李 蕓(綜述),席春生(審校)
(蘭州軍區(qū)蘭州總醫(yī)院腎臟內(nèi)科,蘭州 730050)
內(nèi)質(zhì)網(wǎng)應(yīng)激在糖尿病腎病發(fā)病中的機(jī)制研究
李蕓(綜述),席春生※(審校)
(蘭州軍區(qū)蘭州總醫(yī)院腎臟內(nèi)科,蘭州 730050)
摘要:內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)是內(nèi)質(zhì)網(wǎng)腔內(nèi)錯(cuò)誤折疊蛋白聚積的一種適應(yīng)性反應(yīng)。越來(lái)越多的證據(jù)表明,ERS可能是糖尿病腎病進(jìn)展的重要機(jī)制之一。在糖尿病腎病的發(fā)展過(guò)程中,細(xì)胞內(nèi)適宜的ERS作用可保護(hù)腎臟細(xì)胞免受高血糖等危險(xiǎn)因素的損害,而程度過(guò)強(qiáng)或時(shí)間過(guò)長(zhǎng)的ERS使細(xì)胞的保護(hù)機(jī)制不能與損傷作用抗衡,細(xì)胞內(nèi)錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)中不斷聚集,擾亂內(nèi)質(zhì)網(wǎng)的正常功能,從而使多個(gè)下游的細(xì)胞信號(hào)相關(guān)通路啟動(dòng),誘導(dǎo)細(xì)胞凋亡發(fā)生,腎臟細(xì)胞不斷死亡促進(jìn)糖尿病腎病的進(jìn)展。因此,ERS在糖尿病及其并發(fā)癥臟器損害過(guò)程中的作用值得進(jìn)一步研究。
關(guān)鍵詞:糖尿病腎病;內(nèi)質(zhì)網(wǎng)應(yīng)激;糖尿病
內(nèi)質(zhì)網(wǎng)是細(xì)胞內(nèi)重要的細(xì)胞器,也是重要的鈣離子貯存庫(kù)。它調(diào)節(jié)細(xì)胞內(nèi)蛋白質(zhì)的合成后折疊與聚集、細(xì)胞對(duì)應(yīng)激的反應(yīng)以及細(xì)胞內(nèi)鈣離子的水平。目前研究認(rèn)為,胰腺細(xì)胞、心肌細(xì)胞、神經(jīng)元細(xì)胞所發(fā)生的內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)作用可能分別是糖尿病、心腦組織缺血梗死、退行性神經(jīng)疾病等進(jìn)展的重要原因[1]。ERS是指細(xì)胞受到內(nèi)外因素的刺激時(shí),內(nèi)質(zhì)網(wǎng)的形態(tài)、功能受到破壞后發(fā)生一系列生化結(jié)構(gòu)改變,蛋白質(zhì)加工運(yùn)輸?shù)倪^(guò)程受阻,大量未折疊或錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)中形成,細(xì)胞會(huì)應(yīng)激性地進(jìn)入應(yīng)答措施,緩解內(nèi)質(zhì)網(wǎng)功能障礙,促進(jìn)蛋白質(zhì)加工運(yùn)輸功能的恢復(fù)[2]。引發(fā)ERS的因素很多,缺血低氧、高葡萄糖血癥、鈣離子超載等可造成內(nèi)質(zhì)網(wǎng)的應(yīng)激損傷[3]?,F(xiàn)對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激在糖尿病腎病(diabetic nephropathy,DN)發(fā)病中的機(jī)制研究進(jìn)展進(jìn)行綜述。
1ERS的生物學(xué)效應(yīng)與信號(hào)通路
