• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Null subcarriers based Doppler scale estimation with polynomial interpolation for multicarrier communication over ultrawideband underwater acoustic channels

    2015-02-11 03:38:58

    1.School of Information Science and Engineering,Changzhou University,Changzhou 213164,China;2.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China;3.School of Textile and Material Engineering,Wuhan Textile University,Wuhan 430073,China;4.School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore

    Null subcarriers based Doppler scale estimation with polynomial interpolation for multicarrier communication over ultrawideband underwater acoustic channels

    Yang Chen1,Jingwei Yin2,Ling Zou1,Dan Yang3,*,and Yuan Cao4

    1.School of Information Science and Engineering,Changzhou University,Changzhou 213164,China;
    2.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China;
    3.School of Textile and Material Engineering,Wuhan Textile University,Wuhan 430073,China;
    4.School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore

    This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA)orthogonal frequency division multiplexing(OFDM)communication.The cost function constructed of the total energy of null subcarriers through discrete Fourier transform(DFT)is proposed. The frequencies of null subcarriers are identifie from non-uniform Doppler shift at each tentative scaling factor.Then it is proved that the cost function can be fitte as a quadratic polynomial near the global minimum.An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity.A shallow water experiment is conducted to demonstrate the performance of the proposed method.Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%,when the transmitter and the receiver are moving at a relative speed of 5 kn,which validates the proposed method.

    underwater acoustic(UWA)communication,orthogonal frequency division multiplexing(OFDM),Doppler scale estimation,polynomial interpolation.

    1.Introduction

    Underwater acoustic(UWA)orthogonal frequency division multiplexing(OFDM)communication has been extensively investigatedin recent years[1–5].Unlike the radio channel which has relatively short delay spread and slow time variation,UWA channels suffer from long delay spread and fast time variation.And fast time variation brings significan Doppler effects to UWA communication systems,so estimation of the Doppler scaling factor is of critical importance[6–9].

    The methods of the Doppler scale estimation can be divided into three categories.In the firs category,Doppler scale estimation is accomplished by inserting waveforms known to the receiver during the data transmission.One example is to detect the time-of-arrival of the preamble and postamble which is Doppler-insensitive such as the linear-frequency-modulated(LFM)waveform and the hyperbolic-frequencymodulated(HFM)waveform.

    The second is with pilot assisted.Different algorithms are adopted for the different channel models[10–12].In [10],the least-squares(LS)channel estimator assumes the channel to be non-sparse.Reference[11]is based on the basis expansionmodel.Reference[12]relies on a discretepath model,which employs both the orthogonal matching pursuit(OMP)and basis pursuit(BP)algorithms.

    The third category makes use of null subcarriers.Null subcarriers are of multi-purpose in OFDM communication systems.In[13],the power spectrum of the intercarrier interference(ICI)plus noise is approximatedby fit ting the measurements on the null subcarriers embedded in each OFDM symbol.Pre-whitening is then applied to each OFDM symbol and impressive performancegains are found whenever the signal is significantl colored.In[14] and[15],null subcarriers are inserted between pilot and data subcarriers to protect from the influenc of each other. The Doppler estimating with null subcarriers is based on block-by-block processing,and does not rely on channel dependence across OFDM blocks.Thus it is suitable for fast-varying UWA channels,and increasingly drawing researchers’attention.

    As an extension of the blind carrier frequency offset (CFO)estimationmethod[14],usingtheenergyonthenull subcarriers to fin the best fi becomes a popular Doppler scaling factor estimation method in UWA OFDM communication[15–18].It is essentially an extremal problem of the cost function formulated from the total energy of null subcarriers.In[10],a two-step approachis proposed.First, the received signal is resampled according to the Doppler scaling factor.The factor is roughlymeasured by preamble and postamble,followed by resolution of residual Doppler which is considered to be uniform.The rough measurement makes it only suitable for offlin processing due to the processingdelay and complexity.The residual Doppler is also frequency related when the carrier frequency is low to achieve long rangecommunication,where normally the relative bandwidth is very large.In[15]the total energy of frequency measurements at null subcarriers of the block is resampled with different tentative scaling factors, thus the computation complexity is extremely large.As an improvement,in[17],the cost function is sampled sporadically to fin the rough place of the global minimum. Then,anaccurateestimationis conductedbythemethodof steepest descent.However,it suffers from the conflic between precision and computation complexity,as the complexity of resampling increases proportionally to the accuracy of the interpolation.

