• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sequential nonlinear tracking filte without requirement of measurement decorrelation

    2015-02-11 03:38:49

    School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China

    Sequential nonlinear tracking filte without requirement of measurement decorrelation

    Gongjian Zhou*,Junhao Xie,Rongqing Xu,and Taifan Quan

    School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China

    Sequential measurement processing is of benefi to both estimation accuracy and computational efficienc.When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly.A new sequential processing method,which carries out the sequential updates directly using the correlated measurement components,is proposed.And a typical sequential processing example is investigated,where the converted position measurements are used to estimate target states by standard Kalman filte ing equations and the converted Doppler measurements are then incorporated into a minimum mean squared error(MMSE) estimator with the updated cross-covariance involved to account for the correlated errors.Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filte based on measurement decorrelation.

    sequential filte,Doppler measurement,measurement decorrelation,minimum mean squared error(MMSE).

    1.Introduction

    Targettrackingwith commonlyused sensors,such as radar orsonar,is a typical nonlinearproblemwith the targetstate described in the Cartesian coordinates and the measurements reported in the polar or spherical coordinates.The measurements usually include target position(range and one or two angles)as well as Doppler velocity,which is also called radial velocity or range rate.

    If only the position measurements are considered,the converted position measurement Kalman filte(CPMKF) [1],which can provide satisfactory performance with the converted measurement errors properly calculated and compensated[1–3],is preferable.The advantage of the CPMKF is the using of nonlinear filter since the original position measurements are converted to a Cartesian frame of reference.When the Doppler measurements are also involvedin state estimation,the using of nonlinear fil tering approaches is inevitable due to the lack of a conversion linear in Cartesian states from the Doppler measurements.In order to make full use of the information contained in the Doppler measurements and take the advantages of the CPMKF simultaneously,the sequential processing methods,which are of benefi to both estimationaccuracyandcomputationalefficien y[4,5],wereproposed in[6–9].The linear component(the convertedpositionmeasurements)andthenonlinearcomponent(theoriginal Doppler or convertedDoppler measurements)are processed sequentiallybythe CPMKF anda nonlinearestimator,the unscented Kalman filte(UKF)[6]or the extended Kalman filte(EKF)[7–9].As introduced in[10,11],the range and range rate measurement errors are statistically correlated for some radar waveforms.To perform proper sequential processing,the measurement decorrelation[12] based on Cholesky factorization was used in[6–9]to produce the uncorrelatedness of the corresponding measurement noises.The main advantage of the sequential processing method is that the approximation of nonlinearity operates based on the current estimated state,rather than the predicted state from the last stage in block processing method.However,the decorrelation is performed according to the measurements during the whole filterin procedure.This may cause loss of estimation accuracy and consistency.

    This paper presents a new sequential processing technique,in which the explicit measurement decorrelation is not required[13].The converted position measurements and the converted Doppler measurements(i.e.,the product of the range and range rate measurements[7,8])are used directly in the sequential processing scheme.The correlation is evaluated based on the covariance after the CPMKFinsteadoftheoriginmeasurementcovariance,andis handled implicitly in the minimum mean squared error (MMSE)estimationframework.Thesuperiorityoftheproposed method is illustrated by numerical simulations.

    The rest of this paper is organized as follows.Section 2 describes the formulationof the trackingsystem.The measurement conversions and the converted measurement errors are presentedin Section 3.In Section 4,the new tracking filte is presented,including the formulations of the Cartesian state,the covariance update from the CPMKF, and the fina state updatewhich handles the correlationimplicitly.Monte-Carlo simulations are presented in Section 5 followed by conclusions in Section 6.

    2.Problem formulation

    In Cartesian coordinates,the state of the target is assumed to evolve according to the following equation:

    A 2D Doppler radar is assumed to report measurements of targets in polar coordinates,including range,range rate and azimuth.The measurement equation can be expressed as

    3.Measurement conversions

    As is well known,the position measurements including range and azimuth in polar coordinates can be transformed into linear forms in Cartesian coordinates by

    with the associated covariance as

    The product of the range and Doppler measurements is used to construct the converted Doppler measurements. The debiased converted Doppler measurements are expressed as

    The above is considered as the measurement of the converted Doppler(i.e.,the product of target true range and range rate)

    contaminated by zero-mean Gaussian noises with the variance[8]as

    The measurement nonlinearity is reduced to a quadratic form by introducing the converted Doppler measurements in(14).This allows the using of Taylor series expansionup to the second order to perform nonlinearity approximation with no truncated error.

