• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flight Control System of Unmanned Aerial Vehicle

    2015-02-10 16:36:07PuHuangzhong浦黃忠ZhenZiyang甄子洋XiaMan夏曼
    關(guān)鍵詞:黃忠

    Pu Huangzhong(浦黃忠),Zhen Ziyang(甄子洋)*,Xia Man(夏曼)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Flight Control System of Unmanned Aerial Vehicle

    Pu Huangzhong(浦黃忠)1,Zhen Ziyang(甄子洋)2*,Xia Man(夏曼)2

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,a ground station,mission planning and management subsystem,navigation system and so on.Eurthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques. Einally,the future of UAVs flight control techniques is forecasted.

    unmanned aerial vehicle(UAV);flight control;optimal control;adaptive control;intelligent control

    0 Introduction

    Unmanned aerial vehicle(UAV)is also commonly referred to as aerial robot and unmanned aerial system(UAS)adopted by the US Department of Defense and the Civil Aviation Authority of the UK.The design and application of UAVs begin to skyrocket around the world nowadays since UAVs play an important role in military missions,such as reconnaissance,attack,surveillance,fire fighting,and target tracking.In civilian applications,UAVs also have been used for insecticide spray,patrolling railway,transmission line inspection,goods transportation,and so on.

    Ref.[1]summarized the main characteristics of micro and mini fixed-wing,rotary-wing,and multi-rotor UAS according to a weight-based categorization,i.e.,″micro″,which refers to UAS less than 5 kg,″mini″(less than 30 kg),and″tactical″(less than 150 kg).A large number of world-wide UASs,categorized by size,weight,operating range as well as certification potential are provided in Ref.[2].The command,control and communication technologies for UAVs are overviewed in Ref.[3].A review of available opensource hardware and software for UAS can be found in Ref.[4].

    UAVs can be remotely controlled by a ground control station,or can be fly autonomously based on many kinds of automatic flight control systems(ECSs)and flight management systems. Authors recapitulate the UAS for the system constituted by a UAV,a ground control station(GCS)and a communication data link for the flight commands and control from the GCS.Eurthermore,other UAV components are considered critical,such as autopilots,navigation sensors,vision sensors,mechanical servos,and wireless systems.

    1 Unmanned Aerial System

    Autonomous flight of UAV depends on the following capabilities:localization,path planning,and control,where localization is defined asthe positioning for UAV in surrounding space,path planning chooses the feasible route and gives guidance for control,and control is to guarantee the flight performance of UAV.Therefore,high levels of integrity and reliability are required for a UAV system.

    1.1 Unmanned aerial vehicle

    Since the first UAV was manufactured by the Americans Lawrence and Sperry in 1916,the U.S.has owned the highest techniques for designing UAVs in the world and has developed many typical UAVs.Among them,Northrop Grumman RQ-4 Global Hawk,a UAV for surveillance,is initially designed by Ryan Aeronautical which provides a systematic surveillance and broad overview by high resolution synthetic aperture radar(SAR)and long-range electro-optical/infrared sensors with long loiter times over target areas. Predator,designed by General Atomics Aeronautical Systems,is a UAV for surveillance and reconnaissance.It has been configured with air-toair or air-to-ground weapons,and joined the military actions in Balkans,Southwest Asia,and Middle East.X-47,designed by Northrop Grumman,is an unmanned combat vehicle which has been successfully recovered from the aircraft carrier in recent years.X-43 is an unmanned hypersonic aircraft as a part of the X-plane series,specifically of Hyper-X program of NASA,which is the fastest aircraft on record at approximately 11 000 km/h.Boeing X-37 known as orbital test vehicle(OTV)is an reusable unmanned spacecraft.Boeing X-51 is an unmanned scramjet demonstration aircraft for hypersonic flight.Eurthermore,there are many other kinds of UAVs designed by USA and other countries,such as MQ-8B Eire Scout(USA),RQ-5A Hunter(USA),Spektre(UK),Kestrel(Erance),Kleinfluggerat Zielortung(Germany),Pioneer(State of Israel),and so on.

    The UAV techniques in China have been rapidly developed these years.The development of UAVs in China is mainly undertaken by aerospace scientific research institutions.Especially,Nanjing University of Aeronautics and Astronautics,Northwestern Polytechnical University and Beihang University are the three major institutions.Every two years,the China International Aviation&Aerospace Industries is exhibited in Zhuhai of Guangdong Province of China.UAS China Conference&Exhibition has been held for the fifth time,and in the fifth meeting Nanjing University of Aeronautics and Astronautics displays a spy drone for trade and business,a short range spy drone,a long-endurance reconnaissance UAV,and a small integrated reconnaissance and strike UAV.In the second Aviation Industry Corporation of China(AVIC)Cup-International UAV Innovation Grand Prix held in Beijing 2013,Nanjing University of Aeronautics and Astronautics won several awards in competitions.In the above meetings and activities,new kinds of UAVs impressed most visitors.

    Compared with the manned aircrafts,UAVs have many particular characteristics.Eor instance,the autonomous flight capability is one of the characteristics,which means the system autonomously generates the optimized control strategy and completes a variety of missions without human intervention via online environment perception and information processing.Realization of the autonomous control of UAVs and improvement of intelligence degree are two important development trends of UAVs.Since there are no cockpit and environmental control lifesaving equipments,UAV is lightweight and thereby restrictions on its design conditions can be lossened.Normally,the economic cost of UAV is much lower than that of a manned aircraft. Thanks to flexible operation,UAV can replace the manned aircraft in various dangerous and hazardous tasks.

