transform for the target detection.Chen proposed a modifie Hough transform to solve the problem which the initial track is determined slowly and the amount of calculation is large by the classical Hough transform method.The results show that the new Hough transform algorithm can improve the performance [20].Kabakchiev et al.put forward a method called porlar Hough transrform.This method is more suitable for processing of radar measured data and does not need to transform the distance-angle coordinate information into cartesian coordinates,but distance-angle coordinate information is processed directly[21].

    Generally speaking,this method can effectively estimate and track the target trajectory,but it has bad performance when dealing with the following situations. (i)When the radar echo signal is weak and the echo characteristic parameters are divergent,it is prone to deviate from the forecasting trajectory,unable to effectively track targets.(ii)When radar echo is comprised of targets with similar motion parameters,it is prone to track-loss. (iii)When modifying the judgment threshold to achieve better distinguish performance,it is likely to cause some false track trajectory.

    In order to solve the problems above,the multidimensional parameters judgment and multilevel filteing process are introduced into the traditional TBD algorithm.The algorithm based on multi-dimensional parameters[22–24]is proposed by Moyer and Davey.The algorithm does not give the expected results.An improved

    multi-target TBD algorithm is proposed in this paper.In this algorithm,target track with tolerance limits is firstl used to lock the target,then filte the relatively diverged targets to obtain their trajectory;further,accumulate energy in TBD parameter space,when the accumulation value reaches the limit,output the target trajectory and adjust the tolerance limit and filter parameters at the same time to make the track trajectory close to actual moving trajectory.

    2.Multi-target TBD algorithm

    Assuming that there areLtargets,satisfying the discrete time model based on a f xed time period.The dynamics of thelth target is generally given by

    whereXk,ldenotes thelth target state at time stepk.Fis the state transition function.Vk,lis the normal random noise vector of thelth target state at time stepk.Xk,lis given as

    whereak,l,bk,landck,lrespectively denote the target distance,velocity and angle.

    The radar multi-target TBD algorithm mainly includes two parts:

    (i)multi-target track and distinction;

    (ii)multi-target energy accumulation in TBD parameter space.

    The initial positions of the targets are determined by multi-target track and distinction.After determining the initial positions of targets,accumulate energy in TBD parameter space;when the accumulation value reaches the limit,output the target trajectory.

    2.1Multi-target track and distinction

    TakeLtargets with a single characteristic parameter for example.The firs echo signal is processed and parameter vectorA(1)is obtained.

    When the echo signal is obtained again,the second parameter vectorA(2)is obtained.

    wherean,1,an,2,...,an,Lrepresent target characteristic parameters.When thenumberof trackingtargetsis smaller thanL,the remaining parameters are set to be zero.According to the judgment threshold,determine

    (i)whether the targets correspondingto the nonzeroelements in vectorA(1)are tracked by targets inA(2)respectively;

    (ii)whether there are targets inA(1)tracked by several targets inA(2)at the same time;

    (iii)whether there are targets inA(1)not being tracked by targets inA(2).Then assign a new value to the old trackedtarget,removethenot-trackedtarget,mergethetarget tracked by several other targets inA(2),and the new target is reserved.A new parameter vectorIis obtained.

    ForI,the targets corresponding to zero element are removedandLtargets with high credibility are retained then assign them toA(2)as a new tracked target.Sort the targets inA(2)in the order of old targets,when receiving echo signalA(3)?A(n),and compare them with the last echo signal in the same way.If the tracked target is greater than the threshold,the initial positions of the targets can be determined.

    2.2Energy accumulation in parameter space

    After determining the initial positions of targets,we can undertake Hough transformation on obtained characteristic parameters then go on energy accumulation on transformed parameters.Assume that targets keep moving linearly(i.e.the equation describing relationship between distance and time is linear).If the trajectory of targets is described by a linear equation,the slope of equation corresponds to the velocity of targets and the intercept of equation corresponds to the initial position of targets.

    The motion equation of motion targets can be expressed as

    Knowing the targets distance vectorA(i)and time vectorT(i),we can obtain the velocity vectorK(i)and the initial positionA0(i),then undertake energy accumulationin (K(i),A0(i))space.If the accumulated energy exceeds the judgment threshold,the target is valid.Based on the historical data of trajectory,we can predict the position of the target next time and recognize in subsequent target detection.