    In this paper,a new efficien method of Doppler scaling estimation is proposed.The cost functionis formulated from the total energy of null subcarriers through discrete Fouriertransform(DFT)insteadoftheresamplingmethod. The frequencies of null subcarriers are identifie according to nonuniform Doppler shifts at each tentative scaling factor.Benefittin from that DFT has much less computation complexity than the resampling method,the proposed method is more efficient The cost function is investigated and proved to be fitte by a quadratic polynomial near the global minimum.The accurate location of the global minimum can be achieved through polynomial interpolation. To verify this approach,an experiment was carried out in Lianhua lake of Heilongjiang province.Over a bandwidth of 4 kHz with a relative bandwidth of 67%,quaternary phase-shift keying(QPSK)modulation and rate 2/3 convolutional coding are adopted.Excellent performance is achieved when the relative speed is up to 5 kn,at which max Doppler shift is greater than the OFDM subcarrier spacing.The experiment results validate our approach’s validity and effectiveness.

    2.Cylic prefi OFDM over underwater acoustic channels

    Let T denote the OFDM symbol duration and Tgthe cylic prefix The total OFDM block duration is T′=T+Tg. The frequencyspacing is Δf=1/T.The kth subcarrieris at the frequency

    where fcis the carrier frequency and K subcarriers are used so that the bandwidth is B=KΔf.

    Consider one CP-OFDM block.Let d(k)denote the information symbol to be transmitted on the kth subcarrier. The nonoverlapping sets of active subcarriers SAand null subcarriersSNsatisfy SA∪SN={?K/2,...,K/2?1}. The transmitted signal in passband is then given by

    Consider a multipath underwater channel that has the impulse response

    where Ap(t)is the path amplitude and τp(t)is the timevaryingpath delay.To developour receiver algorithms,the following assumptions are adopted.

    (i)All pathshavea similarDopplerscalingfactorasuch that

    In general,different paths could have different Doppler scaling factors.The method proposed here is based on the assumption that all the paths have the same Doppler scaling factor[10,15,17–19].However,when this is not true, part of useful signals are treated as additive noise,which increases the overall noise variance.However,we fin that as long as the dominant Doppler shift is caused by the direct transmitter/receiver motion,as it is the case in our experiments,this assumption seems to be justified

    (ii)The path delays τp(t),the gains Ap(t),and the Doppler scaling factor a are constant over the block duration.

    The received signal in passband is

    where?n(t)is the additive noise.

    Base on the expression in(5),each subcarrier experiences a Doppler-induced frequency shift(fc+kΔf)a, whichdependsonthefrequencyofthesubcarrier.Sincethe bandwidthof the OFDM signal is comparableto the center frequency,the Doppler-induced frequency shifts on different OFDM subcarriers differ considerably;i.e.the narrowband assumption does not hold true.

    3.Null subcarriers based Doppler scale estimation with polynomial interpolation

    The total energy of the null subcarriers is used as the cost function.Assume that coarse synchronization is available fromthe preamble.After truncatingeach CP-OFDM block from the received signal,CP is removed.

    The energy of null subcarrier whose frequency is measured according to tentative scaling factors is achieved by DFT as in(6).

    The sum of the energy of null subcarriers is used as the cost function for the Doppler scale estimation.

    Equation(6)can be transformed as follows:

    Then the cost function is

    Considering the irrelevance of signal and noise,when κ is large enough,thusbecomes

    From(11)it can been seen that the cost function is a quadratic polynomial of the tentative scaling factorand minimized when

    Thereare two conditionsneededin the derivationof(9):

    InUWA communication,theDopplerscalefactorisnormally about the order of 10?3,so(12)is always met.The condition(13)indicates that the cost function can be fitte by a quadratic polynomial only when the tentative scaling factor being limited in a small range around the Doppler scale factor.

    In order to search the global minimum of the cost function(7)as the Doppler scale estimation,an efficien twostep approach to estimate the Doppler scale is proposed. (i)The cost function is roughly sampled through(7)according to tentative scaling factors with large interval,to roughlyfin the global minimum.(ii)Several precise samples are made around the global minimum,with whom a quadratic polynomial function is fitted and then the exact position of the minimum is calculated through the fit ting quadratic polynomial function as the estimation of the Doppler scale factor.Assuming the precise samples arethe estimation of the Doppler scale factor is

    In this algorithm,the estimation is completed through direct calculation of(14)with little computation complexity,so there is no conflic between precision and computation complexity.The algorithm is suitable for complex application.