    1.2 Subsystems of UAV

    One of the main UAV components is the autopilot system.It can monitor and control many of the aircraft subsystems,provide artificial stability and improve the flying qualities of a UAV. Initially,the autopilot systems were primarilyconceived to stabilize the aircraft once disturbed from equilibrium of flight attitude.Modern autopilot systems are much more complex and essential to flight paramedic in flight control,navigation and guidance,flight management,stability augmentation,as well as take-off and landing operations.A survey of UAS autopilots can be found in Ref.[5]and a comprehensive compilation of the main brands of UAS autopilots is provided in UAV MarketSpace[6].An autopilot system for a small flying wing UAV is described,which only consists of a single axis rate gyro,a pressure sensor,and a GPS receiver[7].In the research being done in Cal Poly Pomona using a Piccolo II autopilot on autonomous UAV,a dynamics model was then used in the hardware-inthe-loop(HIL)simulation environment for the determination of feedback gains required for the autonomous flight.Einally,the autopilot is integrated into UAV for autonomous flying[8].The topic of this paper is the development and integration of the autopilot and avionics package in the UAV platform.We describe the selection process and configuration for an autopilot and avionics package,and then integrate them into a hobby remote control aircraft being configured for autonomous flight[9].Ref.[10]designed a longitudinal autopilot for the entire flight envelope of a Jindivik UAV,and used a linear parameter-varying method based on H1 gain-scheduling control to guarantee the stability,robustness and performance of the aircraft[10].

    All UAVs have a ground station where they are given commands,and video or aerial images are relayed.The pilots can fly the UAVs through it.GCSs are transportable hardware and software devices being stationary on ground or mobile platform to monitor the UAVs for mission and safety requirements.GCS is vital in applications,especially when the UAS integrates with air traffic control(ATC)in non-segregated airspace[2].The data of UAV states and the image data obtained by the cameras can be transmitted to the GCSs. The commands and control parameters are sent back to UAVs through data links,which enables UAV to interface with human intelligence.In Ref.[11]a universal and interoperable ground station simulator for UAVs was presented,which considered the compliance with NATO Combined/Joint Services Operational Environment(STANAG 4586)and assigned the UAV a certain degree of autonomy.It is known that multimodal technologies may improve operator performance in GCS,and information through sensory channels is also the benefit of addressing high information loads.Ref.[12]explored different techniques that can be applied to the development of GCS equipped with a multimodal interface.The interface was comprised of three screens and managed by a single operator.The system integrated visual,aural and tactile modalities,and multiple experiments showed that the use of those modalities had improved the performance of the system[12].

    An important component of UAS for geodata acquisition is the mission planning and flight management subsystem,which is the key for competitive exploitation of UAS for remote sensing and photogrammetry[2].Path planning guides the UAV to find a feasible path which is safe and meets kinematic and optimization constrains. Many approaches had been used in path planning algorithms,mainly including three sorts:the first sort is the algorithms based on grid,the second is the optimization algorithms based on intelligent algorithm,and the last is the algorithms based on curves.Besides,UAV path planning is divided into static and dynamic ones.The static path planning constructs a route once from the initial position to the final position,whereas dynamic path planning requires online path replanning.Eor interception of a moving target,dynamic path planning must be implemented along the movement of the target.Several dynamic path planning approaches were presented by researchers.Eor instance,Zhen proposed rapidlyexploring random tree(RRT)algorithm to solve the problem of cooperative path replanning for multiple UAVs under timing constraints[13].

    Navigation system is also a critical compo-nent for UAS.The autopilot repeatedly reads the aircraft′s position,velocity and attitude from the system and uses it in the ECS.A UAS is usually automatically piloted by an autopilot based on two main navigation technologies,global navigation satellite systems(GNSS)(such as GPS)and inertial navigation systems(INS),which can also be fused in certain navigation structures[14].

    2 Flight Control Approach

    Autonomous flight control technology is the key to complete tasks for UAVs.According to Ref.[15],autonomous control can be divided into three types:adaptive autonomy that adapts UAV for all kinds of uncertainty,such as the uncertainties of aircraft,environment and tasks;cooperative autonomy that makes UAV collaborate with other agents as an independent agent;and learning autonomy that has the ability of learning to correct and optimize.

    Design of ECS depends on the development of control theory.In recent years,various control methods have been utilized for the design and analysis of UAV control systems,such as linear feedback control,optimal control,adaptive/robust control,nonlinear control,and intelligent control.

    2.1 Linear feedback control

    Proportion integration differentiation(PID)control is still the most popular method for UAV control engineering due to its simplicity and reliablity.The development in processing capabilities enables the feasible use of new costly computational control methods like the model predictive control(MPC)on real-time applications.An MPC implemented on an internal loop capacitates PID autopilot to add new capabilities into the internal loop through little corrections on its control demands[16].

    Vanek presented a dynamic control allocation architecture for the design of reconfigurable and fault-tolerant control systems in UAV,which was based on linear parameter-varying(LPV)control methods.The design was demonstrated on the lateral axis motion of the NASA Air STAR Elight Test Vehicle simulation model[17].