    So far,the principle of traditional multi-target TBD algorithm has been described in Sections 2.1 and 2.2 in details.The following section will focus on describing the improved TBD algorithm proposed in this paper.

    3.Improved TBD algorithm

    As the radar echo signal has a certain uncertainty,it is inappropriate to determine the initial position of targets simply relying on single characteristic parameters;especially when the characteristic parameters are not obvious, no matter how you adjust the judgment threshold,it is difficul to achieve good tracking performance;moreover,when different targets have similar characteristic parameters,it is also hard to distinguish them.

    In order to solve the above problems,we make several improvements in the traditional TBD algorithm.

    (i)Increase dimensions of the characteristic parameters. Make the most of all characteristic parameters detected by radar.

    (ii)Filter echo signals without obvious motion features and condense divergent trace points.

    (iii)Optimize the algorithm process and the judgment threshold to achieve a low threshold while still identifying targets and a high threshold while tracking the targets.

    3.1Multi-dimensional characteristic parameters

    By analyzing and extracting the radar echo signal,multidimensional characteristic parameters of targets can be obtained,which mainly include targets distance,velocity,angle and so on.Based on the targets information we have acquired,we can distinguish well between differenttargets that have the same single characteristic parameter,thus increasing the discrimination degree of different targets.

    The multi-dimensional characteristic parameters of targets at time stepnareA(n),B(n)andC(n),respectively denote distance,velocity and angle.Assuming the multidimensionalcharacteristicparametersof theith targetstate at time stepnrespectively asan,i,bn,iandcn,i.

    Finding the minimum values of vectorsRA(n),RB(n)andRC(n)and recording the positions of the minimum values.amin,bmin,cminrepresent the minimum values andp,q,srepresent the positions.

    Assuming the judgment thresholds of different characteristic parameters areAmax,BmaxandCmax.Accordingto the judgmentthreshold,determinewhich parameters (^an+1,j,^bn+1,j,^cn+1,j,wherej∈{p,q,s})belong to theith target.The process is shown in Fig.1.

    Fig.1 The judgment process

    3.2Filter divergent characteristic parameters

    It is known that when one of the targets characteristic parameters of radar echo signals is relatively divergent,if we still use the same threshold to detect targets,it is prone to miss tracking the targets or cause large deviation from the targets’actual moving trajectory.For example,when the angle information of the targets echo signal is weak,it is difficul to determine the initial position of targets by relying on the targets angle information,so we have to go through other methods to obtain targets trajectory.In this paper,a commonlyusedαβfilte in current practice is adopted.

    whereθ(n?1)represents the old recognized value last time,θ(n)is the new detected value this time,kis the filte parameter,andθ′(n)is the value after filtering By selectingkappropriately,the divergent waveform can be condensed well;however,the largerkis,the slowerθ′(n) generates,which causes a certain phase lag to condensed waveform.

    3.3Algorithm process optimization and adjustable judgment threshold

    The algorithm process can be summarized as follows:

    (i)Detect moving targets firs and track them according to information exceeding the judgment threshold.

    (ii)When having tracked a certain threshold,determine the initial position of targets and execute the TBD algorithm.

    (iii)When energy accumulation in parameter space achieves the accumulation threshold,predict the output of targets and re-judge the next new value.

    The process can be shown in Fig.2.

    Fig.2 The fl wchart of the algorithm

    Based on the above analysis,we can conclude that,in order to optimize the TBD algorithm further,the dimensions of detecting parameters are increased and the divergent characteristic parameters are filtered meanwhile,the judgment threshold is increased so that more trace points can be processed before targets are not detected.However, when the accumulation exceeds the judgment threshold, thethresholdshouldbedecreasedsothatthedetectedvalue is close to actual trajectory of targets.Moreover,filte parameters k should be assigned different values in accordance with different levels of targets being recognized to reduce phase lag caused by the filte.

