• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SAR imaging method based on coprime sampling and nested sparse sampling

    2015-02-11 03:39:04

    School of Information Science and Engineering,Yan Shan University,Qinhuangdao 066004,China

    SAR imaging method based on coprime sampling and nested sparse sampling

    Hongyin Shi*and Baojing Jia

    School of Information Science and Engineering,Yan Shan University,Qinhuangdao 066004,China

    As the signal bandwidth and the number of channels increase,the synthetic aperture radar(SAR)imaging system produces huge amount of data according to the Shannon-Nyquist theorem,causing a huge burden for data transmission.This paper concerns the coprime sampling and nested sparse sampling, which are proposed recently but have never been applied to real world for target detection,and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing(CS).Both the simulated and real data are processed to test the algorithm,and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required.Finally,the influenc of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis,and then it concludes a little sampling jitter have no effect on image quality of SAR.

    synthetic aperture radar(SAR)imaging,compressive sensing,coprime sampling,nested sparse sampling.

    1.Introduction

    In synthetic aperture radar(SAR),the classical sampling basic is the Shannon-Nyquist theorem.However,the traditional SAR data acquisition increases the scale of SAR system forobtainingmoreandmoredata.Thus someproblems such as data processing and transmission in real time would occur[1].For example,for high-resolution spaceborne SAR image,the data would several gigabytes,and requires a satellite-earth datalink reach of over Gbps data rate,and such high data rate is difficul to achieve.Because the required number of frequencies is usually very large with the traditional sampling theory,the application of stepped-frequency waveform is also limited in SAR.It becomes a central objective in signal processing to reduce the amount of data of SAR sampling without loss of meaningful information.Fortunately,in recent years,an explosion of theoretical and computational methods have been developed primarily to study how to recovery the information using a fewer samples.This has given rise to the possibility of reducing the number of measurements by down samplingthe data,which automaticallygives rise to underdetermined systems.

    A new approach to undersampling using coprime sampling and nested sparse sampling is provided by[2,3].The authors has already provedthat these two new sub-Nyquist samplingalgorithmscanachieveenhanceddegreesoffreedom(DOF)in the coarray domain for applications such as direction of arrival(DOA)estimation and spectrum estimation[4,5].The number of DOF is an important criteria because more DOF mean more sources can be resolved by the system.In order to exploit these increased DOF of the coarray,the authors has developed a new algorithm which can achieves the maximum identifiabilit among all DOA estimation methods using 2qth-order cumulants[6]. In[7],Chen et al.utilized the nested sparse sampling and coprime sampling to estimate the quadrature phase shift keying(QPSK)signal’s autocorrelationandpowerspectral density(PSD)with a set of sparse samples,and Wu et al. provedthat the mainlobeof PSD becamenarrowerthanthe original signal as the sampling intervals increased.In[8], Wu et al.applied the coprime sampling and nested sparse sampling to ultra wideband(UWB)radar sensor networks (RSN),andprovedthatbothofthesesub-Nyquistsampling algorithms can work better than the uniform undersampling does,especially when the signal quality is poor.In this paper,coprime sampling and nested sparse sampling will be utilized for SAR sampling in azimuth.These sampling strategies can drastically reduce more redundancy data of SAR sampling than the Shannon-Nyquist theorem does.

    Compressive sensing(CS)[9,10]provides us a new point of view,which could only use much less samplesto perfectly recover the original signal at a high compression ratio.CS theory has been explored for a wide range of radar imaging applications.In order to acquire superresolution imaging under limited bandwidth,a novel CS imaging framework[11]has been proposed for the purposeofimprovingtheimagingperformanceof steppedfrequency SAR.In[12],to meet the requirements of the processing power and reduce the storage,a framework which is 2D SAR imaging scheme based on CS is adopted to solve the ground reflectvity.In[13],in order to mitigate azimuthambiguities,the authorsutilized CS to spaceborne stripmap SAR images.In addition,various imaging methods based on CS were proposed for different SAR modes including spotlight SAR[14],inverse SAR[15],tomography SAR[16]and random frequency SAR[17].

    In this paper,coprime sampling and nested sparse samplingwill be respectivelyutilized for SAR samplingin azimuth.Because these new sub-Nyquist sampling structures are only applied to SAR in azimuth,in order to demonstrate the validity of these methods,CS is used to pulse compression of SAR in azimuth,and the matching filte is still used to pulse compression of SAR in range.