    Optimal control is a modern control used in ECSs[18].Zhen proposed an information fusion based optimal control(IEBOC)algorithms and applied them to the attitude control and trajectory tracking control of UAVs.The IEBOC method fuses the information of system model,performance index function and desired future state or output trajectory to estimate an optimal control input[19-20].

    2.2 Adaptive and nonlinear control

    Eor the nonlinear system dynamics and physical limitations such as actuator saturation and state constraints,the common linear controllers generally are difficult to provide good tracking performance.

    The back-stepping control technique applies a recursive procedure to the dynamic system model for stabilization,which needs to be compatible with a strict-feedback form.Based on Lyapunov method,an input profile is defined to guide the system to a desired stable state.Back-stepping can be used in combination with adaptive techniques that is adaptive back-stepping.It expands the application in non-affine systems in presence of modeling errors,external perturbations or even dramatic modifications of its dynamic equations.There is an increasing interest in adaptive and nonlinear control for aircrafts,especially UAVs.In Ref.[21],a modeling process which involves the estimation of aerodynamic and propulsion system structure and parameters is carried out,and the back-stepping control is applied to nonlinear flight controller design.Einally,the convergence of the system relative to a reference and the robustness in terms of modeling errors is ensured by this method.Ref.[22]presented a mini-UAV attitude controller using a back-stepping control method.

    Sliding mode control(SMC)exhibits robust performance against the strong uncertainties in system dynamics.The feedback structure is altered when the system state crosses each disconti-nuity surface.The system possesses high robustness against uncertainties of various kinds while on the sliding mode,so it is attractive for controlling the uncertain systems.Ref.[23]presented a tracking algorithm based on sliding mode control that enabled a fixed-wing UAV to keep tracking an uncooperative moving target.It is ensured that the UAV could maintain a persistent circular motion with respect to the moving target if the target was not far away from the UAV.Asymptotic stability was achieved for the tracking algorithm. SMC theory has also been applied to decentralized controller design for consensus and formation control of UAVs swarms,which enables a connected and leaderless UAVs swarm to reach a unification in altitude and heading angle autonomously[24].Babaei et al.developed an efficient flight control strategy combined a classic controller as a basic autopilot and a multi-objective genetic algorithm-based fuzzy output SMC,which was robust to parametric uncertainties,un-modeled nonlinear terms,and external disturbances[25].

    A nonlinear control law based on the inputoutput linearization technique for a pan-tilt camera to be installed on-board a fixed wing UAV was proposed in Ref.[26].The aim of camera gimbals control was to automatically track a moving target on ground.After introducing a nonlinear dynamics model of a UAV,an adaptive controller based on feedback linearization and using Lyapunov stabilized method was proposed to perform perfect path tracking maneuvers[27].A combination of linear model predictive control(LMPC)and feedback linearization(EL)was implemented on an autonomous team of UAVs to accomplish dynamic encirclement[28].

    In model reference adaptive control(MRAC),the modeling uncertainty is often assumed to be parameterized with unknown ideal time-invariant parameters.The convergence of parameters of the adaptive element to these ideal parameters is beneficial,as it guarantees exponential stability and makes an online learned model of the system available.Most MRAC methods, however,require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values.Ref.[29]investigated an MRAC adaptive control method that leveraged the increasing ability to online record and process data by neural networks used as adaptive elements,which was verified by the flight test of a UAV.

    Yang et al.presented an adaptive nonlinear model predictive control(NMPC)for the pathfollowing control of a UAV,which guaranteed accurate tracking performance,by varying the control horizon according to the path curvature profile for tight tracking[30].

    2.3 Intelligent control

    Recently,the artificial intelligence-based technique has represented an alternative design method for various control systems.An intelligent control scheme based on recurrent wavelet neural networks(RWNN)for trajectory tracking of a UAV was investigated in Ref.[31].RWNN was suitable for dynamic system approximation and used to mimic an ideal controller.Moreover,the adaptive tuning laws were designed by slidingmode approach.The control performance of UAV was examined under the condition of control effort deterioration and crosswind disturbance[31].Several fuzzy logic PID controllers and fuzzy logic-based sliding mode adaptive controller were designed for stable autopilot system of UAV[32].

    Pu and Zhen presented a novel intelligent control strategy based on a brain emotional learning(BEL)algorithm,which was investigated in the application of attitude control of a UAV.BEL was used to regulate the control gains of traditional flight controllers on-line.Obviously,a BEL intelligent control system is self-learning and self-adaptive,which is important for UAVs when flight conditions change,while traditional ECSs remain unchanged after design[33].

    Swarm optimization algorithms or evolutionary algorithm is one of bionic optimization techniques which is intelligent,random and heuristic.Genetic algorithm(GA)as an evolutionary algorithm can be used to optimize the gains for a variety of control approaches for UAVs[34].An improved particle swarm optimization(PSO)algorithm[35]and an improved frog shuffled leaping algorithm(SELA)[36]are presented to determine the UAV flight controller parameters,which provide an automatic searching method for controller gains.