    4.Simulation results and analysis

    The improvedTBD algorithmproposedin this paper is analyzed based on raw data of two moving targets acquired by radar.The original waveform of the data which include distance,velocity,angle and trajectory is shown in Fig.3. Fig.3(a),Fig.3(b)and Fig.3(c)are respectively the distance-time curve of targets,the velocity-time curve of targets and the angle-time curve of targets.Fig.3(d)shows the trajectory.

    Fig.3 The original waveform of data

    It can be seen from Fig.3 that the trajectory of targets distance and velocity is good and the trajectory of targets angle is relatively divergent.Therefore,the TBD algorithm separates the targets by the distance information. The improved TBD algorithm make several improvements to achieve better tracking performance by dimensions of characteristic parameters.

    When we only take the single characteristic parameterdistance of targets into consideration,the tracking trajectory is shown in Fig.4(a).The firs target(blue)and the the second target(red)can not be separated at the intersection and the trajectory only includes the firs target(blue).The second target(red)can be tracked after a period of time. However,when we consider characteristic parameters velocity and distance of targets at the same time,the tracking trajectory is shown in Fig.4(b).Therefore,the targets canbe distinguishedbetter byincreasingthe dimensionsof characteristic parameters.

    The next simulations verify that the optimization based on the improved TBD algorithm can further enhance the tracking performance.The optimization effect is reflecte in the angle and time curve.

    Fig.4 Increasing the dimensions of characteristic parameters

    For divergent the angle trajectories,we process by using the basic improved TBD algorithm.The trajectory of characteristic parameter-angle is shown in Fig.5.

    Fig.5 Tracking trajectory with the basic improved TBD algorithm

    It can be seen from Fig.5 that tracking trajectory has a relatively large fluctuations therefore,theαβfilte is adopted to filte characteristic parameter-angle in this paper.Whenαβfilte parameterkis set to be 10,the tracking trajectory is shown in Fig.6.

    It can be seen from Fig.6 that the tracking fluctuation are suppressed well by using theαβfilter however,theusage of the filte also brings about phase lag,which leads to tracking trajectory deviating from actual target moving trajectory.In order to avoid this situation,the filte parameterkis made adjustable in this paper.At the beginning of targets detection,the initial value ofkis set to be 100 andkgradually decreases during targets detection.

    Fig.6 Tracking trajectory withαβfilte

    The tracking trajectory of targets with adjustable filte parameterkis shown in Fig.7.

    It can be seen in Fig.7 that there are extra trace points (short black points)in tracking trajectory.In order to remove these points,we optimize the judgment threshold.

    Fig.7 Tacking trajectory with adjusting filte parameter

    We increase the judgment threshold before targets are detected and the judgmentthresholdis decreased when exceedingthe accumulatedthreshold.The tracking trajectory by adjusting the judgment threshold is shown in Fig.8.

    Fig.8 Tacking trajectory with adjusting judgment threshold

    5.Conclusions

    This paper proposes an improved multi-target TBD algorithm.The traditional TBD algorithm is improved by increasing dimensions of the characteristic parameters,undertaking a multilevel filte and adjusting the algorithmprocess,filte parameters and judgment threshold.The simulation results show that compared with the traditional radar TBD detection algorithm,the algorithm presented in this paper has better performance in the aspect of multitargets detecting,tracking and distinguishing,which has broad application prospects.

    [1]J.Stein,S.S.Blackman.Generalized correlation of multitarget track data.Aerospace and Electronic Systems,1975, 11(6):1207–1217.

    [2]S.S.Blackman.Multiple-target tracking with radar applications.Dedham:Artech House Inc,1986.

    [3]B.Ristic,A.Farina,M.Hernandez.Cram′er–Rao lower bound for tracking multiple targets.IEE Proceedings–Radar,Sonar and Navigation,2004,151(3):129–134.

    [4]B.Ristic,B.N.Vo,D.Clark,et al.A metric for performance evaluation of multi-target tracking algorithms.IEEE Trans.on Signal Processing,2011,59(7):3452–3457.

    [5]B.D.Carlson,E.D.Evans,S.L.Wilson.Search radar detection and track with the Hough transform–Part I:system concept.IEEE Trans.on Aerospace and Electronic Systems,1994, 30(1):102–108.