    The paper is organized as follows.Section 2 and Section 3 brieflreviews the coprime sampling and nested sparse sampling respectively.Section 4 describes SAR imaging based on CS in detail.Section 5 presents the results of both simulated and real data to validate the performance of the proposed methods,and Section 6 analyses whether the jitter of sampling will influenc the image quality of SAR.Section 7 concludes the paper with future work remarked.

    2.Coprime sampling

    The coprime sampling is a non-uniform sampling,which involves two sets of uniformly spaced samplers[3].Fig.1 shows this structure with sample spacing AT and BT respectively,whereAandBare coprime,1/Tis the Nyquist rate.S1(t)andS2(t)come from the firs and the second sampler.

    Fig.1 Coprime sampling

    Assume a coprime difference set as

    Because the set includesX(k1,k2)and?X(k1,k2),its DOF is more thanmn,though there arem+nphysical sample points at most.

    For the example whereA=4,B=3,m=3 andn=4,the elements of the full set are–9,–8,×,–6,–5,–4,–3,–2,–1,0,1,2,3,4,5,6,×,8,9.

    Although there are 17 different freedoms here,there are“holes”in the set indicated by×.Namely,the elements–7 and 7 are missing.If we setAandBlarger,there will be more“holes”in the set.

    For coprime sampling,the average sampling rate is

    It can be noticed the average sampling rate of coprime sampling is much smaller than the conventional Nyquist sampling rate of 1/T.

    3.Nested sparse sampling

    The nested array was introduced in[5]as an effective approach to array processing with enhanced degrees of freedom[2].It also can be seen as a non-uniform sampling, using two different samplers in each period as shown in Fig.2.

    Fig.2 Nested sparse sampling

    The two level nested array is the simplest form with the level 1 samples at theN1locations and the level 2 samples at theN2locations.At the firs periodthe cross-differences are define as

    The range ofkis?[(N1+1)N2?1]≤k≤[(N1+ 1)N2?1],and the missing elements are[(N1+1),(N1+ 1),...,(N2?1)(N1+1)].

    For example,whenN1=2 andN2=3 in Fig.2,the cross-differenceskare 1,2,4,5,7,8,with 3,6 missing.

    However,it should be noticed that the self differences can cover all of the missing differences,such as

    Thus it can be demonstratedthat with a two-level nested array,we can attain 2N2(N1+1)?1 freedoms in the coarray using onlyN1+N2elements.

    For nested sparse sampling,the average sampling rate is

    It can be noticed the average sampling rate of nested sparse sampling is smaller than the conventional Nyquist sampling rate of 1/T.In a nested array the self differences are not entirely contained in the cross-differences,so additionalfreedomsaregenerated.Comparedwiththearraysof coprime sampling,the nested array indeed gives us a more effective way to increase the DOF.However,adjacent elements are spaced farther apart in co-prime arrays,which can be used to reduce mutual coupling between elements [4].

    4.SAR imaging based on CS

    4.1CS theory

    CS is a new way in information representation introduced in recent years.In the framework of CS,sampling below the Nyquist rate may also reconstruct the signal correctly when some property of the signal is guaranteed.For a signalXwith length ofN,if there is a basisΨN×Nand it canbeexpressedasXN×1=ΨN×NSN×1,thesignalcan be projected ontoΨ,whereSis a coefficien vector andΨi=(Ψ1,Ψ2···ΨN)is aN×Nmatrix.Ifa coefficien vectorShasK(K<<N)nonzerovalues,Xis knownas aK-sparse signal.Then consider the measurement matrixΦM×NwithM<N.IfXis aK-Sparse signal simultaneously,the measurement process can be described as

    whereA=ΦΨis the sensing matrix.When the matrixAsatisfie the restricted isometry property and measurement timesMsatisfieM≥o(Klg4N),the signalXcan be recovered exactly fromyby solving anl1minimization problem taking by

    whereεlimits the amount of noise.Currently there are many reconstruction methods to solve(6),such as orthogonal matching pursuit(OMP),basis pursuit(BP)and regularized orthogonal matching pursuit(ROMP).

    4.2SAR imaging model

    Suppose SAR transmits a linear frequency modulated (LFM)signal as follows:

    whereA0is the amplitude,τis the fast time,Tris the time width of the chirp pulse,f0is the carrier frequency.