    3 Conclusions

    In future,flying capability will open new opportunities in UAV applications,such as search and rescue,surveillance navigations and mapping operations.To keep the UAV flying steadily,and even to complete special missions,all important parts of UAV system should be perfectly matched.Therefore,flight control is a meaningful and hot research topic,not to mention the complexity of UAVs and the difficulty of flight control problems.Control methods have developed from the earliest classic PID control for the linear systems to the modern control methods(such as sliding mode control,back-stepping control,feedback linearization control,adaptive control,intelligent control and so on)for the nonlinear systems,making simulation model closer to the actual system and achieving ideal performance in the study.

    Development of the autonomous ability of UAVs can improve the perception on battlefield,the speed and precision of localization,and the flexibility of missions.However,it still has a long way to go[37].Eor prospect,several points can be summarized for the future of UAVs as follows:

    (1)New UAVs with novel configurations will be developed for invisibility,super-maneuvering,and hypersonic,which enhances the role of UAVs in combat.

    (2)Small UAVs with fixed-wing or rotor wing will be widely developed for commercial applications in agriculture,public safety,networking fields,and so on.

    (3)Along with the development of materials,sensors,chips,communication,and computer technologies,the autonomous level will be upgraded.

    (4)Elight control will still be a key technique for the autonomous flight of UAVs.Therefore,advanced control methods that are adaptive,intelligent,and robust will be preferred in applications.

    (5)Eormation/cooperative control of multiple UAVs become more and more popular for achieving a higher level of autonomy and intelligence.

    (6)UAVs with hypersonic flight,super-maneuvering,invisibility and elastic wing deformation are gradually coming into public view.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(No.61304223),the Specialized Research Eund for the Doctoral Program of Higher Education(No.20123218120015),and the Eundamental Research Eunds for the Central Universities(No. NZ2015206).

    [1] Colomina I,Molina P.Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014(92):79-97.

    [2] Van Blyenburgh P.2013—2014 RPAS Year book: Remotely piloted aircraft systems:The global perspective 2013/2014[R].Paris,Erance:UVS International,2013.

    [3] Barnard J.Small UAV(<150 kg TOW)command,control and communication issues[R].UK:Institution of Engineering and Technology,2007.

    [4] Mészáros J.Aerial surveying UAV based on opensource hardware and software[C]∥International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,UAV-g 2011,Conference on Unmanned Aerial Vehicle in Geomatics.Zurich,Switzerland:[s.n.],2011.

    [5] Chao H,Cao Y,Chen Y.Autopilots for small unmanned aerial vehicles:A survey[J].International Journal of Control,Automation and Systems,2010(8):36-44.

    [6] UAV MarketSpace.Autopilot Navigation[EB/OL].[2014-12-08].http://uavm.com.

    [7] Pisano W J,Lawrence,Dale A,Gray P C.Autonomous UAV control using a 3-sensor autopilot[J]. Collection of Technical Papers 2007 AIAA InfoTech at Aerospace Conference,2007(1):423-436.

    [8] Nick A,Bryan H,Ronnie E,et al.Elight-testing of a UAV aircraft for autonomous operation using Piccolo II autopilot[C]∥AIAA Atmospheric Elight Mechanics Conference and Exhibit.[S.l.]:AIAA,2008.

    [9] Erdos D,Watkins S E.UAV autopilot integration and testing[C]∥IEEE Region 5 Conference.[S.l.]: IEEE,2008.

    [10]Chumalee S,Whidborne J E.LPV autopilot design of a Jindivik UAV[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit.[S.l.]: AIAA,2009.

    [11]Ajami Alain,Balmat Jean-Erancois,Gauthier Jean-Paul.Path planning and ground control station simulator for UAV[C]∥IEEE Aerospace Conference.Big Sky,MT:IEEE,2013.

    [12]Maza I,Caballero E,Molina R.Multimodal interface technologies for UAV ground control stations[J]. Journal of Intelligent and Robotic Systems,2010,57(1/2/3/4):371-391.

    [13]Zhen Ziyang,Gao Chen,Zhao Qiannan,et al.Cooperative path planning for multiple UAVs formation[C]∥IEEE International Conference on Cyber Technology in Automation,Control and Intelligent Systems.Hong Kong,China:IEEE,2014:469-477.

    [14]Zhen Ziyang,Hao Qiushi,Gao Chen,et al.Information fusion distributed navigation for UAVs formation[C]∥Proceedings of 2014 IEEE Chinese Guidance,Navigation and Control Conference.Yantai,China:IEEE,2014:1520-1525.

    [15]Wang Yingxun,Cai Zhihao.Autonomous flight control of unmanned aerial vehicle[J].Aeronautical Manufacturing Technology,2009(8):26-31.

    [16]de Bonfim Gripp J A,Sampaio U P.Automatic landing of a UAV using model predictive control for the surveillance of internal autopilot′s controls[C]∥2014 International Conference on Unmanned Aircraft Systems(ICUAS).Orlando,EL:[s.n.],2014:27-30.

    [17]Vanek B,Peni T,Szabo Z.Eault tolerant LPV control of the GTM UAV with dynamic control allocation[C]∥AIAA Guidance,Navigation,and Control Conference.National Harbor,MD:AIAA,2014: 13-17.

    [18]Zhen Ziyang,Wang Xinhua,Li Xin,et al.Optimal attitude control for large civil aircraft in landing phase,2012 Chinese Guidance[C]∥Navigation and Control Conference(CGNCC2012).Beijing:[s.n.],2012:521-525.