    4.Experimental results

    An experiment was carried out in Lianhua lake of Heilongjiang province in September,2010.The water depth is around 40 m,the transmitter was located at a depth of about 5 m and the receiver was submerged at a depth of about 7 m.The receiver boat was anchored and the transmitter boat could move around.The range between the receiver boat and the transmitter boat was 2–3 km.OFDM signals were transmitted while the transmitter boat was moving towards the receiver boat in the firs voyage and away from in the second voyage.

    The bandwidth of the OFDM signal is 4 kHz,and the carrier frequency is 6 kHz.The transmitted signal thus occupies the frequency band between 4 kHz and 8 kHz.The relative bandwidth is nearly 67%.CP-OFDM with a CP of 85.3 ms is adopted.The number of subcarriers is 341.The subcarrier spacing is 11.72 Hz,and the OFDM block duration is 85.3 ms.QPSK modulation is adopted.Rate 2/3 convolutionalcodingis used,obtainedby puncturinga rate 1/2 code with the generator polynomial(23,35).Coding is applied within the data stream for each OFDM block. Block-typepilot is adoptedand a null subcarrieris inserted in every four subcarriers.Thus the number of active subcarriers is 256 and the number of null subcarriers is 85, as illustrated in Fig.1.Every data burst transmitted consists ofapreambleofLFMfollowedby100OFDMblocks. During the experiment,the same data burst was transmitted six times in each voyage.The transmitter was moving at a speed of up to 5 kn,at which the Doppler shifts of 8 kHz is 13.36 Hz,which is larger than the OFDM subcarrier spacing.

    Fig.1 Illustration of pilot and null subcarrier pattern

    The signals received of one burst in each voyage are shown in Fig.2.As we can see the signal-to-noise ratio (SNR)is not high,especially in the firs voyage.

    Fig.2 Received signals from the experiment

    Fig.3 depicts the cost functions of one OFDM block in each voyage.In this case,1/(fc/Δf+κ)=1.5×10?3, according to(13),?a∈[?1.5×10?4,1.5×10?4].Thus in the firs step we sample the cost function with the interval of 0.7×10?4,to ensurethe minimumsample and the adjacent two are within the rangeof[?1.5×10?4,1.5×10?4].In the second step,the minimum three samples(the minimum sample and the adjacent two)are adopted to fi a quadratic polynomial function,as the red lines in Fig.3.

    Fig.3 Fitting of the cost function of one OFDM block

    The cost functionJ(?a)has several minimums but just one unique global minimum,and can been fitte as a quadratic polynomial function around the global minimum.The position of the global minimum is the Doppler scale factor.

    For every burst received,the algorithm of Fig.3 was performedonblock-by-blockbasis.TheDopplerscale factor was estimated for each OFDM block.Fig.4 shows the Doppler scale estimation results for all six bursts in both voyages.The Doppler scale factor changes from block to block roughly continuouslybut cannot be regardedas constant.

    Fig.4 Doppler scale estimation results for all six bursts in both voyages

    After Doppler compensation,channels are estimated based on blockpilots throughLS estimation.Fig.5 depicts the estimated channel impulse responses for two bursts in Fig.2.Several main multi-paths in both channels are observedand the channelschangeslowly fromblock to block due to the long range between the transmitter and the receiver.The delay spread of channels in the second voyage is quite long,up to 30 ms.

    Fig.5 Channel impulse responses for two bursts in Fig.2

    The bit error rate(BER)performance for all 12 bursts in two voyages are ploted in Fig.6.Despite of the severe channel condition,the communication performances are very well.After Doppler compensation,the BER is under 1%most of the time when uncoded and only 1 burstin error when coded,while the BER is nearly 50%without Doppler compensation.