    For a point reflecto at rangeR,the echo is

    whereRis the instantaneous distance between SAR and target,andcis the speed of light.

    After dechirp processing and compressing pulse in range,(8)can be written as

    whereA=A0pr[τ?2R(t)/c],pr(τ)is the envelope of compression pulse andλis the wavelength of signal.

    ThenSrwill beseparatelysampledbythecoprimesampling and the nested sparse sampling in azimuth.

    WhenR0>>vtn,RCM can be ignored,so the pulse compression in azimuth can be expressed as

    whereg(k,n)is the reference function,Xkis the target coordinate in azimuth,vis the platform velocity.

    Equation(10)can be expressed in other form as

    Then the CS model of SAR imaging can be designed by (12),and we should construct a measurement matrixΦ.It is provedthat therandommatrixperformswell,suchas the Gaussian or Bernoulli matrix.For simplicity,we choose the randommatrix asΦ.Now the CS model of SAR imaging can be expressed as

    In this paper,the echo will be sampled by the new sub-Nyquist sampling structures,so we chooseMequalsN. According to(13),for one range cell,Sa(N×1)can be recovered by the convex optimization as follows:

    In this paper,OMP is used to solve this problem directly.Loop through all the range cells,then the azimuthcompressed signalSa(N×L)is obtained.

    5.Imaging results

    5.1Simulated data

    Inthissection,inorderto illustratetheperformanceofproposed methods,some simulation results will be showed to valuate the performanceof the proposedsampling scheme. The simulation parameters are shown in Table 1.

    Table 1 Simulation radar parameters

    Fig.3 shows the comparison of the results of simulation data obtained via different sampling methods,from which it can be noted that the proposed method showed in Fig.3(c)has the best performance.

    Fig.3 Comparison of imaging results

    5.2Real data

    In order to illustrate the performance of proposed method, a real SAR imaging experiment is carried out as follows. The SAR experiment data are taken from RADARSAT-1. The experiment parameters are shown in Table 2.The imaged targets are four ships in sea.The total number of the samples of SAR data is 1 500×1 350.

    Table 2 Experiment parameters

    In this experiment,we separately sample the SAR data in azimuth by two methods.For the firs method,the data are selected by coprime sampling with sample spacingA=7,B=9 andA=17,B=19.It means that only 25%and 10%of raw data are selected.For the second method,the data are selected by nested sparse sampling withN1=6,N2=11 andN1=15,N2=23. It means that only 25%and 10%of raw data are selected. The simulation results are shown in Fig.4.

    Fig.4 Imaging results of real data via different sampling methods

    Fig.4(c)and Fig.4(d)show the CS reconstruction result of the firs method;Fig.4(e)and Fig.4(f)show the CS reconstruction result of the second method.It can be seen that the proposed methods are able to accurately reconstruct the targets with only part of raw data,and even show an improvement in terms of image quality with the sidelobe suppressed.

    From the results of real data obtained via different sampling methods,it can be noted that the second method has better performance than the firs method,especially with 10%of the raw data.It is because that nested sparse samplingcan producemuchmore freedomsthan coprimesampling,when they have the same sample rate.

    6.Influenc of sampling jitter

    6.1Theoretical analysis

    The speed of traditional SAR platform is uniform,however,in some special situations,it is difficul to remain in the state of uniform motion,such as the missile-borne SAR,whose speed even has a higherfluctuation When the SAR platform produces motion error,some of sampling points in azimuth are not according to coprime sampling or nested sparse sampling.

    As thenestedsparsesamplingandthecoprimesampling are similar,we will use the coprime sampling to state theoretical analysis.For the coprime sampling,the number of freedoms is taken by(2),when one sampling pointAi(0≤i<m?1)in Fig.1 has deviation with the coprime sampling,the coprime difference set can be expressed by

    whereXdis the offset ofAi.

    For the example introduced in Section 2,we seti=0,Xd=1,the elements of the full set are×,–8,×,–6,–5,–4,×,–2,–1,0,1,2,×,4,5,6,×,8,×.When we seti=1,the elements of the full set become–9,–8,–7,–6,–5,–4,–3,–2,–1,0,1,2,3,4,5,6,7,8,9.

    Comparing with the number of freedoms with no jitter, there are 13 and 19 freedoms in the two examples respectively introduced above.When the sampling points have jitter,the number of freedoms will change.