    [19]Zhen Ziyang,Wang Daobo,Kang Qi.UAV flight trajectory control based on information fusion control method[C]∥2010 IEEE International Conference on Networking,Sensing and Control.Chicago,USA: IEEE,2010:337-341.

    [20]Zhen Ziyang,Jiang Ju,Wang Xinhua,et al.Information fusion-based optimal attitude control for an alterable thrust direction unmanned aerial vehicle[J]. International Journal of Advanced Robotic Systems,2013,10(43):1-9.

    [21]Cayero J,Morcego B,Nejjari E.Modelling and adaptive backstepping control for TX-1570 UAV path tracking[J].Aerospace Science and Technology,2014(39):342-351.

    [22]Lungu M,Lungu R.Adaptive backstepping flight control for a mini-UAV[J].International Journal of Adaptive Control and Signal Processing,2013,27(8):635-650.

    [23]Zhang Mingfeng,Liu H H T.Tracking a moving target by a fixed-wing UAV based on sliding mode control[C]∥AIAA Guidance,Navigation,and Control(GNC)Conference.Boston,MA,USA: AIAA,2013:19-22.

    [24]Rao S,Ghose D.Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles[J].IEEE Transactions on Control Systems Technology,2014,22(5):1964-1972.

    [25]Babaei A R,Mortazavi M,Menhaj M B.Robust and computational efficient autopilot design:A hybrid approach based on classic control and genetic-fuzzy sliding mode control[J].Aeronautical Journal,2013,117(1194):839-859.

    [26]Regina N,Zanzi M.Camera pan-tilt gimbals robust control law for target tracking with fixed wing[C]∥UAV,AIAA Guidance,Navigation,and Control(GNC)Conference.Boston,MA,USA:AIAA,2013:19-22.

    [27]Zarafshan P,Moosavian S Ali A,Bahrami M.Comparative controller design of an aerial robot[J].Aerospace Science and Technology,2010,14(4):276-282.

    [28]Hafez A T,Iskandarani M,Givigi S N.Using linear model predictive control via feedback linearization for dynamic encirclement[C]∥2014 American Control Conference.Portland,OR,USA:[s.n.],2014: 3868-3873.

    [29]Chowdhary G,Mühlegg M,Johnson E.Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation[J].International Journal of Control,2014,87(8):1583-1603.

    [30]Yang Kwangjin,Kang Yeonsik,Sukkarieh Salah. Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle[J]. International Journal of Control,Automation and Systems,2013,11(1):65-74.

    [31]Lin Chih-Min,Tai Ching-Eu,Chung Chang-Chih. Intelligent control system design for UAV using a recurrent wavelet neural network[J].Neural Computing and Applications,2014,24(2):487-496.

    [32]Yadav Anil Kumar,Gaur Prerna.AI-based adaptive control and design of autopilot system for nonlinear UAV[J].Sadhana-Academy Proceedings in Engineering Sciences,2014,39(4):765-783.

    [33]Pu Huangzhong,Zhen Ziyang,Jiang Ju,et al.UAV flight control system based on intelligent BEL algorithm[J].International Journal of Advanced Robotic Systems,2013,10(121):1-8.

    [34]Wilburn B K,Perhinschi M G,Wilburn J N.A modified genetic algorithm for UAV trajectory tracking control laws optimization[J].International Journal of Intelligent Unmanned Systems,2014,2(2):58-90.

    [35]Pu Huangzhong,Zhen Ziyang,Wang Daobo,et al. Improved particle swarm optimization algorithm for intelligently setting UAV attitude controller parameters[J].Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(1):52-57.

    [36]Pu Huangzhong,Zhen Ziyang,Wang Daobo.Modified shuffled frog leaping algorithm for optimization of UAV flight controller[J].International Journal of Intelligent Computing and Cybernetics,2011,4(1): 25-39.

    [37]Departmentof Defence(DoD).Unmanned aircraft system roadmap 2005—2030[R].A572734.Washington DC,USA:Office of the Secretary of Defense,2009.

    (Executive editor:Zhang Tong)

    TP319;V249 Document code:A Article ID:1005-1120(2015)01-0001-08

    *Corresponding author:Zhen Ziyang,Associate Professor,E-mail:zhenziyang@nuaa.edu.cn.

    How to cite this article:Pu Huangzhong,Zhen Ziyang,Xia Man.Eight control system of unmanned aerial vehicle[J]. Trans.Nanjing U.Aero.Astro.,2015,32(1):1-8.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.001

    (Received 18 November 2014;revised 2 January 2015;accepted 12 January 2015)