    Fig.6 BER performance for all 6 bursts in both voyages

    3.Conclusions

    In this paper,a simple and effective Doppler scaling estimation through polynomial interpolation for UWA OFDM communication systems is developed.The cost function of total energy of null subcarriers measurement method is proposed in UWA channels with nonuniform Doppler shifts.The cost function has several minimums but just one unique global minimum whose position is the Doppler scale factor,and can been fitte by a quadratic polynomial function around the global minimum.Based on the analysis,a two-step approach to estimate the Doppler scale is proposed:(i)the cost functionis sampledaccordingto tentative scaling factors with large interval,to roughly fin the global minimum,(ii)several precise samples are made around the global minimum,with whom a quadratic polynomial function is fitted and then the exact position of the minimum is calculated through the fittin quadratic polynomial function as the estimation of the Doppler scale factor.The proposedalgorithm reduces the computationcomplexity without scarifying of the precision,and is suitable for complex application.To confir its validity,an experiment was carried out in shallow water.Excellent BER performance is achieved after Doppler compensation with the Doppler scaling factors estimated by this proposed algorithm.

    [1]C.R.Berger,W.Chen,S.Zhou,et al.A simple and effective noise whitening method for underwater acoustic orthogonal frequency division multiplexing.Journal of the Acoustical Society of America,2010,127(4):2358–2367.

    [2]Z.H.Wang,S.Zhou,G.B.Giannakis,et al.Frequencydomain oversampling for zero-padded OFDM in underwater acoustic communications.IEEE Journal of Oceanic Engineering,2012,37(1):14–24.

    [3]Z.H.Wang,S.Zhou,J.Catipovic,et al.Parameterized cancellationof partial-band partial-block-duration interference for underwater acoustic OFDM.IEEE Trans.on Signal Processing,2012,60(4):1782–1795.

    [4]K.Tu.Multi-carrier communications over underwater acoustic channels.Arizona,USA:School of Electrical Computers and Energy Engineering,2011.

    [5]C.Wang,J.Yin,D.Huang,et al.Experimental demonstrationof differential OFDMunderwater acoustic communication withacoustic vector sensor.Applied Acoustics,2015,91:1–5.

    [6]K.Tu,D.Fertonani,T.M.Duman,et al.Mitigation of intercarrier interference for OFDM over timevarying underwater acoustic channels.IEEE Journal of Oceanic Engineering,2011,36(2):156–171.

    [7]J.Z.Huang,S.Zhou,J.Huang,et al.Progressive inter-carrier interference equalization for OFDM transmission over timevarying underwater acoustic channels.IEEE Journal of Selected Topics in Signal Processing,2011,5(8):1524–1536.

    [8]S.Ohno,K.A.D.Teo.Viterbi-type inter-carrier interference equalization for OFDM over doubly selective channels.IEICE Trans.on Communications,2009,92(8):1905–1912.

    [9]H.Y.Chung,F.Behrouz.Non-linear Doppler scaling correction in underwater acoustic channels:analysis and simulation.Proc.of the IEEE OCEANS Conference,2013:2065–2070.

    [10]B.Li,S.Zhou,M.Stojanovic,et al.Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts.IEEE Journal of Oceanic Engineering,2008, 33(2):198–209.

    [11]T.Kang,R.Iltis.Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems.IEEE Journal on Selected Areas in Communications,2008,26(9): 1650–1661.

    [12]C.R.Berger,S.Zhou,J.Preisig,et al.Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing.Proc.of the MTS/IEEE OCEANS Conference,2009:11–14.

    [13]C.Berger,W.Chen,S.Zhou,et al.A simple and effective noise whitening method for underwater acoustic orthogonal frequency division multiplexing.Journal of the Acoustical society of America,2010,127(4):2358–2367.

    [14]X.Ma,C.Tepedelenlioglu,G.B.Giannakis,et al.Nondataaided carrier offset estimators for OFDM withnullsubcarriers: identifiabilit,algorithms,and performance.IEEE Journal on Selected Areas in Communications,2001:2504–2515.

    [15]S.Mason,C.Berger,S.Zhou.Receiver comparisons on an OFDM design for Doppler spread channels.Proc.of the IEEE OCEANS Conference,2009:11–14.

    [16]S.J.Hwang,P.Schniter.Efficien multicarrier communication for highly spread underwater acoustic channels.IEEE Journal on Selected Areas in Communications,2008,26(9):1674–1683.

    [17]L.Wan,Z.Wang,S.Zhou,et al.Performance comparison of doppler scale estimation methods for underwater acoustic OFDM.Journal of Electrical and Computer Engineering, 2012,2012:1–11.