    6.2Experimental analysis

    In this experiment,the part of data of SAR sampling have jitter,and then the influenc of sampling jitter to SAR imaging will be analyzed.In order to clearly observe the influenc for image quality,we only choose one of ships shown in Fig.4 as the experiment data.Because a lot of sampling jitter can be equivalent to random sampling,weonly analyze whether a little jitter will influenc the image quality of SAR.

    For the array of coprime sampling,a little jitter can not result in a high fluctuatio of freedoms.Comparing Fig.5(a)with Fig.5(b),and Fig.5(c)with Fig.5(d),althoughthereare slight changesin SAR imagingbeforeand after havingsamplingjitter,it can be noticedthese changes have no effect on image quality of SAR.

    Fig.5 Analysis of sampling jitter to SAR imaging by CS based on different sampling methods

    7.Conclusions

    In this paper,a novel way that coprime sampling and nested sparse sampling combine with CS is proposed to SAR imaging.Theproposedmethodscan achievethe SAR imaging effectively with only 25%or even 10%of the raw data,and a little samplingjitter have no effect onthe image quality of SAR.We have demonstratedthe validity and the stablity of the methods by processing both simulated and real data.

    As for future work,in order to reduce much more storage and computation burden for SAR,it is worthwhile to apply these new undersampling methods for the range direction of SAR,or both the range direction and the azimuth direction of SAR.Many other things remain to be explored,such as,higher dimensional structure of the coprime sampling and the nested sparse sampling is worthwhile to be utilized for SAR sampling.

    [1]Y.Zhao,J.Feng,B.C.Zhang,et al.Current progress in sparse signal processing applied to radar imaging.Science China Technological Sciences,2013,56(12):3049–3054.

    [2]P.Pal,P.P.Vaidyanathan.A novel array structure for directions-of-arrival estimation with increased degrees of freedom.Proc.oftheIEEE International Conference on Acoustics, Speech and Signal Processing,2010:2606–2609.

    [3]P.P.Vaidyanathan,P.Pal.Sparse sensing with coprime arrays.Proc.of the Asilomar Conference on Signal,System,and Computers,2010:1405–1409.

    [4]P.P.Vaidyanathan,P.Pal.Sparse sensing with coprime samplers and arrays.IEEE Trans.on Signal Processing.2011, 59(2):537–586.

    [5]P.Pal,P.P.Vaidyanathan.Nested arrays:a novel approach to array processing with enhanced degrees of freedom.IEEE Trans.on Signal Processing,2010,58(8):4167–4181.

    [6]P.Pal,P.P.Vaidyanathan.Multiple level nested array:an efficien geometry for 2qth order cumulant based array processing.IEEE Trans.on Signal Processing,2012,60(3):1253–1269.

    [7]J.J.Chen,Q.L.Liang,B.J.Zhang,et al.Spectrum efficien y of nested sparse sampling and coprime sampling.EURASIPJournal on Wireless Communication,2013:1–15.

    [8]N.Wu,Q.L.Liang.Nested sparse sampling and co-prime sampling in sense-through-foliage target detection.Physical Communication,2014,13:230–238.

    [9]D.L.Donoho.Compressed sensing.IEEE Trans.on Information Theory,2006,52(4):1289–1306.

    [10]E.J.Candes,M.Wakin.An introduction to compressive sampling.IEEE SignalProcessing Magazine,2008,25(2):21–30.

    [11]B.Pang,D.H.Dai,S.Q.Xing,et al.Enhancement of steppedfrequency SAR imaging based on compressive sensing.Proc. of the Radar Conference,2013:503–506.

    [12]X.Zhang,P.M.Huang,X.H.Li.2D SAR imaging scheme based on compressive sensing.Electronics Letters,2014, 50(2):114–116.

    [13]J.Chen,M.Iqbal,W.Yang,et al.Mitigation of azimuth ambiguities in spaceborne stripmap SAR images using selective restoration.IEEE Trans.on Geoscience and Remote Sensing, 2014,52(7):4038–4045.

    [14]H.P.Xu,Y.Y.You,C.S.Li,et al.Spotlight SAR sparse sampling and imaging method based on compressive sensing.Science China:Information Sciences,2012,55(8):1816–1829.