根據(jù)誘發(fā)原因,可將ERS分為以下3 種類型:①未折疊或者錯(cuò)誤折疊蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)蓄積引發(fā)的未折疊蛋白質(zhì)反應(yīng)(unfolded protein response,UPR); ②內(nèi)質(zhì)網(wǎng)過(guò)度負(fù)荷反應(yīng)通路,正確折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)過(guò)度蓄積激活核因子κB誘導(dǎo)的細(xì)胞因子產(chǎn)生;③膽固醇缺乏引發(fā)的固醇調(diào)節(jié)元件結(jié)合蛋白質(zhì)(sterol regulatory element binding protein,SREBP) 通路調(diào)節(jié)的反應(yīng)[4]。前兩者均是蛋白質(zhì)加工紊亂所致,后者則是在內(nèi)質(zhì)網(wǎng)表面合成的膽固醇損耗所致,其信號(hào)通路及效應(yīng)如下。
1.1UPR通路目前對(duì)UPR的機(jī)制研究較為深入。如果內(nèi)質(zhì)網(wǎng)腔中的鈣離子排空、二硫鍵結(jié)合減少、突變蛋白質(zhì)表達(dá)等,干擾蛋白質(zhì)的合成和構(gòu)象變化,就會(huì)導(dǎo)致內(nèi)質(zhì)網(wǎng)內(nèi)積累大量錯(cuò)誤折疊或未折疊蛋白質(zhì)[5],形成ERS,并啟動(dòng)UPR通路,UPR通過(guò)激活蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶 (PKR-like endoplasmic reticulum kinase,PERK)、肌醇蛋白1和激活轉(zhuǎn)錄因子6 (activating transcription factor-6,ATF6)信號(hào)通路[6],改變細(xì)胞的轉(zhuǎn)錄和翻譯過(guò)程來(lái)緩解ERS。
1.1.1肌醇蛋白1信號(hào)通路的應(yīng)答反應(yīng)在神經(jīng)元損傷時(shí),肌醇蛋白1是啟動(dòng)ERS “分子伴侶” 葡萄糖調(diào)節(jié)蛋白78(glucose regulated protein78,GRP78)表達(dá)的主要跨膜蛋白之一,具有蛋核酸內(nèi)切酶的活性。在ERS時(shí),通過(guò)激活核酸內(nèi)切酶活性,活化的肌醇蛋白1通過(guò)與靶基因上的特定調(diào)控序列-ERS反應(yīng)元件相結(jié)合,激活相關(guān)靶基因轉(zhuǎn)錄,上調(diào)分子伴侶的轉(zhuǎn)錄水平,促進(jìn)錯(cuò)誤折疊蛋白的構(gòu)象校正[7],使細(xì)胞對(duì)損傷因素產(chǎn)生適應(yīng)性發(fā)應(yīng)。肌醇蛋白1核酸內(nèi)切酶的激活通過(guò)一種名叫調(diào)節(jié)肌醇蛋白1依賴衰解的作用,該過(guò)程涉及某些細(xì)胞的信使RNAs降解,其中包括胰島素原信使RNA和肌醇蛋白1自身[8]。肌醇蛋白1能通過(guò)核糖核酸內(nèi)切酶活性使腫瘤壞死因子受體相關(guān)因子2向內(nèi)質(zhì)網(wǎng)聚集,其結(jié)果是增加肌醇蛋白1的靶基因c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)活性。JNK屬于絲氨酸/蘇氨酸蛋白激酶,可與p53蛋白、激活轉(zhuǎn)錄因子2等作用,在促凋亡和生長(zhǎng)信號(hào)方面發(fā)揮作用。目前發(fā)現(xiàn)JNK可能還參與了ERS誘導(dǎo)的細(xì)胞自嗜,其研究依據(jù)包括:研究者通過(guò)電子顯微鏡分析細(xì)胞超微結(jié)構(gòu)后發(fā)現(xiàn),JNK能誘導(dǎo)細(xì)胞自嗜體的產(chǎn)生,將微管相關(guān)蛋白1輕鏈3-β綠色熒光染色后可見(jiàn)細(xì)胞內(nèi)自嗜體密度明顯增加;通過(guò)應(yīng)用JNK抑制劑可以阻斷自嗜因子Beclin-1的表達(dá)上調(diào),從而減少自嗜體的發(fā)生[9-10]。