    [18]C.H.Yuen,B.Farhang-Boroujeny.Doppler scaling correction in OFDM.Proc.of the IEEE International Conference on Communications,2013:417–422.

    [19]M.Huang,H.Sun,E.Cheng,et al.Joint doppler frequency offset mitigationand channel estimation for underwater acoustic OFDM.Journal of Xiamen University(Natural Science), 2013,52(3):326–332.

    Biographies

    Yang Chenwas born in 1982.He received his B.S. and Ph.D.degrees in Harbin Engineering University in 2005 and 2010 respectively.He is a lecturer in the School of Information Science and Engineering,Changzhou University.His research interests include underwater acoustic communication signal processing and array signal processing.

    E-mail:chenyangcczu@cczu.edu.cn

    Jingwei Yinwas born in 1980.He received his B.S. and Ph.D.degrees in Harbin Engineering University in 2003 and 2007,respectively.He is a professor in Harbin Engineering University.His research interests include underwater acoustic communication and underwater acoustic signal processing.

    E-mail:yinjingwei@hrbeu.edu.cn

    Ling Zouwas born in 1975.She received her Ph.D. degree in control science and control engineering from Zhejiang University,China,in 2004.She is a professor in the Faculty of Information Science& Engineering,Changzhou University,China.Her research interests are neural networks,pattern recognition and signal processing.

    E-mail:zouling@cczu.edu.cn

    Dan Yangwas born in 1983.She received her Ph.D.degree in the University of Manchester,UK, in 2010.She is a lecturer in the School of Textile and Material Engineering,Wuhan Textile University.Her research interests include ballistic materials,and data analysis.

    E-mail:edith222cn@hotmail.com

    Yuan Caowas born in 1985.He received his B.S. degree from Nanjing University,M.S.degree from Hong Kong University of Science and Technology in 2008 and 2010,respectively.Currently he is working towards his Ph.D.degree in electrical and Electronic Engineering at Nanyang Technological University.His research interests include hardware security,ASIC physical unclonable function, and analog/mixed-signal VLSI circuits and systems.

    E-mail:caoyuan0908@gmail.com

    10.1109/JSEE.2015.00128

    Manuscript received September 09,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61201096;61471137;61501061),the Qing Lan Project of Jiangsu Province,the Science and Technology Program of Changzhou City(CJ20130026;CE20135060;CE20145055),and the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(1316).