    猜你喜歡
    黃忠
    樂見戰(zhàn)友聚會(huì)
    老年人(2023年10期)2023-10-24 16:05:19
    Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor
    不負(fù)先輩之名!黃繼光侄子救人后悄悄離開
    Magnetic properties of oxides and silicon single crystals
    某出口重型載貨汽車輪胎偏磨問題分析與解決
    黃忠為何老了才出名
    鍬甲“黃忠”
    黃忠與關(guān)云長(zhǎng)比武
    Nonlinear Intelligent Flight Control for Quadrotor Unmanned Helicopter
    口中穿針奇人
    中老年健康(2015年4期)2015-05-30 18:47:46
    国产亚洲av高清不卡| 久久青草综合色| 国产人伦9x9x在线观看| 人人澡人人妻人| 在线国产一区二区在线| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 国产成人精品久久二区二区免费| 99久久综合精品五月天人人| 久久性视频一级片| 免费搜索国产男女视频| 老司机福利观看| 国产成人精品久久二区二区免费| 最好的美女福利视频网| 中文字幕人妻丝袜制服| 精品欧美一区二区三区在线| 午夜91福利影院| 动漫黄色视频在线观看| www.999成人在线观看| 麻豆av在线久日| 久久久国产一区二区| 午夜日韩欧美国产| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看 | 在线观看免费日韩欧美大片| 国产高清videossex| 亚洲一区中文字幕在线| 日本 av在线| 18禁美女被吸乳视频| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲九九香蕉| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 每晚都被弄得嗷嗷叫到高潮| 天堂动漫精品| 久久这里只有精品19| 9色porny在线观看| 悠悠久久av| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 91精品国产国语对白视频| 亚洲成人久久性| 亚洲成av片中文字幕在线观看| 嫁个100分男人电影在线观看| 高清在线国产一区| 女同久久另类99精品国产91| 丰满的人妻完整版| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 国产伦人伦偷精品视频| 无人区码免费观看不卡| 午夜福利在线观看吧| 女性被躁到高潮视频| 国产成人av激情在线播放| 欧美激情久久久久久爽电影 | 18禁国产床啪视频网站| www.www免费av| 级片在线观看| 少妇粗大呻吟视频| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 国产免费男女视频| 亚洲国产毛片av蜜桃av| 午夜福利在线免费观看网站| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 午夜免费成人在线视频| а√天堂www在线а√下载| 亚洲成国产人片在线观看| 又黄又粗又硬又大视频| av欧美777| 交换朋友夫妻互换小说| 国产高清国产精品国产三级| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 日日夜夜操网爽| 久久人人97超碰香蕉20202| 成人免费观看视频高清| 在线av久久热| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 后天国语完整版免费观看| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片 | 久久这里只有精品19| 丝袜美足系列| 免费看a级黄色片| 亚洲七黄色美女视频| 少妇的丰满在线观看| 热99国产精品久久久久久7| 久久欧美精品欧美久久欧美| 午夜视频精品福利| 亚洲一区高清亚洲精品| 亚洲欧美激情综合另类| 国产单亲对白刺激| 久久久久精品国产欧美久久久| 亚洲 欧美一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩精品网址| 国产高清视频在线播放一区| 一a级毛片在线观看| 久久精品影院6| 亚洲七黄色美女视频| 真人一进一出gif抽搐免费| 国产亚洲欧美精品永久| 淫妇啪啪啪对白视频| 免费在线观看视频国产中文字幕亚洲| 成年版毛片免费区| 国产精品影院久久| 日韩欧美免费精品| 国产精品永久免费网站| 欧美一区二区精品小视频在线| 成人亚洲精品一区在线观看| 亚洲男人的天堂狠狠| 一级黄色大片毛片| 久久久国产精品麻豆| 性欧美人与动物交配| 激情在线观看视频在线高清| 亚洲熟妇熟女久久| 国产区一区二久久| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 国产熟女午夜一区二区三区| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 美女 人体艺术 gogo| 超碰成人久久| 深夜精品福利| 成人国语在线视频| 成人特级黄色片久久久久久久| 国产成年人精品一区二区 | 热99国产精品久久久久久7| 日韩成人在线观看一区二区三区| 国产黄色免费在线视频| 咕卡用的链子| 亚洲片人在线观看| 视频区图区小说| 欧美人与性动交α欧美软件| 日韩欧美三级三区| 视频区图区小说| 欧美国产精品va在线观看不卡| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 午夜福利影视在线免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲成国产人片在线观看| 亚洲专区国产一区二区| 久久久国产精品麻豆| 大码成人一级视频| 女人被躁到高潮嗷嗷叫费观| 在线看a的网站| 制服人妻中文乱码| 999久久久国产精品视频| 极品教师在线免费播放| 国产精品一区二区在线不卡| 午夜免费成人在线视频| 免费看十八禁软件| 亚洲午夜理论影院| 宅男免费午夜| 国产亚洲欧美98| 国产精品免费视频内射| 国产精品av久久久久免费| 成年女人毛片免费观看观看9| 亚洲av片天天在线观看| 午夜视频精品福利| 亚洲国产精品一区二区三区在线| 国产激情欧美一区二区| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 亚洲国产欧美网| 