    [15]X.H.Zhang,T.Bai,H.Y.Meng,et al.Compressive sensingbased ISAR imaging via the combination of the sparsity and nonlocal total variation.IEEE Geoscience and Remote Sensing Letters,2014,11(5):990–994.

    [16]E.Aguilera,M.Nannini,A.Reigber.A data-adaptive compressed sensing approach to polarimetric SAR tomography of forested areas.IEEE Geoscience and Remote Sensing Letters, 2013,10(3):543–547.

    [17]J.G.Yang,J.Thompson,X.T.Huang,et al.Randomfrequency SAR imaging based on compressive sensing.IEEE Trans.on Geoscience and Remote Sensing,2013,51(2):983–994.

    Biographies

    Hongyin Shiwas born in 1976.He received his Ph.D.degree from Beihang University in 2009. Now,he is an associate professor in Yanshan University.His main research interests include SAR imaging and moving target detection

    E-mail:shihy@ysu.edu.cn

    Baojing Jiawas born in 1988.She received her B.S.degree in Electrical&Information Engineering from Inner Mongolia Normal University,Huhehot, China,in 2011.She has been working toward her M.S.degree in the School of Information Science and Engineering,Yanshan University,since 2012. Her main research interests include radar imaging and radar countermeasure.

    E-mail:jiabaojing@126.com

    10.1109/JSEE.2015.00134

    Manuscript received November 15,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61571388;U1233109).