    [6]D.Orlando,G.Ricci.Track-before-detect algorithms for targets withkinematicconstraints.IEEE Trans.onAerospace and Electronic Systems,2011,47(3):1837–1849.

    [7]B.Stefano,L.Marco,V.Luca,et al.Track-before-detect procedures in a multi-target environment.IEEE Trans.on Aerospace and Electronic Systems,2008,44(3):1135–1150.

    [8]L.A.Johnston,V.Krishnamurthy.Performance analysis of a dynamic programming track before detect algorithm.IEEE Trans.on Aerospace and Electronic Systems,2002,38(1): 228–242.

    [9]S.M.Tonissen,R.J.Evans.Peformance of dynamic programming techniques for track-before-detect.IEEE Trans.on Aerospace and Electronic Systems,1996,32(4):1440–1451.

    [10]V.Juho,J.Juha,A.K.Timo,et al.Directional filterin for sequential image analysis.IEEE Signal Processing Letters, 2008,15:902–905.

    [11]E.Grossi,M.Lops,L.Venturino.A novel dynamic programming algorithm for track-before-detect in radar systems.IEEE Trans.on Signal Processing,2013,61(10):2608–2619.

    [12]S.Liu,X.Chen,T.Zeng,et al.New analytical approach to detection threshold of a dynamic programming track-beforedetect algorithm.IET Proceedings–Radar,Sonar and Navigation,2013,7(7):773–779.

    [13]W.Yi,L.Kong,J.Yang,et al.Student highlight:dynamic programming-based track-before-detect approach to multitarget tracking.IEEE Aerospace and Electronic Systems Magazine,2012,27(12):31–33.

    [14]Y.Boers,J.N.Driessen.Multitarget particle filte track before detect application.IEE Proceedings–Radar,Sonar and Navigation,2004,151(6):351–357.

    [15]H.Peter,H.Lang.A multi-rate multiple model track-beforedetect particle filte.Mathematical and Computer Modelling, 2009,49(1/2):146–162.

    [16]S.Gao,D.Y.Bi,N.Wei.Small target track-before-detect algorithm based on unscented particle filteringJournal of Computer Applications,2009,29(8):2060–2064.(in Chinese)

    [17]Y.Boers,J.Driessen.Multitarget particle filte track before detect application.IEE Proceedings–Radar,Sonar and Navigation,2004,151(6):351–357.

    [18]B.D.Carlson,E.D.Evans,S.L.Wilson.Search radar detection and track with the Hough transform–Part II:detection statistics.IEEE Trans.on Aerospace and Electronic Systems, 1994,30(1):109–115.

    [19]B.D.Carlson,E.D.Evans,S.L.Wilson. Search radar detection and track with the hough transform–Part III:detection performance with binary integration.IEEE Trans.on Aerospace and Electronic Systems,1994,30(1):116–125.

    [20]J.Chen,H.Leung,T.Lo,et al.A modifie probabilistic data association filte in a real clutter environment.IEEE Trans.on Aerospace and Electronic Systems,1996,32(1):300–313.

    [21]I.Garvanov,C.Kobakchiev.Radar detection and track determination with a transform analogous to the hough transform.Proc.of the International Radar Symposium,2006:121–124.

    [22]L.Moyer,J.Spak,P.Lamanna.A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds.IEEE Trans.on Aerospace and Electronic Systems,2011,47(4):3062–3068.

    [23]S.J.Davey,M.G.Rutten,B.Cheung.Using phase to improve track-before-detect.IEEE Trans.on Aerospace and Electronic Systems,2012,48(1):832–849.

    [24]L.R.Moyer,J.Spak,P.Lamanna.A multidimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds.IEEE Trans.on Aerospace and Electronic Systems,2011,47(4):3062–3068.

    Biographies

    Xin Biwas born in 1980.He received his M.S. and Ph.Ddegrees in pattern recognition and intelligent systems from University of Chinese Academy of Sciences in 2007 and 2013,respectively.He is a professor in Shenyang Institute of Automation (SIA),Chinese Academy of Sciences.He went to Research Laboratory of Electronics at Massachusetts Institute of Technology(MIT)as a visiting scholar in 2014.His research interests are signal and information processing,microwave,millimeter wave,terahertz detection and imaging technology.