1.1.2ATF6信號(hào)通路的應(yīng)答反應(yīng)活化轉(zhuǎn)錄因子 ATF6 位于內(nèi)質(zhì)網(wǎng)膜上,是一個(gè)在信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)中發(fā)揮著轉(zhuǎn)錄因子的重要功能蛋白,它的N端位于胞質(zhì),C端位于內(nèi)質(zhì)網(wǎng)內(nèi),是血清反應(yīng)因子的結(jié)合蛋白,主要在細(xì)胞增殖調(diào)控中起激活作用[11]。在哺乳動(dòng)物的細(xì)胞中,ATF6有ATF6α和ATF6β兩種亞型,兩者結(jié)構(gòu)相似。ATF6和環(huán)腺苷酸(cyclic adenosine monophosphate,cAMP)反應(yīng)元件結(jié)合蛋白具有相同的DNA結(jié)合序列(TGACGTCA),即cAMP反應(yīng)元件[12]。與此同時(shí),ATF6和cAMP反應(yīng)元件結(jié)合蛋白能形成異聚體調(diào)控基因的表達(dá)。ATF6作為信號(hào)感受蛋白可與內(nèi)質(zhì)網(wǎng)腔內(nèi)分子伴侶蛋白GRP78結(jié)合形成復(fù)合物,平時(shí)處于無(wú)活性狀態(tài),當(dāng)內(nèi)質(zhì)網(wǎng)中未折疊蛋白蓄積增加時(shí),誘導(dǎo)GRP78和ATF6分離[13],同時(shí)ATF6(90 000)將被轉(zhuǎn)運(yùn)至高爾基復(fù)合體,在高爾基體蛋白酶S1P、S2P蛋白酶的作用下對(duì)其跨膜片段進(jìn)行切割,產(chǎn)生游離的50 Ku 的N端片段,即成熟的ATF6,活化的ATF6 N端切割段進(jìn)入到細(xì)胞核內(nèi),結(jié)合于ERS反應(yīng)元件,促進(jìn)轉(zhuǎn)錄因子如核因子Y及UPR靶分子GRP78等的相互作用[14],從而啟動(dòng)相關(guān)基因的表達(dá),指導(dǎo)內(nèi)質(zhì)網(wǎng)膜伴侶分子和蛋白折疊所需要的酶蛋白基因的轉(zhuǎn)錄[15]。
1.1.3PERK信號(hào)通路的應(yīng)答反應(yīng)PERK 是內(nèi)質(zhì)網(wǎng)跨膜蛋白的一種,屬絲/蘇蛋白激酶,胞質(zhì)區(qū)含有激酶結(jié)構(gòu)域。一般狀況下,PERK與分子伴侶GRP78結(jié)合,在應(yīng)激時(shí),兩者分離,形成PERK同源二聚體,激酶結(jié)構(gòu)域磷酸化后激活,與真核生物起始因子2(eukaryotic initiation factor 2,eIF2) 的α亞單位(eIF2α) 結(jié)合,eIF2ɑ的第51位絲氨酸發(fā)生磷酸化,這使起始信使RNA迅速減少,進(jìn)而減緩了內(nèi)質(zhì)網(wǎng)腔內(nèi)蛋白質(zhì)的合成。應(yīng)激細(xì)胞中PERK活化后能特異性地抑制細(xì)胞周期蛋白D1的翻譯表達(dá),導(dǎo)致G1期的停頓。同時(shí)PERK激活后還會(huì)激活JNK及P38信號(hào)轉(zhuǎn)導(dǎo)通路,誘導(dǎo)UPR基因的轉(zhuǎn)錄。另外,磷酸化PERK/eIF2α可介導(dǎo)ATF4的信使RNA高表達(dá)。ATF4 屬于CCAAT 增強(qiáng)子結(jié)合蛋白的轉(zhuǎn)錄因子,可以進(jìn)入細(xì)胞的核內(nèi)后,作用于下游相關(guān)基因,促進(jìn)能量代謝、蛋白質(zhì)分泌,從而降低細(xì)胞的應(yīng)激程度,使細(xì)胞存活[16];但程度較重,持續(xù)時(shí)間較長(zhǎng)的ERS會(huì)激活CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白和DNA損傷誘導(dǎo)基因34等蛋白的表達(dá),導(dǎo)致細(xì)胞的程序性凋亡[17-18]。