    久久人人爽人人爽人人片va | 一夜夜www| 国产一区二区亚洲精品在线观看| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 99国产精品一区二区蜜桃av| 99久久无色码亚洲精品果冻| 久久午夜福利片| 久久九九热精品免费| 亚洲欧美日韩高清专用| 成人性生交大片免费视频hd| 日本撒尿小便嘘嘘汇集6| 精品午夜福利视频在线观看一区| 99久久成人亚洲精品观看| 中出人妻视频一区二区| bbb黄色大片| 男人狂女人下面高潮的视频| 亚洲第一电影网av| 一本精品99久久精品77| 午夜精品一区二区三区免费看| 久久久久久久久中文| 国产精品亚洲美女久久久| 老熟妇乱子伦视频在线观看| 动漫黄色视频在线观看| 久久欧美精品欧美久久欧美| 婷婷色综合大香蕉| 97超视频在线观看视频| 欧美性猛交黑人性爽| av视频在线观看入口| 亚洲欧美清纯卡通| 在线免费观看不下载黄p国产 | 亚洲男人的天堂狠狠| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 国产免费男女视频| 在线a可以看的网站| 国产高清视频在线播放一区| 日本与韩国留学比较| 日本 av在线| 欧美黄色片欧美黄色片| 久久久精品欧美日韩精品| 久久亚洲真实| 99精品久久久久人妻精品| 色综合欧美亚洲国产小说| 午夜精品一区二区三区免费看| 别揉我奶头 嗯啊视频| 老鸭窝网址在线观看| 男插女下体视频免费在线播放| 三级毛片av免费| 亚洲第一欧美日韩一区二区三区| 3wmmmm亚洲av在线观看| 欧美一区二区精品小视频在线| av天堂在线播放| 一级a爱片免费观看的视频| 精品一区二区免费观看| 国产精品一区二区三区四区久久| 国产一区二区在线av高清观看| 亚洲无线在线观看| 日本a在线网址| 最后的刺客免费高清国语| 最近在线观看免费完整版| 一级作爱视频免费观看| 中出人妻视频一区二区| 国产大屁股一区二区在线视频| 中文字幕久久专区| 9191精品国产免费久久| 亚洲,欧美,日韩| 欧美日韩综合久久久久久 | 男人狂女人下面高潮的视频| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 老女人水多毛片| 免费观看精品视频网站| 国产精品99久久久久久久久| 国产探花极品一区二区| 小说图片视频综合网站| 国产极品精品免费视频能看的| 精品人妻偷拍中文字幕| av在线观看视频网站免费| 中文字幕人成人乱码亚洲影| 欧美黄色片欧美黄色片| 听说在线观看完整版免费高清| av视频在线观看入口| www.www免费av| 可以在线观看的亚洲视频| 一级av片app| 久久国产精品人妻蜜桃| 少妇的逼水好多| 国产精品1区2区在线观看.| 1000部很黄的大片| 亚洲国产精品999在线| avwww免费| 99热只有精品国产| 久久精品影院6| 免费看美女性在线毛片视频| 免费搜索国产男女视频| 日韩亚洲欧美综合| 蜜桃久久精品国产亚洲av| 中出人妻视频一区二区| 中国美女看黄片| 首页视频小说图片口味搜索| 内地一区二区视频在线| 成人欧美大片| 免费av不卡在线播放| 最好的美女福利视频网| 免费高清视频大片| 夜夜爽天天搞| 最新在线观看一区二区三区| 日日夜夜操网爽| 亚洲经典国产精华液单 | 亚洲欧美清纯卡通| 欧美日韩亚洲国产一区二区在线观看| 国产激情偷乱视频一区二区| 又紧又爽又黄一区二区| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 国产亚洲av嫩草精品影院| 中文字幕免费在线视频6| 国产成+人综合+亚洲专区| 搞女人的毛片| 热99re8久久精品国产| 久久精品国产亚洲av天美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人永久免费在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲成人精品中文字幕电影| 深夜精品福利| 国产高清有码在线观看视频| 熟女人妻精品中文字幕| 色综合欧美亚洲国产小说| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 大型黄色视频在线免费观看| 久久99热这里只有精品18| 亚洲狠狠婷婷综合久久图片| 高清毛片免费观看视频网站| 99久国产av精品| 很黄的视频免费| 91麻豆av在线| 亚洲三级黄色毛片| 亚洲国产精品合色在线| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 久久亚洲精品不卡| 淫秽高清视频在线观看| 97热精品久久久久久| 日本撒尿小便嘘嘘汇集6| av在线老鸭窝| 特级一级黄色大片| 日本黄大片高清| eeuss影院久久| 天堂动漫精品| 免费大片18禁| 亚洲最大成人手机在线| 国产精品亚洲一级av第二区| 97碰自拍视频| 久久亚洲精品不卡| 深爱激情五月婷婷| 久久九九热精品免费| 国产久久久一区二区三区| 欧美高清成人免费视频www| 日本黄大片高清| 宅男免费午夜| 一个人免费在线观看电影| 成人av在线播放网站| 日本在线视频免费播放| 亚洲,欧美,日韩| 婷婷精品国产亚洲av在线| 国产精品免费一区二区三区在线| 狠狠狠狠99中文字幕| 国产麻豆成人av免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 999久久久精品免费观看国产| 少妇丰满av| 成人特级av手机在线观看| 日韩欧美精品免费久久 | 少妇人妻一区二区三区视频| 有码 亚洲区| 久久久久九九精品影院| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费男女啪啪视频观看 | 村上凉子中文字幕在线| 精品乱码久久久久久99久播| 国产精品久久视频播放| 性欧美人与动物交配| 亚洲国产日韩欧美精品在线观看| 我的老师免费观看完整版| 国产乱人视频| 自拍偷自拍亚洲精品老妇| 亚洲国产精品999在线| 最新中文字幕久久久久| 国产免费av片在线观看野外av| 黄片小视频在线播放| 国产av不卡久久| 午夜福利免费观看在线| 免费观看人在逋| 精品久久久久久久末码| 午夜免费激情av| 欧美日韩福利视频一区二区| bbb黄色大片| 日本黄色片子视频| 精品日产1卡2卡| 亚洲男人的天堂狠狠| 久久久久精品国产欧美久久久| 乱码一卡2卡4卡精品| 又爽又黄a免费视频| 欧美国产日韩亚洲一区| 亚洲天堂国产精品一区在线| 