    一级片免费观看大全| 国产亚洲精品第一综合不卡| 国产成人欧美| 日韩制服丝袜自拍偷拍| 国产在线免费精品| 麻豆国产av国片精品| 成人影院久久| 国产精品99久久99久久久不卡| 国产深夜福利视频在线观看| 黑丝袜美女国产一区| 视频在线观看一区二区三区| 99香蕉大伊视频| 成人手机av| 欧美日韩视频精品一区| 日本午夜av视频| 精品国产乱码久久久久久小说| 99热国产这里只有精品6| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 18禁国产床啪视频网站| 亚洲美女黄色视频免费看| 熟女少妇亚洲综合色aaa.| 婷婷色综合www| 亚洲av在线观看美女高潮| 捣出白浆h1v1| 日本色播在线视频| 午夜福利视频精品| 新久久久久国产一级毛片| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 91九色精品人成在线观看| 国产一级毛片在线| 亚洲av日韩精品久久久久久密 | 桃花免费在线播放| 一区二区三区乱码不卡18| 日韩制服丝袜自拍偷拍| 国产伦人伦偷精品视频| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 国产主播在线观看一区二区 | 热re99久久精品国产66热6| 蜜桃在线观看..| 一级片免费观看大全| 亚洲国产中文字幕在线视频| 亚洲精品成人av观看孕妇| 成人午夜精彩视频在线观看| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 在线亚洲精品国产二区图片欧美| 十八禁网站网址无遮挡| 日韩伦理黄色片| 亚洲 欧美一区二区三区| 老司机靠b影院| 精品少妇黑人巨大在线播放| 国产极品粉嫩免费观看在线| 一本综合久久免费| 午夜福利视频在线观看免费| 国产精品久久久久久人妻精品电影 | 亚洲精品在线美女| 国产精品二区激情视频| 国产成人一区二区三区免费视频网站 | 一区二区三区激情视频| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 日本av免费视频播放| 青青草视频在线视频观看| 免费看av在线观看网站| 九草在线视频观看| 成人国语在线视频| 亚洲欧美精品综合一区二区三区| 男女床上黄色一级片免费看| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 国产成人欧美在线观看 | 亚洲五月婷婷丁香| 色播在线永久视频| 精品一区二区三卡| 两性夫妻黄色片| 久久青草综合色| 少妇粗大呻吟视频| 香蕉丝袜av| 狂野欧美激情性xxxx| 热99国产精品久久久久久7| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | 成年人免费黄色播放视频| 99热国产这里只有精品6| 精品国产一区二区久久| 一本大道久久a久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄频高清免费视频| 久久午夜综合久久蜜桃| 91字幕亚洲| 色网站视频免费| 欧美黄色淫秽网站| 男人爽女人下面视频在线观看| 成年动漫av网址| 亚洲精品自拍成人| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 男女免费视频国产| 久久国产精品人妻蜜桃| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| av片东京热男人的天堂| 免费日韩欧美在线观看| 人妻一区二区av| 欧美日韩福利视频一区二区| 国产片特级美女逼逼视频| 国产精品香港三级国产av潘金莲 | 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 国产精品亚洲av一区麻豆| 丝袜脚勾引网站| 黄片小视频在线播放| 69精品国产乱码久久久| www日本在线高清视频| 在线观看一区二区三区激情| 一区二区三区精品91| 国产高清videossex| 中文字幕高清在线视频| 亚洲少妇的诱惑av| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 国产午夜精品一二区理论片| 久久这里只有精品19| 日韩免费高清中文字幕av| 成年动漫av网址| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 久久性视频一级片| 夜夜骑夜夜射夜夜干| 国产精品香港三级国产av潘金莲 | 亚洲国产精品国产精品| 人成视频在线观看免费观看| 国产精品一区二区免费欧美 | a级毛片黄视频| 午夜激情av网站| 亚洲少妇的诱惑av| 亚洲av日韩精品久久久久久密 | 在线av久久热| 日日爽夜夜爽网站| 久久人人爽人人片av| 国产淫语在线视频| 成在线人永久免费视频| 日本av免费视频播放| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 精品少妇黑人巨大在线播放| 久久人妻熟女aⅴ| 在线观看免费午夜福利视频| 精品一区在线观看国产| 老司机影院成人| 男女午夜视频在线观看| 捣出白浆h1v1| 国产一区二区三区av在线| 啦啦啦在线观看免费高清www| 亚洲国产欧美网| 晚上一个人看的免费电影| 十八禁网站网址无遮挡| 女性被躁到高潮视频| 国产精品久久久久久精品电影小说| 乱人伦中国视频| www.999成人在线观看| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 99热全是精品| 国产91精品成人一区二区三区 | 下体分泌物呈黄色| 日韩电影二区| 人人妻人人爽人人添夜夜欢视频| 亚洲九九香蕉| 久久久精品国产亚洲av高清涩受| 午夜福利视频精品| 亚洲精品国产av蜜桃| 午夜福利在线免费观看网站| 在线av久久热| 高清欧美精品videossex| 亚洲成人免费电影在线观看 | 黄色片一级片一级黄色片| 在线观看免费日韩欧美大片| 十八禁人妻一区二区| 国产精品 欧美亚洲| 亚洲国产精品成人久久小说| 天天影视国产精品| 国产精品av久久久久免费| 午夜老司机福利片| 在线观看免费高清a一片| 老汉色∧v一级毛片| 中文字幕人妻丝袜一区二区| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 