1.2內(nèi)質(zhì)網(wǎng)超負(fù)荷反應(yīng)正確折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)過(guò)度儲(chǔ)積,特別是因膜蛋白在內(nèi)質(zhì)網(wǎng)異常堆積也會(huì)啟動(dòng)其他促生存的機(jī)制來(lái)反制內(nèi)質(zhì)網(wǎng)壓力。其中內(nèi)質(zhì)網(wǎng)超負(fù)荷反應(yīng)是一相對(duì)獨(dú)立的信號(hào)通路。它以激活核因子κB為主要特點(diǎn),啟動(dòng)多種前炎性蛋白和細(xì)胞黏附分子的轉(zhuǎn)錄表達(dá),可對(duì)細(xì)胞的凋亡進(jìn)行調(diào)控。核因子κB的激活可能與ERS時(shí)鈣貯存釋放以及活性氧類產(chǎn)生有關(guān)[19]。
1.3固醇調(diào)節(jié)級(jí)聯(lián)反應(yīng)固醇調(diào)節(jié)級(jí)聯(lián)反應(yīng)是內(nèi)固醇表面合成的膽固醇損耗所致,通過(guò)SREBP介導(dǎo)的信號(hào)途徑,影響特定基因表達(dá)。ESR時(shí),在內(nèi)質(zhì)網(wǎng)膜表面合成的膽固醇的耗竭激活SREBP,其與SREBP裂解激活蛋白形成復(fù)合物,進(jìn)而被酶解成為轉(zhuǎn)錄因子進(jìn)入胞核,與靶基因的固醇調(diào)節(jié)元件結(jié)合,增強(qiáng)靶基因轉(zhuǎn)錄[20]。
2DN中的ERS機(jī)制
DN是糖尿病引起的嚴(yán)重和危害性最大的一種慢性并發(fā)癥,由糖尿病引起的微血管病變而導(dǎo)致的腎小球硬化,是本癥的特點(diǎn),也是導(dǎo)致終末腎衰竭的常見(jiàn)原因。發(fā)病機(jī)制復(fù)雜,涉及多種細(xì)胞生物學(xué)機(jī)制[21]。DN中有高血糖、氧化應(yīng)激、脂質(zhì)代謝異常等多種ERS的誘發(fā)因素,因此,ERS很可能在糖尿病腎組織損害過(guò)程中扮演重要角色[22]。深入探討ERS在DN發(fā)病機(jī)制中的作用,會(huì)為DN 的研究提供新的防治思路。
研究提示ERS可通過(guò)調(diào)控氧化應(yīng)激和炎癥激活參與糖尿病和DN的發(fā)病過(guò)程。ERS因子PERK在胰腺中廣泛高表達(dá),PERK突變可致使胰島素不能生成和胰腺β細(xì)胞衰竭,PERK缺失小鼠可出現(xiàn)β細(xì)胞為主的胰腺功能不全[23]。研究提示eIF2ɑ磷酸化的缺失可增加β細(xì)胞合成大量蛋白并促進(jìn)蛋白折疊的需求,這也導(dǎo)致胰島素原的折疊和錯(cuò)誤折疊,加重了胰腺細(xì)胞的氧化應(yīng)激。大量蛋白尿可引起ERS并參與小管間質(zhì)性炎癥的形成[24]。ERS和氧化應(yīng)激在DN大鼠腎皮質(zhì)和高糖刺激的腎小球系膜細(xì)胞顯著激活,其強(qiáng)度隨時(shí)間進(jìn)展而進(jìn)行性增強(qiáng),應(yīng)用分子伴侶4苯基丁酸干預(yù)ERS可降低應(yīng)激水平,減輕氧化應(yīng)激及炎癥激活,抑制DN的發(fā)展[25]。研究表明,腎組織中GRP78水平的增高與ERS相關(guān)的增強(qiáng)子結(jié)合蛋白同源蛋白(CCAAT/enhancer-binding protein-homologous protein,CHOP)、JNK及caspase-12凋亡信號(hào)轉(zhuǎn)導(dǎo)上調(diào)呈平行關(guān)系,提示過(guò)度ERS通過(guò)凋亡促進(jìn)DN的進(jìn)行性損傷[26]。