亚洲av成人精品一区久久| 成人欧美大片| 成人永久免费在线观看视频| 欧美日韩综合久久久久久 | 此物有八面人人有两片| 欧美性猛交黑人性爽| 少妇人妻精品综合一区二区 | 日韩精品中文字幕看吧| 国产不卡一卡二| 欧美zozozo另类| 午夜福利成人在线免费观看| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9| 69av精品久久久久久| 国产精品久久电影中文字幕| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 一本精品99久久精品77| 久久精品91蜜桃| АⅤ资源中文在线天堂| 久久久国产成人免费| 国产色婷婷99| 国产乱人伦免费视频| 亚洲三级黄色毛片| 国产白丝娇喘喷水9色精品| 一级a爱片免费观看的视频| 一夜夜www| 久久久国产成人精品二区| 国产亚洲精品av在线| 嫩草影视91久久| 成年女人永久免费观看视频| 麻豆成人午夜福利视频| 国产在线精品亚洲第一网站| 日本成人三级电影网站| 亚洲美女视频黄频| 男女视频在线观看网站免费| 午夜福利成人在线免费观看| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 午夜精品在线福利| 国产在线精品亚洲第一网站| 国产精品98久久久久久宅男小说| 黄色女人牲交| 俺也久久电影网| 国产精品一区二区免费欧美| 国产极品精品免费视频能看的| 亚州av有码| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 国产美女午夜福利| 亚洲成av人片在线播放无| 51午夜福利影视在线观看| 女人被狂操c到高潮| 黄色配什么色好看| 精品国产三级普通话版| a在线观看视频网站| 国内精品久久久久精免费| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| aaaaa片日本免费| 在线播放无遮挡| 亚洲自拍偷在线| 亚洲aⅴ乱码一区二区在线播放| 美女高潮的动态| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 性色av乱码一区二区三区2| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 小说图片视频综合网站| 国产成年人精品一区二区| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 中文字幕av成人在线电影| 亚洲最大成人av| 欧美黄色淫秽网站| 久久久久国产精品人妻aⅴ院| 久久婷婷人人爽人人干人人爱| 俺也久久电影网| 99热这里只有是精品50| 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 一本久久中文字幕| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 国产高清三级在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 国产av麻豆久久久久久久| 国产高潮美女av| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av| 香蕉av资源在线| www.www免费av| 天堂影院成人在线观看| 久久精品人妻少妇| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 日韩国内少妇激情av| 亚洲国产精品999在线| 免费大片18禁| 校园春色视频在线观看| 免费无遮挡裸体视频| 3wmmmm亚洲av在线观看| av视频在线观看入口| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 亚洲,欧美精品.| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美98| 九九在线视频观看精品| 一个人免费在线观看的高清视频| 亚洲精品乱码久久久v下载方式| 国产高清视频在线播放一区| 欧美成人性av电影在线观看| 国产成人a区在线观看| 无遮挡黄片免费观看| 午夜福利视频1000在线观看| 国产熟女xx| 97超视频在线观看视频| 美女高潮的动态| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 乱码一卡2卡4卡精品| 欧美又色又爽又黄视频| 在线观看午夜福利视频| netflix在线观看网站| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 国产白丝娇喘喷水9色精品| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 欧美日韩综合久久久久久 | 日韩人妻高清精品专区| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 国产乱人伦免费视频| 九九热线精品视视频播放| 免费黄网站久久成人精品 | 亚洲人与动物交配视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久大精品| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 亚洲欧美清纯卡通| 久久久久免费精品人妻一区二区| 黄色女人牲交| 夜夜夜夜夜久久久久| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 久久久久性生活片| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 精品久久久久久久久久免费视频| 欧美在线黄色| 无人区码免费观看不卡| 一个人看的www免费观看视频| 琪琪午夜伦伦电影理论片6080| 亚洲美女搞黄在线观看 | 精品人妻一区二区三区麻豆 | 老司机午夜十八禁免费视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 看黄色毛片网站| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 91狼人影院| 他把我摸到了高潮在线观看| 久久久色成人| 99久久九九国产精品国产免费| 中文字幕熟女人妻在线| 高潮久久久久久久久久久不卡| 