国产伦理片在线播放av一区| 男女之事视频高清在线观看 | 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 免费少妇av软件| 国产免费福利视频在线观看| 精品久久蜜臀av无| av不卡在线播放| 国产日韩欧美在线精品| 久久国产精品大桥未久av| 少妇人妻 视频| 国产av国产精品国产| 欧美 日韩 精品 国产| 捣出白浆h1v1| 国产一区二区三区av在线| 校园人妻丝袜中文字幕| 999精品在线视频| 国产在线免费精品| 一区二区av电影网| 国产免费视频播放在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀 | 在线观看www视频免费| 尾随美女入室| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 久久久久久久精品精品| 飞空精品影院首页| 久久国产精品大桥未久av| av片东京热男人的天堂| 99久久综合免费| 十八禁高潮呻吟视频| 欧美日韩亚洲综合一区二区三区_| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看 | 高清视频免费观看一区二区| 制服诱惑二区| 亚洲欧美日韩高清在线视频 | 交换朋友夫妻互换小说| 日本av免费视频播放| 亚洲欧美日韩高清在线视频 | 9色porny在线观看| 丝袜在线中文字幕| 看十八女毛片水多多多| 亚洲av男天堂| 久久久久网色| 1024香蕉在线观看| 一区在线观看完整版| 美女福利国产在线| 97在线人人人人妻| 成年美女黄网站色视频大全免费| 又粗又硬又长又爽又黄的视频| 老司机在亚洲福利影院| kizo精华| 日本午夜av视频| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 又大又爽又粗| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 亚洲成国产人片在线观看| 亚洲国产精品成人久久小说| 亚洲视频免费观看视频| 一区在线观看完整版| 午夜日韩欧美国产| 国产在线观看jvid| 国产精品 国内视频| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 夫妻性生交免费视频一级片| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 不卡av一区二区三区| 国产精品国产av在线观看| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 中文字幕制服av| 久久国产精品影院| av线在线观看网站| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 久久热在线av| 亚洲专区国产一区二区| 在线观看免费高清a一片| 波多野结衣av一区二区av| 久久久亚洲精品成人影院| 亚洲欧美日韩高清在线视频 | 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品网址| 亚洲成av片中文字幕在线观看| 一区二区av电影网| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 日本午夜av视频| 亚洲欧美清纯卡通| 国产伦理片在线播放av一区| 成人国产av品久久久| 99国产精品免费福利视频| av福利片在线| 中文字幕高清在线视频| 嫩草影视91久久| 国产精品av久久久久免费| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 亚洲久久久国产精品| 免费在线观看黄色视频的| 一本久久精品| videos熟女内射| 国产女主播在线喷水免费视频网站| 国产男女内射视频| 国产日韩欧美视频二区| 成在线人永久免费视频| xxxhd国产人妻xxx| 在线观看一区二区三区激情| 亚洲欧洲国产日韩| 亚洲图色成人| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| e午夜精品久久久久久久| 999久久久国产精品视频| 麻豆国产av国片精品| 久久精品久久久久久久性| 亚洲精品日韩在线中文字幕| 99热全是精品| 亚洲五月婷婷丁香| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 18在线观看网站| 侵犯人妻中文字幕一二三四区| 伊人亚洲综合成人网| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 大片免费播放器 马上看| 亚洲av美国av| 狂野欧美激情性xxxx| 国产精品国产三级国产专区5o| 校园人妻丝袜中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品亚洲av国产电影网| 精品国产国语对白av| 久久久精品免费免费高清| 国产精品成人在线| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久99精品国语久久久| 一本久久精品| 国产伦理片在线播放av一区| 操美女的视频在线观看| 一级黄片播放器| 色网站视频免费| 精品第一国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| av不卡在线播放| 国产一区二区三区综合在线观看| 精品欧美一区二区三区在线| 亚洲av综合色区一区| 日本a在线网址| 午夜免费鲁丝| 欧美97在线视频| 视频区图区小说| 欧美性长视频在线观看| 国产精品二区激情视频| xxx大片免费视频| 欧美日韩黄片免| 国产女主播在线喷水免费视频网站| av国产精品久久久久影院| 欧美在线黄色| 日本wwww免费看| 亚洲三区欧美一区| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频高清一区二区三区二| 无遮挡黄片免费观看| 亚洲天堂av无毛| 9热在线视频观看99| 精品久久久久久久毛片微露脸 | 久久久精品国产亚洲av高清涩受| 一级黄片播放器| 中文字幕另类日韩欧美亚洲嫩草| 色视频在线一区二区三区| 国产日韩欧美在线精品| 视频区图区小说| 欧美成人午夜精品| 日本a在线网址| 在线观看免费高清a一片| 久久久欧美国产精品| 亚洲免费av在线视频| 