    Put the converted position and Doppler measurements in one vector,we have

    and the associated covariance

    Due to the common range measurements in both measurement conversions and the correlation between range andDopplermeasurementerrors,theentirecovariancematrix above is not diagonal.The cross-covariance between the converted position and Doppler measurement errors can also be obtained by the nested conditioning method [8]as

    4.Sequential tracking filte

    Themeasurementconversionsin the previoussection yield a measurement vector(18)consisting of two components, one of which is linear and the other is nonlinear in Cartesian states.Sequential processing is suitable for this situation.In the conventional sequential processing methods [6–9,12],the covariance matrix factorization is desired to carry out measurement decorrelation before sequential update.

    This paper presents a new sequential filterin approach, in which the correlation is not required.The two measurement components are used directly to update the states sequentially.Besides the Cartesian states,the crosscovariance between the Cartesian state errors and the converted Doppler measurement errors is updated in the procedure of converted position measurement processing using a standard Kalman filte.The updated states and crosscovariance are then used to incorporate the converted DopplermeasurementsundertheMMSEestimationframe, which only requires the errors are Gaussian for optimality, regardless of noise dependence.

    4.1State update with the linear component

    whereHis the measurement matrix and a constant velocity(CV)model is

    The measurement noise

    is the zero-mean Gaussian noise with known covariance

    The time update and measurement update of the target state are implemented as follows:

    4.2Cross-covariance update with linear component

    To implement the sequential processing properly after the position measurement filtering the cross-covariance between the state errors from the CPMKF,described in the subsection above,and the converted Doppler measurements should be evaluated.

    From the formulations of the CPMKF of(1)and(21)–(28),one can rewrite the state estimates at timekas

    Then the corresponding estimation error is

    MultiplytheabovebytheerroroftheconvertedDoppler measurements,we can get the covariance asHere the assumption that the estimation errors and the process noises at timek?1 are independent of the measurement errors at timekis used and thus the corresponding terms vanish.The cross-covariance between the Cartesian state errors and the converted Doppler measurement errors can be updated by(31)and will be used as the item accounting for the correlation problem.

    4.3State update with the nonlinear component

    Themeasurementequationofthenonlinearcomponentcan be written as

    GiventheupdatedresultsfromtheCPMKF,thestateupdate by the nonlinear component in the measurement vector(18)is done according to the linear MMSE estimation equation

    wheredis the nonlinear functionof the convertedDoppler measurements with respect to the Cartesian states.The Jacobian and Hessian ofdare defined respectively,as

    The higher-order-terms(HOT)are zero,since the converted Doppler is quadratic in Cartesian states.The prior mean of the measurement is obtained by taking expectation of(34)as

    The covariance between the states to be estimated and the measurement can be obtained as

    and the covariance of the measurement is

    Equation(33)carries out the fina state estimate optimally in the sense of MMSE,as long as the errors are Gaussian,which holds obviously in the assumptions of the problem considered.

    The associated covariance is evaluated by

    4.4Filter initialization

    The basic idea of the two-point differencing initialization method[12]is to estimate the initial position and velocity components of the state using the firs two sets of position measurements and fin the initial covariance by the measurement covariance.

    The initial state is given as

    and the initial state is

    whereTis the sensor scanning interval.

    5.Simulation results

    This section compares the performances of the new sequential nonlinear tracking filte,which is referred as SEKF-NEW,and the sequential nonlinear filterin approachwithmeasurementdecorrelationbasedonCholesky factorization(SEKF-CF)is presented in[8].The CPMKF [1],which uses only the position measurements,serves hereas thebaseline,whiletheposteriorCramer-Raobound (PCRLB)[16]is used to indicate the theoretically possible performance expected for a given scenario.

    A target takes a nearly constant velocity motion starting from position[30 km,30 km]with an initial speed of 10 m/s and an initial heading of 60°.The standard deviation of the process noise is 0.01 m/s2in each coordinate. An active radar is fi ed at the origin of the Cartesian coordinates,measuring target range,azimuth and range rate with an interval ofT=1 s.