3wmmmm亚洲av在线观看| x7x7x7水蜜桃| av在线蜜桃| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 色在线成人网| 能在线免费观看的黄片| 国产精品亚洲一级av第二区| 狠狠狠狠99中文字幕| 国产精品人妻久久久久久| 波多野结衣高清作品| 国产久久久一区二区三区| 精品久久久久久,| 国产精品美女特级片免费视频播放器| 99视频精品全部免费 在线| 免费观看人在逋| 成人精品一区二区免费| 天堂动漫精品| 亚洲天堂国产精品一区在线| 色噜噜av男人的天堂激情| xxxwww97欧美| ponron亚洲| 亚洲av免费高清在线观看| 一级黄色大片毛片| 最近中文字幕高清免费大全6 | 久久久久精品国产欧美久久久| 久久精品国产亚洲av天美| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女| 一区二区三区四区激情视频 | 精品久久久久久,| 热99re8久久精品国产| 精品国产亚洲在线| 久久午夜福利片| 日韩国内少妇激情av| 一进一出好大好爽视频| 简卡轻食公司| 内射极品少妇av片p| 久久这里只有精品中国| 18美女黄网站色大片免费观看| 天堂网av新在线| 婷婷精品国产亚洲av在线| 欧美成人性av电影在线观看| 尤物成人国产欧美一区二区三区| 久久精品91蜜桃| 亚洲av电影在线进入| 老司机福利观看| 亚洲中文字幕日韩| 久久久久久大精品| 色av中文字幕| 国内精品美女久久久久久| 舔av片在线| 国产久久久一区二区三区| 精品一区二区三区视频在线观看免费| 久久久久久久久大av| 禁无遮挡网站| 久久久久久久久中文| 一a级毛片在线观看| 免费观看的影片在线观看| 在线国产一区二区在线| eeuss影院久久| 桃红色精品国产亚洲av| 成人精品一区二区免费| www日本黄色视频网| 禁无遮挡网站| 日日摸夜夜添夜夜添av毛片 | 91久久精品电影网| 制服丝袜大香蕉在线| 黄色丝袜av网址大全| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 九色国产91popny在线| 男人舔女人下体高潮全视频| 久久草成人影院| 精品久久久久久,| 色视频www国产| av天堂在线播放| 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 熟女人妻精品中文字幕| ponron亚洲| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 亚洲av免费高清在线观看| 动漫黄色视频在线观看| 午夜福利视频1000在线观看| 中文亚洲av片在线观看爽| 久久久久国内视频| 一个人看的www免费观看视频| 啪啪无遮挡十八禁网站| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 欧美不卡视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩瑟瑟在线播放| av视频在线观看入口| 国内精品一区二区在线观看| 岛国在线免费视频观看| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 搞女人的毛片| 一夜夜www| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 黄色配什么色好看| 欧美zozozo另类| 国产黄片美女视频| 久久午夜福利片| 九九在线视频观看精品| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 亚洲第一区二区三区不卡| 一本一本综合久久| 国产一级毛片七仙女欲春2| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 亚洲国产色片| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 日本黄色片子视频| 丁香欧美五月| 精品99又大又爽又粗少妇毛片 | 国产黄a三级三级三级人| 天堂av国产一区二区熟女人妻| 久久久久久国产a免费观看| 在线国产一区二区在线| 国产精品女同一区二区软件 | 国产午夜福利久久久久久| 国产欧美日韩一区二区精品| 午夜福利高清视频| 少妇人妻精品综合一区二区 | 亚洲精品成人久久久久久| 中文字幕免费在线视频6| 草草在线视频免费看| 又爽又黄a免费视频| 亚洲自偷自拍三级| 国产av麻豆久久久久久久| 露出奶头的视频| 欧美激情国产日韩精品一区| 日本a在线网址| 日本-黄色视频高清免费观看| 欧美成人一区二区免费高清观看| av天堂中文字幕网| 一本久久精品| 身体一侧抽搐| 国产人妻一区二区三区在| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 亚洲精品视频女| av国产久精品久网站免费入址| 国产精品一区二区在线观看99| 禁无遮挡网站| 我的老师免费观看完整版| 国内精品宾馆在线| 久久久午夜欧美精品| 欧美成人精品欧美一级黄| 国产精品国产三级国产av玫瑰| 日韩欧美一区视频在线观看 | 日韩电影二区| 亚州av有码| 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂 | 久久女婷五月综合色啪小说 | 乱码一卡2卡4卡精品| 777米奇影视久久| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| 高清午夜精品一区二区三区| 国产黄色视频一区二区在线观看| 五月伊人婷婷丁香| 国产乱人偷精品视频| 久久久久久久午夜电影| 免费人成在线观看视频色| 青春草亚洲视频在线观看| 看免费成人av毛片| 插阴视频在线观看视频| 欧美精品一区二区大全| 又爽又黄无遮挡网站| 久久精品久久久久久噜噜老黄| 欧美极品一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91 | 啦啦啦在线观看免费高清www| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 久久久欧美国产精品| 一级二级三级毛片免费看| av福利片在线观看| 一级毛片我不卡| 国产午夜福利久久久久久| 在线 av 中文字幕| 欧美日韩在线观看h| 晚上一个人看的免费电影| 看非洲黑人一级黄片| 99久久人妻综合| 国产成人免费观看mmmm| 99久久人妻综合| 欧美日韩精品成人综合77777|