    E-mail:bixin@sia.cn

    Jinsong Duwas born in 1969.He received his M.S. degree in detection technology from Shenyang University of Technology in 1999,Ph.D degree in mechanical and electronic engineering from Graduate University ofChinese Academy ofSciences in2010. He is a professor in Shenyang Institute of Automation(SIA),Chinese Academy of Sciences.

    E-mail:jsdu@sia.cn

    Qingshi Zhangreceived his M.S.degree in electrical engineering and automation from Harbin Institute of Technology,Harbin,China,in 2010.He is presently a research assistant with Shenyang Institute of Automation.His research interests include moving target detection and multi-target tracking.

    E-mail:zhangqingshi@sia.cn

    Wei Wangreceived his M.S.degree in signal and information processing fromXidian University,Xi’an, China,in 2014.He is presently a research assistant with Shenyang Institute of Automation.His research interests include multi-target tracking and imaging technology.

    E-mail:wangwei2@sia.cn

    10.1109/JSEE.2015.00135

    Manuscript received July 22,2014.

    *Corresponding author.

    This work was supported by the Innovation Subject of the Shenyang Institute of Automation,Chinese Academy of Science(YOF5150501).

    亚洲精华国产精华液的使用体验 | 久99久视频精品免费| 欧美极品一区二区三区四区| 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 欧美+亚洲+日韩+国产| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| a级毛色黄片| 国产伦精品一区二区三区四那| 久久精品91蜜桃| 99久久精品热视频| 丝袜美腿在线中文| 高清在线视频一区二区三区 | 小说图片视频综合网站| 看非洲黑人一级黄片| 青青草视频在线视频观看| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 免费观看在线日韩| 长腿黑丝高跟| 最近2019中文字幕mv第一页| 日韩一区二区视频免费看| 国产极品精品免费视频能看的| 久久精品夜夜夜夜夜久久蜜豆| 综合色丁香网| 欧美成人免费av一区二区三区| 91狼人影院| 亚洲精品乱码久久久久久按摩| 又粗又硬又长又爽又黄的视频 | 国产探花极品一区二区| 久久精品国产自在天天线| 免费观看人在逋| 欧美在线一区亚洲| 又爽又黄无遮挡网站| 日本在线视频免费播放| 欧美日韩国产亚洲二区| 美女大奶头视频| 99九九线精品视频在线观看视频| 麻豆精品久久久久久蜜桃| 波多野结衣巨乳人妻| 日韩欧美 国产精品| 亚洲精品色激情综合| 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 男人舔女人下体高潮全视频| 性插视频无遮挡在线免费观看| 成熟少妇高潮喷水视频| av福利片在线观看| 丰满的人妻完整版| 在现免费观看毛片| 中文字幕av在线有码专区| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 男人的好看免费观看在线视频| 在线播放国产精品三级| 亚洲经典国产精华液单| 久久99热这里只有精品18| 免费搜索国产男女视频| 最近最新中文字幕大全电影3| av天堂中文字幕网| 99热只有精品国产| 一本久久精品| 日韩一区二区视频免费看| 国产乱人视频| 亚洲最大成人av| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 不卡视频在线观看欧美| 久久精品久久久久久噜噜老黄 | 性欧美人与动物交配| 精品久久久噜噜| 亚洲一区二区三区色噜噜| 久久99蜜桃精品久久| 成年女人看的毛片在线观看| 一级毛片电影观看 | 免费看日本二区| 特级一级黄色大片| 男人舔女人下体高潮全视频| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 国语自产精品视频在线第100页| 久久精品久久久久久噜噜老黄 | 99久久成人亚洲精品观看| 在线天堂最新版资源| 97超视频在线观看视频| 热99re8久久精品国产| 久久久欧美国产精品| 