    Estimation filterin was performed using 100 scans of measurements.Four scenarios are explored and the difference lies in the measurement errors and the correlation coefficienρ,which are shown as follows:

    Scenario 1

    Scenario 2

    Scenario 3

    Scenario 4

    The root mean squared error(RMSE)and the normalizedestimationerrorsquared(NEES)[12]are usedtoevaluate the accuracy and consistency of the tracking filters respectively.The position RMSE is evaluated according to

    and the velocity RMSE is

    The metrics are evaluated based on the Monte-Carlo simulations withM=50.The position RMSE,velocity RMSE and NEES are presented in Figs.1–3,4–6 and 7–9 for scenarios 1–3,respectively.

    Fig.1 Scenario 1:position RMSE

    Fig.2 Scenario 1:velocity RMSE

    For Scenario 1,the SEKF-NEW and SEKF-CF have almost the same performance,approaching the PCRLB and consistency.

    Fig.3 Scenario 1:consistency test

    Fig.4 Scenario 2:position RMSE

    Fig.5 Scenario 2:velocity RMSE

    As the position measurement errors increase toσr= 0.3 km andσθ=0.3°(Scenario 2),there is obviousdifference between the two sequential filter in NEESs and the proposed SEKF-NEW method has better consistency than the SEKF-CF.The RMSEs of the two sequential filter go up due to the large nonlinear approximation errors in the case of large range and azimuth deviations.

    Fig.6 Scenario 2:consistency test

    Fig.7 Scenario 3:position RMSE

    When the position measurement errors increase to an extremely high level withσr=1.0 km andσθ=1.0°, the position RMSE of the SEKF-CF even exceeds that of the CPMKF,as shown in Fig.7.On the contrary,the proposed SEKF-NEW method can still provide better accuracythanthe CPMKF in Scenario3,andbetter consistency than the SEKF-CF.Evaluating and handling the correlation between measurement components after the CPMKF contributestotheperformanceimprovementofthesequential processing.While in the SEKF-CF,the measurement decorrelation is carried out based on the measurements during the whole filterin procedure.This leads to loses of estimation accuracy and consistency.

    Fig.8 Scenario 3:velocity RMSE

    Fig.9 Scenario 3:consistency test

    The influenc of the correlation coefficien to the tracking performance is examined in Scenario 4,where the simulation setup is the same as Scenario 2 except that is changed to–0.9.The conclusion in Scenario 2 still holds here,the SEKF-NEW provides accuracy similar to and consistency better than the SEKF.

    6.Conclusions

    A new sequential processing method,without requirement of measurement decorrelationbefore filtering is presented in this paper.The case of tracking in Cartesian coordinates with position and Doppler measurements observed in polar coordinatesis investigated.First,the convertedposition measurements are processed by the CPMKF.The covariance between the state errors of CPMKF and the converted Doppler measurement errors is evaluated based on the fil tering gain and measurement covariance.Then,a fina estimation method was derived,based on the Taylor series expansion and minimum mean squared error estimation, wherethenonlinearityandcorrelationarehandledsimultaneously and implicitly.Simulation results demonstrate theimprovements in accuracy and consistency of using this new sequential processing method.

    [1]D.Lerro,Y.Bar-Shalom.Tracking with debiased consistent converted measurements versus EKF.IEEE Trans.on Aerospace and Electronic Systems,1993,29(3):1015–1022.

    [2]S.V.Bordonaro,P.Willet,Y.Bar-Shalom.Unbiased tracking with converted measurements.Proc.of the IEEE Radar Conference,2012:741–745.

    [3]L.Mo,X.Song,Y.Zhou,et al.Unbiased converted measurements for tracking.IEEE Trans.on Aerospace and Electronic Systems,1998,34(3):1023–1027.

    [4]S.T.Park,J.G.Lee.Design of a practical tracking algorithm withradar measurements.IEEE Trans.on Aerospace and Electronic Systems,1998,34(4):1337–1344.

    [5]S.T.Park,J.G.Lee.Improved Kalman filte design for threedimensional radar tracking.IEEE Trans.on Aerospace and Electronic Systems,2001,37(2):727–739.

    [6]M.Lei,C.Han.Sequential nonlinear tracking using UKF and raw range-rate measurements.IEEE Trans.on Aerospace and Electronic Systems,2007,43(1):239–250.

    [7]Z.Duan,C.Han,X.R.Li.Sequential nonlinear tracking filte with range-rate measurements in spherical coordinates.Proc. of the 7th International Conference on Information Fusion, 2004:599–605.