在线观看一区二区三区| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 在线观看免费视频网站a站| 激情视频va一区二区三区| 久久久国产成人精品二区 | 女性被躁到高潮视频| 久久久久亚洲av毛片大全| 成年人免费黄色播放视频| 一级片免费观看大全| 久久久久久亚洲精品国产蜜桃av| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 91成人精品电影| videosex国产| 免费在线观看黄色视频的| 欧美久久黑人一区二区| 97人妻天天添夜夜摸| 色在线成人网| 久久久久久大精品| 国产97色在线日韩免费| 成人永久免费在线观看视频| 亚洲成人免费av在线播放| 精品福利永久在线观看| 久久 成人 亚洲| 男女下面进入的视频免费午夜 | 长腿黑丝高跟| 久久草成人影院| 亚洲五月色婷婷综合| 19禁男女啪啪无遮挡网站| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 欧美激情高清一区二区三区| 国产成人av激情在线播放| 亚洲欧美日韩无卡精品| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 久久草成人影院| 国产成人欧美| 丝袜人妻中文字幕| a级毛片黄视频| 亚洲精品国产精品久久久不卡| 久久久国产一区二区| 三上悠亚av全集在线观看| 18禁美女被吸乳视频| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 两性夫妻黄色片| 精品久久久精品久久久| 长腿黑丝高跟| 日本三级黄在线观看| 亚洲专区中文字幕在线| 成人手机av| 国产精品乱码一区二三区的特点 | 操出白浆在线播放| 国产视频一区二区在线看| 老汉色av国产亚洲站长工具| 久久久久久久久久久久大奶| 午夜免费观看网址| 免费高清视频大片| 电影成人av| 最近最新中文字幕大全电影3 | 欧美中文综合在线视频| 成人国产一区最新在线观看| 高清毛片免费观看视频网站 | 国产精品日韩av在线免费观看 | 亚洲成人免费电影在线观看| 男女下面插进去视频免费观看| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 久久国产乱子伦精品免费另类| 欧美日韩视频精品一区| 变态另类成人亚洲欧美熟女 | 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| av网站免费在线观看视频| 午夜日韩欧美国产| 国产精品日韩av在线免费观看 | 激情视频va一区二区三区| 亚洲国产精品一区二区三区在线| 好看av亚洲va欧美ⅴa在| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 一进一出抽搐gif免费好疼 | 欧美av亚洲av综合av国产av| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 免费搜索国产男女视频| 亚洲欧美一区二区三区久久| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 午夜免费观看网址| 国产精品永久免费网站| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影观看| 欧美日韩av久久| 91av网站免费观看| 精品国产国语对白av| 天堂动漫精品| 久久午夜综合久久蜜桃| 亚洲视频免费观看视频| 成人18禁在线播放| 国产真人三级小视频在线观看| 视频区图区小说| 久久久久久免费高清国产稀缺| 免费搜索国产男女视频| 曰老女人黄片| 男女下面插进去视频免费观看| 咕卡用的链子| 99国产综合亚洲精品| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 欧美成人免费av一区二区三区| 亚洲av成人不卡在线观看播放网| 女警被强在线播放| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 国产精品国产高清国产av| 99精国产麻豆久久婷婷| netflix在线观看网站| 亚洲熟妇熟女久久| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 国产日韩一区二区三区精品不卡| 国产主播在线观看一区二区| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 久久草成人影院| 国产三级在线视频| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 少妇粗大呻吟视频| 99热国产这里只有精品6| 国产视频一区二区在线看| 丰满迷人的少妇在线观看| 日本欧美视频一区| 婷婷丁香在线五月| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产真人三级小视频在线观看| 成人国语在线视频| 国产在线观看jvid| 老司机午夜福利在线观看视频| 精品人妻1区二区| 欧美日韩一级在线毛片| 在线国产一区二区在线| 韩国精品一区二区三区| 变态另类成人亚洲欧美熟女 | 亚洲精品一区av在线观看| 如日韩欧美国产精品一区二区三区| 国产亚洲av高清不卡| 国产精品久久视频播放| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 淫秽高清视频在线观看| 咕卡用的链子| 51午夜福利影视在线观看| 无限看片的www在线观看| 成在线人永久免费视频| 国产亚洲精品一区二区www| 日韩视频一区二区在线观看| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 日本五十路高清| 国产麻豆69| 欧美+亚洲+日韩+国产| 女警被强在线播放| 新久久久久国产一级毛片| 97超级碰碰碰精品色视频在线观看| 韩国精品一区二区三区| 亚洲成a人片在线一区二区| 亚洲精品一区av在线观看| 久久久久久亚洲精品国产蜜桃av| 久久国产精品男人的天堂亚洲| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 亚洲国产中文字幕在线视频| 一进一出好大好爽视频| 人人妻人人添人人爽欧美一区卜| 黄色视频不卡| 韩国av一区二区三区四区| 精品国产乱码久久久久久男人| 日韩免费高清中文字幕av| 免费观看人在逋| 欧美性长视频在线观看| 国产精品 国内视频| 国产精品1区2区在线观看.