99国产极品粉嫩在线观看| 嫩草影院精品99| 99热这里只有是精品在线观看| 亚洲性久久影院| 国产真实伦视频高清在线观看| 成年女人永久免费观看视频| 久久草成人影院| 九草在线视频观看| 日韩欧美一区二区三区在线观看| 亚洲国产精品成人久久小说 | 亚洲av熟女| 蜜桃久久精品国产亚洲av| 小说图片视频综合网站| 国产视频首页在线观看| 欧美另类亚洲清纯唯美| 欧美精品一区二区大全| 精品免费久久久久久久清纯| 日本三级黄在线观看| 国产高清不卡午夜福利| 亚洲国产欧美人成| 晚上一个人看的免费电影| av天堂中文字幕网| 色综合站精品国产| 成人亚洲精品av一区二区| 国产老妇女一区| 深夜精品福利| 国产亚洲欧美98| 日本熟妇午夜| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 尾随美女入室| 久久这里只有精品中国| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 亚洲乱码一区二区免费版| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 九九在线视频观看精品| 国产一区二区三区在线臀色熟女| 嘟嘟电影网在线观看| 99久久九九国产精品国产免费| 国产伦精品一区二区三区视频9| 久久久久九九精品影院| 免费av观看视频| 哪个播放器可以免费观看大片| 欧美在线一区亚洲| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 一本久久精品| 欧美人与善性xxx| 久久精品夜夜夜夜夜久久蜜豆| 亚洲四区av| 18+在线观看网站| 国产亚洲5aaaaa淫片| 日日干狠狠操夜夜爽| 欧美另类亚洲清纯唯美| 又粗又爽又猛毛片免费看| 嫩草影院精品99| 国产精品久久电影中文字幕| 九九在线视频观看精品| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 男的添女的下面高潮视频| 免费观看人在逋| 又爽又黄a免费视频| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩东京热| 少妇丰满av| 美女cb高潮喷水在线观看| 免费一级毛片在线播放高清视频| 搡女人真爽免费视频火全软件| 日本一二三区视频观看| 日韩国内少妇激情av| 免费av毛片视频| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久v下载方式| 久久精品国产清高在天天线| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 人人妻人人澡欧美一区二区| 日产精品乱码卡一卡2卡三| 国产成人福利小说| 亚洲精品影视一区二区三区av| 91精品国产九色| 中文字幕av在线有码专区| 日本黄色视频三级网站网址| 成人三级黄色视频| 精品久久国产蜜桃| 日日干狠狠操夜夜爽| 日韩 亚洲 欧美在线| 中文在线观看免费www的网站| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 1024手机看黄色片| 中文字幕人妻熟人妻熟丝袜美| 婷婷亚洲欧美| 91aial.com中文字幕在线观看| 日韩三级伦理在线观看| 一级毛片久久久久久久久女| 精品欧美国产一区二区三| 九九爱精品视频在线观看| 老熟妇乱子伦视频在线观看| 此物有八面人人有两片| 深夜精品福利| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 不卡视频在线观看欧美| 免费看a级黄色片| 亚洲国产欧美人成| 久久久国产成人免费| 乱码一卡2卡4卡精品| 色综合色国产| 国产精品久久久久久亚洲av鲁大| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 在现免费观看毛片| 日韩视频在线欧美| 国产探花极品一区二区| 精品熟女少妇av免费看| 国产三级中文精品| 亚洲欧美成人综合另类久久久 | 精华霜和精华液先用哪个| 亚洲18禁久久av| 免费大片18禁| 精品久久久久久久末码| 午夜激情欧美在线| 亚洲国产精品国产精品| 午夜免费男女啪啪视频观看| 少妇高潮的动态图| 午夜福利在线在线| 日日撸夜夜添| 日日干狠狠操夜夜爽| 亚洲欧美中文字幕日韩二区| 晚上一个人看的免费电影| 日韩视频在线欧美| 成年版毛片免费区| 91久久精品电影网| 久久国产乱子免费精品| av又黄又爽大尺度在线免费看 | 91久久精品电影网| 美女大奶头视频| 国产一区二区激情短视频| 岛国在线免费视频观看| 高清毛片免费观看视频网站| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 天天一区二区日本电影三级| 永久网站在线| 最新中文字幕久久久久| 欧美一区二区国产精品久久精品| 毛片一级片免费看久久久久| 99在线视频只有这里精品首页| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av中文字字幕乱码综合| 成人亚洲欧美一区二区av| 亚洲精品乱码久久久久久按摩| 国产精品一及| 一级毛片电影观看 | 精品久久国产蜜桃| 性色avwww在线观看| 免费黄网站久久成人精品| 精品久久久久久久久久免费视频| 免费看光身美女| 国内精品美女久久久久久| 亚洲美女视频黄频| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 一级黄片播放器| 国产色爽女视频免费观看| 不卡视频在线观看欧美| 天天躁夜夜躁狠狠久久av| 丰满的人妻完整版| 免费看美女性在线毛片视频| 非洲黑人性xxxx精品又粗又长| 午夜视频国产福利| 精品熟女少妇av免费看| 美女黄网站色视频| 九九热线精品视视频播放| 日韩高清综合在线| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 国产亚洲精品久久久久久毛片| 久久亚洲精品不卡| 午夜亚洲福利在线播放| 1024手机看黄色片| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 一级二级三级毛片免费看| 国产精品.