    [8]Z.Duan,C.Han.Radar target tracking with range rate measurements in polar coordinates.Journal of System Simulation, 2004,16(12):2860–2863.(in Chinese)

    [9]J.G.Wang,T.Long,P.K.He.Use of the radial velocity measurement in target tracking.IEEE Trans.on Aerospace and Electronic Systems,2003,39(2):401–413.

    [10]Y.Bar-Shalom.Negative correlation and optimal tracking with range rate measurements.IEEE Trans.on Aerospace and Electronic Systems,2001,37(3):1117–1120.

    [11]R.Niu,P.Willett,Y.Bar-Shalom.Tracking considerations in selection of radar waveform for range and range-rate measurements.IEEE Trans.on Aerospace and Electronic Systems, 2002,38(2):467–487.

    [12]Y.Bar-Shalom,X.R.Li,T.Kirubarajan.Estimation with applications to tracking and navigation:theory,algorithms,and software.New York:Wiley,2001.

    [13]G.J.Zhou,C.J.Yu,T.F.Quan,et al.A sequential tracking fil ter without requirement of measurement decorrelation.Proc. of the 15th International Conference on Information Fusion, 2012:2243–2248.

    [14]X.R.Li,V.P.Jilkov.A survey of maneuvering target tracking—part I:dynamics models.IEEE Trans.on Aerospace and Electronic Systems,2003,39(4):1333–1364.

    [15]X.R.Li,V.P.Jilkov.A survey of maneuvering target tracking—part III:measurement models.Proc.of the SPIE Conference on Signal and Data Processing of Small Targets,2001: 423–446.

    [16]P.Tichavsky,C.H.Muravchik,A.Nehorai.Posterior Cramer-Rao bounds for discrete-time nonlinear filteringIEEE Trans.on Signal Processing,1998,46(5):1396–1836.

    Biographies

    Gongjian Zhouwas born in 1979.He received his B.S.,M.S.and Ph.D.degrees in information and communication engineering from Harbin Institute of Technology,Harbin,China,in 2000,2002 and 2008,respectively.From April 2011 to May 2012, he was a visiting scholar with the Department of Electrical and Computer Engineering at McMaster University,Hamilton,Ontario,Canada.Currently, he is an associate professor and a supervisor of Ph.D.candidate with the Department of Electronic Engineering at Harbin Institute of Technology.His research interests are estimation,tracking,signal processing, data fusion,detection and radar system.

    E-mail:zhougj@hit.edu.cn

    Junhao Xiewas born in 1972.He received his B.S.and M.S.degrees in electrical engineering from Harbin Engineering University,Harbin,China,in 1992 and 1995,respectively.In 2001,he received the Ph.D.degree in information and communication engineering from Harbin Institute of Technology,Harbin,China.Currently,he is a professor in the Department of Electronic Engineering,Harbin Institute of Technology.His research interests involve new type radar systems,radar signal processing and radio oceanic remote sensing.

    E-mail:xj@hit.edu.cn

    Rongqing Xuwas born in 1958.He received his B.S.,M.S.and Ph.D.degrees in information and communication engineering fromHarbin Institute of Technology,Harbin,China,in 1982,1984 and 1990, respectively.Currently he is a professor with the Department of Electronic Engineering at Harbin Institute of Technology.His research interests are radar system,signal processing,clutter cancellation and array signal processing.

    E-mail:xurongqing@hit.edu.cn

    Taifan Quanwas born in 1949.He received his B.S. degree from the Automation Department,Tsinghua University,Beijing,China,in 1977 and M.S.degree from the Control Engineering Department,Harbin Institute of Technology,Harbin,China,in 1983. He was a visiting professor with the Department of Electrical and Computer Engineering at Osaka University,Osaka,Japan from 1992 to 1993.Currently he is a professor with the Department of Electronic Engineering,Harbin Institute of Technology.His research interests are tracking,neural network,information fusion and signal processing.

    E-mail:quantf@hit.edu.cn

    10.1109/JSEE.2015.00123

    Manuscript received October 28,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61201311,61132005)and the Aerospace Science Foundation of China(20142077010).

    亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 老女人水多毛片| 蜜桃亚洲精品一区二区三区| 国产精品嫩草影院av在线观看| 久久这里只有精品中国| 午夜福利网站1000一区二区三区| 看免费成人av毛片| 国产精品一区www在线观看| 一级二级三级毛片免费看| 欧美精品国产亚洲| 热99在线观看视频| 久久久久久九九精品二区国产| 中文字幕制服av| 国产一区二区亚洲精品在线观看| 国产女主播在线喷水免费视频网站 | 亚洲av男天堂| 国产激情偷乱视频一区二区| 亚洲欧美中文字幕日韩二区| 亚洲熟妇中文字幕五十中出| av在线蜜桃| 日韩欧美一区视频在线观看 | 日韩av在线大香蕉| 我的女老师完整版在线观看| 美女主播在线视频| 麻豆成人av视频| 国产亚洲一区二区精品| 久久综合国产亚洲精品| av免费观看日本| 女人久久www免费人成看片| 久久精品国产亚洲av天美| 欧美成人a在线观看| av免费在线看不卡| 午夜福利在线观看免费完整高清在| 在线观看人妻少妇| 在线 av 中文字幕| av国产久精品久网站免费入址| 国产成人a∨麻豆精品| 噜噜噜噜噜久久久久久91| 国产一区二区亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 97人妻精品一区二区三区麻豆| 天天一区二区日本电影三级| 成年av动漫网址| 亚洲人与动物交配视频| 亚洲成人久久爱视频| 午夜爱爱视频在线播放| 免费观看的影片在线观看| 日本猛色少妇xxxxx猛交久久| 人体艺术视频欧美日本| 国产精品久久视频播放| 少妇的逼好多水| 熟女电影av网| 亚洲无线观看免费| 日韩电影二区| 成人综合一区亚洲| 中文字幕人妻熟人妻熟丝袜美| 最近的中文字幕免费完整| 国产亚洲午夜精品一区二区久久 | 久久久久国产网址| 日本一本二区三区精品| 国产亚洲一区二区精品| 男插女下体视频免费在线播放| 一区二区三区免费毛片| 欧美成人a在线观看| 大片免费播放器 马上看| 国产国拍精品亚洲av在线观看| 日韩不卡一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 欧美激情久久久久久爽电影| 国产午夜精品一二区理论片| 美女被艹到高潮喷水动态| 天堂网av新在线| 乱码一卡2卡4卡精品| 国产成人aa在线观看| 我的女老师完整版在线观看| 精品人妻偷拍中文字幕| 黄色日韩在线| 精品国产露脸久久av麻豆 | 男女边摸边吃奶| 国产淫语在线视频| 国产中年淑女户外野战色| 日日干狠狠操夜夜爽| 亚洲国产欧美在线一区| 亚洲熟女精品中文字幕| 国内精品美女久久久久久| 久久久久国产网址| 尾随美女入室| 日日摸夜夜添夜夜添av毛片| 亚洲三级黄色毛片| 青春草国产在线视频| 午夜福利视频精品| 2018国产大陆天天弄谢| 2021天堂中文幕一二区在线观| 色网站视频免费| 精品久久久久久久人妻蜜臀av| 亚洲av不卡在线观看| 亚洲av免费高清在线观看| 观看美女的网站| 亚洲18禁久久av| 日本色播在线视频| 欧美三级亚洲精品| 成人亚洲精品一区在线观看 | 亚洲精品乱码久久久久久按摩| 国产有黄有色有爽视频| 亚洲精品亚洲一区二区| 日本wwww免费看| 精品午夜福利在线看| 中文精品一卡2卡3卡4更新| 中文欧美无线码| 永久免费av网站大全| 22中文网久久字幕| 亚洲精品视频女| 日本与韩国留学比较| 高清午夜精品一区二区三区| 丝袜喷水一区| 又爽又黄无遮挡网站| 一级黄片播放器| 久久人人爽人人片av| 97精品久久久久久久久久精品| 日韩一区二区三区影片| 人妻少妇偷人精品九色| 国产高清国产精品国产三级 | 人妻少妇偷人精品九色| av国产久精品久网站免费入址| 美女xxoo啪啪120秒动态图| 啦啦啦中文免费视频观看日本| 一二三四中文在线观看免费高清| 午夜老司机福利剧场| 大片免费播放器 马上看| 卡戴珊不雅视频在线播放| 一区二区三区四区激情视频| av在线天堂中文字幕| 九色成人免费人妻av| 精品久久久久久久久av| 97在线视频观看| 男人狂女人下面高潮的视频| 亚洲最大成人av| 午夜激情久久久久久久| 美女国产视频在线观看| 国产av在哪里看| 亚洲av日韩在线播放| 国产极品天堂在线| 亚洲成人中文字幕在线播放| 亚洲av成人精品一二三区| 免费不卡的大黄色大毛片视频在线观看 | 人体艺术视频欧美日本| 伊人久久精品亚洲午夜| 波多野结衣巨乳人妻| 国产高清三级在线| 免费黄网站久久成人精品| 一级av片app| 日韩一区二区三区影片| 麻豆精品久久久久久蜜桃| 成人鲁丝片一二三区免费| 亚洲人成网站在线播| 国产高清三级在线| 久久精品国产鲁丝片午夜精品| 国产69精品久久久久777片| 久久午夜福利片| 搡老妇女老女人老熟妇| 淫秽高清视频在线观看| 久久人人爽人人爽人人片va| 搡女人真爽免费视频火全软件| 亚洲国产精品sss在线观看| 