脂質(zhì)在腎小球或腎小管上皮細(xì)胞內(nèi)沉積是DN常見(jiàn)的病理變化。其中DN患者血液中游離脂肪酸(free fatty acids,F(xiàn)FAs)的水平顯著高于正常人。FFAs不僅沉積在腎小球,也通過(guò)重吸收沉積在腎小管上皮細(xì)胞從而引起脂毒性損傷。脂肪型脂肪酸結(jié)合蛋白(adipocyte fatty acidbinding protein,A-FABP)是脂肪酸結(jié)合蛋白家族中最具特征的成員,它通過(guò)與脂肪酸結(jié)合,促進(jìn)FFAs的轉(zhuǎn)運(yùn),表達(dá)量與FFAs密切相關(guān)。研究提示DN患者腎活檢組織腎小球的FABP4以及內(nèi)質(zhì)網(wǎng)分子GRP78、凋亡因子caspase-12表達(dá)增高、Bcl-2表達(dá)減少[27],說(shuō)明DN存在ERS,持續(xù)的ERS提高了 FABP4的表達(dá)并抑制抗凋亡蛋白Bcl-2的表達(dá),促進(jìn)系膜細(xì)胞的凋亡。
晚期糖基化終末產(chǎn)物參與了DN的進(jìn)展。長(zhǎng)期高血糖可導(dǎo)致晚期糖基化終末產(chǎn)物在體內(nèi)過(guò)多蓄積,誘發(fā)細(xì)胞鈣離子超載,上調(diào) GRP78 表達(dá)[28],同時(shí)激活ERS相關(guān)蛋白如腫瘤壞死因子受體相關(guān)因子2、CCAAT/ CHOP、JNK等因子,導(dǎo)致固有細(xì)胞凋亡[29]。晚期糖基化終末產(chǎn)物可呈時(shí)間和劑量依賴性上調(diào)足細(xì)胞ERS分子GRP78的表達(dá)[23],維持細(xì)胞內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)和功能的平衡。
ERS相關(guān)的凋亡在DN中也發(fā)揮重要作用。研究提示GRP78、caspase-12在正常大鼠腎臟組織中少量表達(dá),主要分布于腎臟內(nèi)腎小球及腎小管細(xì)胞,糖尿病6周組GRP78、caspase-12在腎臟腎小球及腎小管細(xì)胞的表達(dá)量升高,糖尿病12周組表達(dá)量更高。結(jié)果表明ERS參與了DN的發(fā)病機(jī)制,腎臟細(xì)胞的ERS能力及相應(yīng)的細(xì)胞凋亡隨糖尿病病程延長(zhǎng)而增強(qiáng)[30]。DN小鼠GRP78、p-PERK、磷酸化真核啟動(dòng)因子2α、CHOP表達(dá)水平顯著增高,并伴有顯著腎小球硬化和腎小管間質(zhì)纖維化[31];CHOP基因敲除的DN小鼠尿白蛋白水平顯著降低,腎小球損傷和腎小管間質(zhì)病變也相應(yīng)減輕,表明調(diào)控CHOP轉(zhuǎn)錄活性對(duì)延緩DN的進(jìn)程具有重要意義[32]。研究表明,白蛋白可激活ERS性的凋亡因子caspase-12,進(jìn)而損傷腎小管上皮細(xì)胞引起凋亡。高糖及白蛋白刺激腎小管上皮細(xì)胞,誘導(dǎo)適應(yīng)性UPR反應(yīng),以維持細(xì)胞的功能,持續(xù)的ERS會(huì)誘導(dǎo)細(xì)胞凋亡途徑的激活[33]。
3結(jié)語(yǔ)
DN是糖尿病最嚴(yán)重的并發(fā)癥之一,也是引起終末期腎病最主要的一個(gè)原因。ERS在糖尿病、胰島素抵抗以及糖尿病相關(guān)血管并發(fā)癥的發(fā)病機(jī)制中發(fā)揮重要作用。越來(lái)越多的研究表明,ERS在糖尿病及其并發(fā)癥臟器損害過(guò)程中的作用值得進(jìn)一步關(guān)注,其中一些證明了ESR是腎臟病的發(fā)病機(jī)制之一,并發(fā)現(xiàn)了一些之前未被認(rèn)可的機(jī)制。因此,深入探討ERS在DN發(fā)病過(guò)程中的作用,開(kāi)發(fā)針對(duì) ERS 過(guò)程中信號(hào)轉(zhuǎn)導(dǎo)的關(guān)鍵點(diǎn)或分子靶標(biāo)、篩選特異有效的抑制劑或激動(dòng)劑有可能會(huì)為臨床DN的防治提供新的治療手段。
參考文獻(xiàn)