老司机靠b影院| 精品免费久久久久久久清纯 | 999久久久国产精品视频| 婷婷色麻豆天堂久久| 欧美国产精品va在线观看不卡| 在线天堂中文资源库| 国产精品三级大全| 亚洲av在线观看美女高潮| 成人手机av| 丝袜脚勾引网站| 国产精品av久久久久免费| 亚洲色图综合在线观看| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 搡老岳熟女国产| 一区在线观看完整版| 亚洲三区欧美一区| 电影成人av| 老司机亚洲免费影院| 老司机影院毛片| 50天的宝宝边吃奶边哭怎么回事| 久久亚洲精品不卡| 首页视频小说图片口味搜索 | 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 国产成人精品久久二区二区免费| 亚洲欧美日韩另类电影网站| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 国产1区2区3区精品| 两个人免费观看高清视频| 国产成人欧美在线观看 | 悠悠久久av| 免费人妻精品一区二区三区视频| 亚洲成人手机| 国产男女超爽视频在线观看| 高潮久久久久久久久久久不卡| 欧美 亚洲 国产 日韩一| 高清不卡的av网站| 黄片小视频在线播放| 婷婷丁香在线五月| 久久精品国产a三级三级三级| 99精品久久久久人妻精品| 久久久久久久大尺度免费视频| 在线观看免费日韩欧美大片| 手机成人av网站| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 国产爽快片一区二区三区| 久久免费观看电影| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 免费在线观看视频国产中文字幕亚洲 | 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 真人做人爱边吃奶动态| 五月开心婷婷网| 一本—道久久a久久精品蜜桃钙片| 青春草亚洲视频在线观看| 亚洲欧美色中文字幕在线| 少妇人妻久久综合中文| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影免费在线| 中文字幕制服av| 青草久久国产| 丝袜在线中文字幕| 中文字幕人妻熟女乱码| 久久久久久久国产电影| 99久久精品国产亚洲精品| 天天影视国产精品| 一边亲一边摸免费视频| 少妇的丰满在线观看| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区 | 丰满饥渴人妻一区二区三| 亚洲av电影在线进入| 亚洲七黄色美女视频| 老司机影院成人| 一级片免费观看大全| a级毛片黄视频| av网站免费在线观看视频| 国产亚洲av高清不卡| 欧美精品一区二区免费开放| 久久久久久久国产电影| av片东京热男人的天堂| 国产精品麻豆人妻色哟哟久久| 国产97色在线日韩免费| av在线app专区| 久久精品国产亚洲av涩爱| 国产片内射在线| 亚洲国产看品久久| 国产成人啪精品午夜网站| 考比视频在线观看| 久久热在线av| 国产精品九九99| 亚洲欧美清纯卡通| 亚洲国产欧美一区二区综合| 精品国产超薄肉色丝袜足j| 又大又黄又爽视频免费| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 久久亚洲国产成人精品v| 国产av国产精品国产| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一出视频| 日韩大码丰满熟妇| 亚洲国产成人一精品久久久| 亚洲免费av在线视频| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www| 精品一区二区三卡| 国产精品亚洲av一区麻豆| av天堂在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产91精品成人一区二区三区 | 中文字幕av电影在线播放| 久久亚洲精品不卡| 狂野欧美激情性xxxx| 一个人免费看片子| 免费人妻精品一区二区三区视频| 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 蜜桃国产av成人99| 日本色播在线视频| 久久人人97超碰香蕉20202| 免费不卡黄色视频| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧洲国产日韩| 91字幕亚洲| 亚洲免费av在线视频| 日韩欧美一区视频在线观看| 国产人伦9x9x在线观看| 日韩视频在线欧美| 久久久精品国产亚洲av高清涩受| 国产视频首页在线观看| 熟女av电影| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 国产欧美日韩一区二区三 | 如日韩欧美国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人久久精品综合| 午夜影院在线不卡| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 咕卡用的链子| 伊人亚洲综合成人网| 性色av一级| 日韩制服骚丝袜av| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 一二三四社区在线视频社区8| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 一级黄色大片毛片| 日韩伦理黄色片| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀 | 久久国产精品大桥未久av| 久久久久网色| 亚洲美女黄色视频免费看| 乱人伦中国视频| 一级片'在线观看视频| 亚洲成人国产一区在线观看 | 波野结衣二区三区在线| 曰老女人黄片| 欧美精品一区二区免费开放| 亚洲伊人色综图| 一边亲一边摸免费视频| 欧美人与善性xxx| 美国免费a级毛片| 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 精品欧美一区二区三区在线| kizo精华| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av高清一级| 日韩一区二区三区影片| 视频区图区小说| 久久狼人影院|