国产乱人视频| 国产女主播在线喷水免费视频网站 | 免费观看av网站的网址| 亚洲无线观看免费| 国产乱来视频区| 亚洲国产色片| 性插视频无遮挡在线免费观看| 亚洲乱码一区二区免费版| 久久久久久久久久久免费av| 亚洲国产精品国产精品| 午夜福利成人在线免费观看| 人妻少妇偷人精品九色| 在现免费观看毛片| 18禁裸乳无遮挡免费网站照片| 日韩av在线大香蕉| 久久精品久久精品一区二区三区| 国产精品精品国产色婷婷| 日韩av免费高清视频| 国产精品一区二区三区四区久久| 精品久久久久久电影网| 美女国产视频在线观看| 欧美日韩在线观看h| 美女大奶头视频| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区三区| 久久99热这里只频精品6学生| 视频中文字幕在线观看| 69av精品久久久久久| 亚洲最大成人手机在线| 亚洲国产色片| 午夜精品在线福利| 午夜激情福利司机影院| 午夜精品国产一区二区电影 | av一本久久久久| 久久人人爽人人爽人人片va| 国产成人精品婷婷| 最近最新中文字幕免费大全7| 亚州av有码| 男女国产视频网站| 五月天丁香电影| 亚洲av在线观看美女高潮| 波多野结衣巨乳人妻| 日本免费在线观看一区| 国产精品福利在线免费观看| 日产精品乱码卡一卡2卡三| 两个人的视频大全免费| 中文天堂在线官网| 亚洲精品久久久久久婷婷小说| 亚洲精品成人久久久久久| 九九久久精品国产亚洲av麻豆| 国产真实伦视频高清在线观看| 99久久精品热视频| 一级二级三级毛片免费看| 一本久久精品| 欧美成人精品欧美一级黄| 特大巨黑吊av在线直播| 国产91av在线免费观看| 午夜免费观看性视频| 一级毛片黄色毛片免费观看视频| 国产熟女欧美一区二区| 亚洲第一区二区三区不卡| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 亚洲国产欧美人成| 一区二区三区乱码不卡18| 国产中年淑女户外野战色| 简卡轻食公司| 性插视频无遮挡在线免费观看| 婷婷色av中文字幕| 久热久热在线精品观看| 久热久热在线精品观看| 99热这里只有是精品50| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 十八禁网站网址无遮挡 | 人妻系列 视频| 男人狂女人下面高潮的视频| 成人亚洲精品av一区二区| 中文字幕人妻熟人妻熟丝袜美| 日本一本二区三区精品| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 国产白丝娇喘喷水9色精品| 日韩精品青青久久久久久| 色吧在线观看| 亚洲精品乱久久久久久| 777米奇影视久久| 色综合站精品国产| 视频中文字幕在线观看| 91精品伊人久久大香线蕉| 午夜免费激情av| 成年人午夜在线观看视频 | 亚洲av电影不卡..在线观看| 直男gayav资源| 国产色婷婷99| 中文字幕av在线有码专区| 国产一区二区三区综合在线观看 | 又爽又黄a免费视频| 欧美97在线视频| 小蜜桃在线观看免费完整版高清| 日韩成人伦理影院| 国产高清不卡午夜福利| 国产免费一级a男人的天堂| 精品人妻视频免费看| 国产一区亚洲一区在线观看| 国产精品女同一区二区软件| 亚洲欧美中文字幕日韩二区| 亚洲人成网站高清观看| 国产精品.久久久| 精品人妻视频免费看| 日韩强制内射视频| 乱系列少妇在线播放| 十八禁国产超污无遮挡网站| 久久亚洲国产成人精品v| 少妇高潮的动态图| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 能在线免费观看的黄片| 精品一区二区三卡| 精品国产一区二区三区久久久樱花 | 久久99热6这里只有精品| 亚洲国产成人一精品久久久| 欧美日本视频| 人人妻人人澡欧美一区二区| 又粗又硬又长又爽又黄的视频| 亚洲国产最新在线播放| 中文字幕免费在线视频6| av专区在线播放| 黄色一级大片看看| 日韩av不卡免费在线播放| 成人国产麻豆网| or卡值多少钱| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 内地一区二区视频在线| 尾随美女入室| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 99热全是精品| 青春草视频在线免费观看| 欧美区成人在线视频| 99热网站在线观看| 高清欧美精品videossex| 亚洲成人一二三区av| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久久久av| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 亚洲国产精品成人综合色| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 