[1]Ozcan L,Tabas I.Role of endoplasmic reticulum stress in metabolic disease and other disorders[J].Annu Rev Med,2012,63:317-
328.
[2]Rutkowski DT,Kaufman RJ.A trip to the ER:coping with stress[J].Trends Cell Biol,2004,14 (1):20-28.
[3]Hetz C,Chevet E,Harding HP.Targeting the unfolded protein response in disease[J].Nat Rev Drug Discov,2013,12(9):703-719.
[4]Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nat Rev Mol Cell Biol,2007,8(7):519-529.
[5]Yoshiuchi K,Kaneto H,Matsuoka T,etal.Direct monitoring of in vivo ER stress during the development of insulin resistance with ER stress-activated indicator transgenic mice[J].Biochem Biophys Res Commun,2008,366(2):545-550.
[6]Lee J,Ozcan U.Signaling the unfolded protein response and metabolic diseases [J].J Biol Chem,2014,289(3):1203-1211.
[7]Benyair R,Ron E,Lederkremer GZ.Protein quality control,retention,and degradation at the endoplasmic reticulum[J].Int Rev Cell Mol Biol,2011,292:197-280.
[8]Han D,Lerner AG,Vande Walle L,etal.IREla kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates[J].Cell,2009,138 (3):562-575.
[9]Shimizu S,Konishi A,Nishida Y,etal.Involvement of JNK in the regulation of autophagic cell death[J].Oncogene,2010,29(14):2070-2082.
[10]Li DD,Wang LL,Deng R,etal.The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells[J].Oncogene,2009,28 (6):886-898.
[11]Uemura A,Oku M,Mori K,etal.Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response[J].J Cell Sci,2009,122 (16):2877-2886.
[12]Yoshida H,Matsui T,Hlosokawa N,etal.A time dependent phase shift in the mammalian unfolded protein response[J].Dev Cell,2003,4(2):265-271.
[13]Kerbiriou M,Le Drévo MA,Férec C,etal.Coupling cystic fibrosis to endoplasmic reticulum stress:Differential role of Grp78 and ATF6[J].Biochim Biophys Acta,2007,1772(12):1236-1249.