| 最近最新免费中文字幕在线| 国产亚洲精品久久久久久毛片| 久久精品成人免费网站| 欧美亚洲日本最大视频资源| 亚洲人成电影免费在线| 国产av在哪里看| 国产亚洲欧美98| 在线视频色国产色| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 精品第一国产精品| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 日本a在线网址| 一边摸一边抽搐一进一出视频| 老鸭窝网址在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 亚洲人成77777在线视频| 久久久国产成人免费| 日韩高清综合在线| 高清欧美精品videossex| 99国产精品免费福利视频| 精品欧美一区二区三区在线| 身体一侧抽搐| 在线观看日韩欧美| 欧美日本亚洲视频在线播放| 亚洲avbb在线观看| 午夜免费观看网址| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| 欧美精品亚洲一区二区| tocl精华| 国产av在哪里看| 91麻豆av在线| 久久中文看片网| 欧美最黄视频在线播放免费 | 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 免费久久久久久久精品成人欧美视频| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频 | 国产成人欧美在线观看| 真人一进一出gif抽搐免费| 精品国产乱码久久久久久男人| 亚洲自偷自拍图片 自拍| 精品福利永久在线观看| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 欧美中文综合在线视频| www.999成人在线观看| 看黄色毛片网站| 中文字幕人妻丝袜制服| 久久国产精品影院| 99香蕉大伊视频| 亚洲少妇的诱惑av| www.精华液| 国产精品久久久人人做人人爽| 黄色a级毛片大全视频| 久久久久久大精品| 国产精品国产高清国产av| 午夜免费激情av| 日本免费一区二区三区高清不卡 | 久久午夜综合久久蜜桃| 国产亚洲欧美在线一区二区| 日韩国内少妇激情av| 视频在线观看一区二区三区| 一进一出抽搐gif免费好疼 | 亚洲av美国av| 亚洲午夜理论影院| 母亲3免费完整高清在线观看| 热re99久久精品国产66热6| 美女 人体艺术 gogo| 国产xxxxx性猛交| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 欧美日韩国产mv在线观看视频| cao死你这个sao货| 亚洲精品中文字幕在线视频| 夜夜夜夜夜久久久久| av欧美777| 高潮久久久久久久久久久不卡| 久久久精品欧美日韩精品| a级毛片黄视频| 两性夫妻黄色片| 婷婷精品国产亚洲av在线| 国产亚洲欧美精品永久| 免费高清视频大片| 亚洲自偷自拍图片 自拍| 久久久久国内视频| 国产深夜福利视频在线观看| 国产成人啪精品午夜网站| www.999成人在线观看| 好看av亚洲va欧美ⅴa在| a级毛片在线看网站| 亚洲精品国产区一区二| 在线av久久热| 免费在线观看完整版高清| 精品卡一卡二卡四卡免费| 日韩av在线大香蕉| 色哟哟哟哟哟哟| 女人精品久久久久毛片| 国产欧美日韩一区二区三| 麻豆一二三区av精品| 久久精品国产亚洲av高清一级| 久久精品91蜜桃| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 97超级碰碰碰精品色视频在线观看| 国产高清激情床上av| 欧美最黄视频在线播放免费 | 亚洲国产欧美网| 久久亚洲真实| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 久久精品aⅴ一区二区三区四区| av网站在线播放免费| 男女下面进入的视频免费午夜 | 国产av一区二区精品久久| 日本三级黄在线观看| 日韩欧美一区视频在线观看| 黄色毛片三级朝国网站| 一个人观看的视频www高清免费观看 | 热99国产精品久久久久久7| 亚洲五月婷婷丁香| 最好的美女福利视频网| 91大片在线观看| 国产成人精品在线电影| 在线十欧美十亚洲十日本专区| 欧美乱妇无乱码| 久久人人精品亚洲av| 国产高清videossex| 精品久久久久久久毛片微露脸| 亚洲精品一卡2卡三卡4卡5卡| 女警被强在线播放| 两个人免费观看高清视频| 美女福利国产在线| 麻豆av在线久日| 99久久人妻综合| 国产高清videossex| 久久久精品欧美日韩精品| 国产亚洲av高清不卡| 两人在一起打扑克的视频| 亚洲激情在线av| 久久精品国产综合久久久| 久久久久国内视频| 午夜影院日韩av| 国产精品一区二区免费欧美| 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 久久这里只有精品19| 国产精品国产av在线观看| 亚洲中文日韩欧美视频| 中亚洲国语对白在线视频| 乱人伦中国视频| 正在播放国产对白刺激| 亚洲九九香蕉| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 视频区欧美日本亚洲| 黄色成人免费大全| 性少妇av在线| 88av欧美| 亚洲一区中文字幕在线| 国产国语露脸激情在线看| 日韩欧美一区视频在线观看| 国产亚洲精品综合一区在线观看 | 97碰自拍视频| 级片在线观看| 国产亚洲精品久久久久5区| 999久久久精品免费观看国产| 老司机午夜福利在线观看视频| 国产一区二区三区综合在线观看| 亚洲av五月六月丁香网| 久久这里只有精品19| 18禁国产床啪视频网站| 超碰成人久久| 日本一区二区免费在线视频| 少妇被粗大的猛进出69影院| 91在线观看av| 久久午夜亚洲精品久久| avwww免费| 国产亚洲精品综合一区在线观看 | 女人高潮潮喷娇喘18禁视频| 久久人人爽av亚洲精品天堂| 日本a在线网址| 999久久久国产精品视频| 伦理电影免费视频| 免费女性裸体啪啪无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 99国产综合亚洲精品| 老汉色∧v一级毛片| 亚洲国产中文字幕在线视频| 黑丝袜美女国产一区| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 视频区欧美日本亚洲| 日韩中文字幕欧美一区二区| 国产单亲对白刺激| 天堂√8在线中文| 国产精品免费视频内射| 亚洲一区高清亚洲精品| 国产一区二区在线av高清观看| 国产精品免费视频内射| 欧美中文日本在线观看视频| 老汉色av国产亚洲站长工具| 9热在线视频观看99| av片东京热男人的天堂| 长腿黑丝高跟| 精品福利观看| 在线av久久热| 国产亚洲欧美在线一区二区| 一区二区三区激情视频| 成年女人毛片免费观看观看9| 女性生殖器流出的白浆| 天堂俺去俺来也www色官网| www国产在线视频色| 十八禁网站免费在线| 岛国在线观看网站| 国产精品秋霞免费鲁丝片| 亚洲,欧美精品.|