天堂影院成人在线观看| 国产毛片a区久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲av电影在线观看一区二区三区 | 一个人看视频在线观看www免费| 美女脱内裤让男人舔精品视频| 国产极品天堂在线| 亚洲精品色激情综合| 女人十人毛片免费观看3o分钟| 国产精品美女特级片免费视频播放器| 精品99又大又爽又粗少妇毛片| 小蜜桃在线观看免费完整版高清| 国产精品一区二区性色av| 一级毛片 在线播放| 午夜福利视频精品| 午夜福利成人在线免费观看| 久久99热6这里只有精品| 婷婷色av中文字幕| 特级一级黄色大片| 又大又黄又爽视频免费| 免费观看在线日韩| 精品国产露脸久久av麻豆 | 搡老妇女老女人老熟妇| 免费看av在线观看网站| 黄色配什么色好看| 亚洲怡红院男人天堂| 在现免费观看毛片| 小蜜桃在线观看免费完整版高清| 国产免费福利视频在线观看| 日韩伦理黄色片| 欧美性猛交╳xxx乱大交人| 在线 av 中文字幕| 美女被艹到高潮喷水动态| 亚洲欧美精品专区久久| 国产免费视频播放在线视频 | 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 日本一本二区三区精品| 日韩精品青青久久久久久| 观看美女的网站| 精品久久久久久久久久久久久| 全区人妻精品视频| 丰满乱子伦码专区| 乱系列少妇在线播放| 人妻一区二区av| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 久久久久久久大尺度免费视频| 99久久九九国产精品国产免费| 国产伦精品一区二区三区视频9| 两个人视频免费观看高清| 99热这里只有是精品在线观看| 久久久久久久久中文| 99re6热这里在线精品视频| 国产午夜精品久久久久久一区二区三区| 床上黄色一级片| 久久精品夜色国产| 国产成人午夜福利电影在线观看| 蜜臀久久99精品久久宅男| 亚洲精品国产成人久久av| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 一个人看视频在线观看www免费| 成人毛片a级毛片在线播放| 少妇的逼好多水| 午夜精品在线福利| 在线观看人妻少妇| 在线a可以看的网站| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜 | 嫩草影院精品99| 国产成人aa在线观看| 高清视频免费观看一区二区 | 久久国内精品自在自线图片| 国产精品精品国产色婷婷| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 国产精品一及| 亚洲va在线va天堂va国产| 又爽又黄无遮挡网站| 国产在线男女| 午夜福利网站1000一区二区三区| 久久久久久久久久黄片| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| www.av在线官网国产| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 80岁老熟妇乱子伦牲交| 午夜日本视频在线| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 噜噜噜噜噜久久久久久91| 国产中年淑女户外野战色| 国产午夜精品论理片| 亚洲精品日韩av片在线观看| 69av精品久久久久久| 中文在线观看免费www的网站| 看十八女毛片水多多多| 久久国产乱子免费精品| 最近中文字幕高清免费大全6| 一级av片app| 人妻制服诱惑在线中文字幕| 黄片wwwwww| 久久97久久精品| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 日本免费在线观看一区| 好男人视频免费观看在线| 女人被狂操c到高潮| 免费无遮挡裸体视频| 美女国产视频在线观看| 免费黄色在线免费观看| 人妻一区二区av| 免费av毛片视频| 最近2019中文字幕mv第一页| 人妻一区二区av| 最新中文字幕久久久久| 一二三四中文在线观看免费高清| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 欧美3d第一页| 你懂的网址亚洲精品在线观看| 一级毛片电影观看| 亚洲av电影不卡..在线观看| 国产一级毛片七仙女欲春2| 男女国产视频网站| 亚洲av电影不卡..