久久久| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 黄片无遮挡物在线观看| 亚洲欧美日韩东京热| av专区在线播放| 天堂网av新在线| 国语自产精品视频在线第100页| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播| 国产黄片美女视频| 国产亚洲91精品色在线| 国产日本99.免费观看| 少妇的逼水好多| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 日日撸夜夜添| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 国产一区二区在线av高清观看| 麻豆国产av国片精品| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 成人无遮挡网站| 联通29元200g的流量卡| av在线观看视频网站免费| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 国产高清不卡午夜福利| 国产成年人精品一区二区| 国产人妻一区二区三区在| 国产成人一区二区在线| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 国产黄片视频在线免费观看| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 性色avwww在线观看| 亚洲丝袜综合中文字幕| 日产精品乱码卡一卡2卡三| 嫩草影院入口| 亚洲在线自拍视频| 亚洲精品久久久久久婷婷小说 | 久久久成人免费电影| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 国产三级在线视频| 嫩草影院入口| 午夜视频国产福利| av国产免费在线观看| 一本久久精品| 国产成人午夜福利电影在线观看| 亚洲自拍偷在线| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 丰满人妻一区二区三区视频av| 午夜爱爱视频在线播放| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 国产午夜精品一二区理论片| 91aial.com中文字幕在线观看| 99riav亚洲国产免费| 国产伦理片在线播放av一区 | 在线观看午夜福利视频| a级一级毛片免费在线观看| 五月伊人婷婷丁香| 国内精品宾馆在线| a级一级毛片免费在线观看| 色噜噜av男人的天堂激情| 日韩亚洲欧美综合| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 中出人妻视频一区二区| 插逼视频在线观看| 色综合站精品国产| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 免费大片18禁| 亚洲在线观看片| 成人毛片60女人毛片免费| av在线天堂中文字幕| 亚洲av不卡在线观看| 日本黄大片高清| 国产成人精品婷婷| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看| 亚洲欧美成人综合另类久久久 | 久久精品国产99精品国产亚洲性色| av福利片在线观看| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 在线播放无遮挡| 91av网一区二区| 美女cb高潮喷水在线观看| 亚洲,欧美,日韩| 美女黄网站色视频| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 一个人免费在线观看电影| 天堂影院成人在线观看| 小说图片视频综合网站| 激情 狠狠 欧美| 久久人妻av系列| 成人毛片a级毛片在线播放| 亚洲七黄色美女视频| 十八禁国产超污无遮挡网站| 日本黄大片高清| 国产成人精品婷婷| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| av在线老鸭窝| 少妇丰满av| 久久九九热精品免费| 不卡视频在线观看欧美| 又粗又硬又长又爽又黄的视频 | 小蜜桃在线观看免费完整版高清| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 一个人看的www免费观看视频| 亚洲国产欧洲综合997久久,| 美女高潮的动态| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 免费人成在线观看视频色| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 亚洲最大成人中文| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产| 精品久久久久久久末码| 久久久久久国产a免费观看| 女人被狂操c到高潮| 永久网站在线| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 丰满的人妻完整版| 又爽又黄无遮挡网站| 91久久精品电影网| 