在线观看| 国产午夜福利久久久久久| 国国产精品蜜臀av免费| 成人鲁丝片一二三区免费| 成人亚洲精品一区在线观看 | 亚洲熟妇中文字幕五十中出| 国产成人aa在线观看| 国产毛片a区久久久久| 亚洲av免费在线观看| 久久久久性生活片| 免费av不卡在线播放| 久久精品综合一区二区三区| 婷婷色av中文字幕| av天堂中文字幕网| 国产男人的电影天堂91| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 99久久精品热视频| 国产片特级美女逼逼视频| 免费av观看视频| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 亚洲av中文字字幕乱码综合| 亚洲自拍偷在线| 一区二区三区免费毛片| 国产探花在线观看一区二区| 日产精品乱码卡一卡2卡三| av在线播放精品| 高清在线视频一区二区三区| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 99久久人妻综合| 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 国产在线一区二区三区精| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 国产91av在线免费观看| 日本黄大片高清| 国产综合精华液| 乱码一卡2卡4卡精品| 中文字幕av成人在线电影| av在线播放精品| 天堂网av新在线| 深夜a级毛片| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 国产一区二区在线观看日韩| 亚洲av免费高清在线观看| 色5月婷婷丁香| 最近最新中文字幕免费大全7| 中文字幕亚洲精品专区| 欧美三级亚洲精品| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂 | 男人舔女人下体高潮全视频| 亚洲av免费高清在线观看| 内射极品少妇av片p| 黑人高潮一二区| 免费看日本二区| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 午夜视频国产福利| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| 波野结衣二区三区在线| 色吧在线观看| 国内精品宾馆在线| 搞女人的毛片| 丰满乱子伦码专区| 亚洲天堂国产精品一区在线| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| 久久久久九九精品影院| 高清在线视频一区二区三区| 肉色欧美久久久久久久蜜桃 | 免费av毛片视频| 成人亚洲精品av一区二区| 汤姆久久久久久久影院中文字幕 | 国产精品久久久久久久久免| 熟女电影av网| 丝袜美腿在线中文| 80岁老熟妇乱子伦牲交| 一级毛片 在线播放| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 一级毛片我不卡| 高清视频免费观看一区二区 | 久久草成人影院| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 三级经典国产精品| 在线观看美女被高潮喷水网站| 精品久久久噜噜| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 色网站视频免费| av在线天堂中文字幕| av在线老鸭窝| 国产不卡一卡二| 久久久久性生活片| 亚洲欧美精品自产自拍| 91久久精品国产一区二区成人| 欧美变态另类bdsm刘玥| 高清日韩中文字幕在线| 国产一级毛片在线| 亚洲精品自拍成人| 国内精品宾馆在线| 亚洲av二区三区四区| 乱人视频在线观看| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美一区二区三区国产| 在线天堂最新版资源| 国精品久久久久久国模美| 波多野结衣巨乳人妻| 26uuu在线亚洲综合色| 国产美女午夜福利| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 美女高潮的动态| 在线观看av片永久免费下载| 最近手机中文字幕大全| 国产精品一区二区在线观看99 | 一区二区三区免费毛片| 黄色一级大片看看| 一个人免费在线观看电影| 亚洲人成网站在线观看播放| 亚州av有码| 丝袜喷水一区| 亚洲综合色惰| 国产久久久一区二区三区| 国产不卡一卡二| 91精品国产九色| 亚洲精品,欧美精品| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 禁无遮挡网站| 欧美三级亚洲精品| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 国产精品伦人一区二区| av免费观看日本| 午夜福利成人在线免费观看| 国内揄拍国产精品人妻在线| 天堂俺去俺来也www色官网 | 久久精品国产自在天天线| 亚洲成人一二三区av| 亚洲乱码一区二区免费版| 免费看av在线观看网站| 亚洲欧美日韩无卡精品| 久久99热6这里只有精品| 久久99精品国语久久久| 99热全是精品| 日产精品乱码卡一卡2卡三| 午夜激情欧美在线| 精品国产一区二区三区久久久樱花 |