一边摸一边抽搐一进一小说| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说| 欧美+日韩+精品| 精品久久久久久久久av| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 美女内射精品一级片tv| 国产精品野战在线观看| 国产精品一及| 国产91av在线免费观看| 日本五十路高清| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 色播亚洲综合网| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 亚洲在线自拍视频| 在线观看一区二区三区| av在线播放精品| 99热精品在线国产| 高清日韩中文字幕在线| 久久草成人影院| 在线观看av片永久免费下载| 性色avwww在线观看| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 久久亚洲精品不卡| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 性插视频无遮挡在线免费观看| 成人永久免费在线观看视频| 亚洲最大成人av| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄无遮挡网站| 久久欧美精品欧美久久欧美| 午夜精品在线福利| 在线观看免费视频日本深夜| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 国产成人精品婷婷| 午夜久久久久精精品| 26uuu在线亚洲综合色| 免费看日本二区| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 日韩人妻高清精品专区| 久久国内精品自在自线图片| 三级经典国产精品| 两个人视频免费观看高清| 97超碰精品成人国产| 97在线视频观看| av专区在线播放| 天堂√8在线中文| 内地一区二区视频在线| 在线观看一区二区三区| 国产单亲对白刺激| 我的老师免费观看完整版| 国产亚洲精品久久久com| 小说图片视频综合网站| 18禁在线无遮挡免费观看视频| 中国美白少妇内射xxxbb| 九九热线精品视视频播放| 午夜视频国产福利| 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 精品日产1卡2卡| 免费观看a级毛片全部| 欧美色欧美亚洲另类二区| 久久热精品热| 麻豆国产av国片精品| 亚洲电影在线观看av| 一本久久精品| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 小说图片视频综合网站| 日韩欧美精品免费久久| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 亚洲欧美成人精品一区二区| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 国产成人福利小说| 精品国内亚洲2022精品成人| 日韩三级伦理在线观看| 观看免费一级毛片| 国产私拍福利视频在线观看| 级片在线观看| 99热只有精品国产| 精品久久久久久久久久免费视频| 国产亚洲91精品色在线| 99久久精品一区二区三区| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 国产av不卡久久| 亚洲丝袜综合中文字幕| 99在线人妻在线中文字幕| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 精品久久久久久久久久免费视频| 亚洲av免费在线观看| 国产在线精品亚洲第一网站| 国产高清视频在线观看网站| 99久久精品一区二区三区| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 一夜夜www| 亚洲,欧美,日韩| 免费观看人在逋| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 色综合色国产| 欧美成人一区二区免费高清观看| 亚洲成人av在线免费| 国产成人影院久久av| 国产午夜福利久久久久久| 在线免费十八禁| 一进一出抽搐gif免费好疼| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线 | 不卡一级毛片| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在 | 中文字幕免费在线视频6| 一区福利在线观看| 国产又黄又爽又无遮挡在线| 国产精品一及| 成人欧美大片| av在线天堂中文字幕| 一个人看视频在线观看www免费| av视频在线观看入口| 夫妻性生交免费视频一级片| 性色avwww在线观看| 久久精品91蜜桃| 精品人妻熟女av久视频| 日本五十路高清| 老司机福利观看| 丰满的人妻完整版| 联通29元200g的流量卡| 最近视频中文字幕2019在线8| 中文资源天堂在线| 欧美zozozo另类| 国产精品久久久久久久电影| 一本一本综合久久| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 国产精品蜜桃在线观看 | av视频在线观看入口| 夫妻性生交免费视频一级片| 在现免费观看毛片| 日日啪夜夜撸| 色视频www国产| 搡女人真爽免费视频火全软件| 观看免费一级毛片| 国国产精品蜜臀av免费| 欧美日韩国产亚洲二区| 亚洲aⅴ乱码一区二区在线播放| 国产熟女欧美一区二区| 简卡轻食公司| av天堂在线播放| 精品99又大又爽又粗少妇毛片| 久久久久久久久大av| 日本一本二区三区精品|