[14]Seo HY,Kim MK,Min AK.Endoplasmic reticulum stress-induced activation of activating trans cription factor 6 decreases cAMP-stimulated hepatic gluconeo- genesis via inhibition of CREB[J].Endocrinology,2010,151(2):561-568.
[15]Doroudgar S,Thuerauf DJ,Marcinko MC,etal.Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response[J].J Biol Chem,2009,284(43):29735-29745.
[16]Takushi N,Ken T,Yosuke I,etal.Positive role of CCAAT/enhancer-binding protein homologous protein,a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis [J].Am J Pathol,2009,174 (5):1786-1798.
[17]Harding HP,Zhang Y,Bertolotti A,etal.Perk is essential for translational regulation and cell survival during the unfolded protein response[J].Mol Cell,2000,5(5):897-904.
[18]Harding HP,Zhang Y,Zeng H,etal.An integrated stress,response regulates amino acid metabolism and resistance to oxidative stress[J].Mol Cell,2003,11(3):619-633.
[19]Harding HP,Novoa I,Zhang Y,etal.Regulated translation initiation controls stress -induced gene expression in mammalian cells[J].Mol Cell,2000,6(5):1099-1108.
[20]Chen A,Wu K,Fuchs SY,etal.The conserved RING-H2 finger of ROC1 is required for ubiquitin ligation[J].J Biol Chem,2000,275(20):15432-15439.
[21]邢同岳,江振洲,蘇鈺文.內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的腎損傷及干預(yù)和保護(hù)策略[J].藥學(xué)進(jìn)展,2012,36(10):445-451.
[22]Wang H,Kouri G,Wollheim CB.ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity[J].J Cell Sci,2005,118(2):3905-3915.
[23]Cernea S,Dobreanu M.Diabetes and beta cell function:from mechanisms to evaluation and clinical implications[J].Biochem Med,2013,23(3):266-280.
[24]Lindenmeger MT,Rastaldi MP,Ikehata M,etal.Proteinuria and hyperglycemia induce endop- lasmic reticulum stress[J].J Am Soc Nephrol,2008,19(11):2225-2236.
[25]齊偉,牟嬌,葉自林,等.4-苯丁酸鈉對(duì)大鼠糖尿病腎病的治療作用[J].中國(guó)糖尿病雜志,2010,18(10):781-785.
[26]Wu J,Zhang R,Torreggiani M,etal.Induction of diabetes in aged C57B6 mice results in severe nephropathy:an association with oxidative stress,endoplasmic reticulum stress,and inflammation[J].Am J Pathol,2010,176(5):2163-2176.
[27]Flamment M,Foufelle F.Endoplasmic reticulum stress:from physiology to patho- genesis of type 2 diabetes[J].Med Sci,2013,29(9):756-764.
[28]Imagi R,Nangaku M,Onogi H,etal.Involvement oI endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation[J].Kidney Int,2005,68(6):2639-2650.
[29]Morse E,Schroth J,You YH,etal.TRB3 is stimulated in diabetickidneys,regulated by the ER stress marker CHOP,and is a suppressor of podocyte MCP-1[J].Am J Physiol Renal Physiol,2010,299(5):F965-972.
[30]陳玉鳳,郭獻(xiàn)山,耿秀琴,等.內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)的凋亡在糖尿病大鼠腎臟組織中的作用[J].山東醫(yī)藥,2013,53(4):33-36.
[31]Chen Y,Liu CP,Xu KF,etal.Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes[J].Am J Nephrol,2008,28(6):1014-1022.
[32]Lakshmanan AP,Thandavarayan RA,Palaniyandi SS,etal.Modulation of AT1R /CHOP-JNK-Caspase12 pathway by olmesartan treatment attenuates ER stress-induced renal apoptosis in streptozotocin-induced diabetic mice[J].Eur J Pharm Sci,2011,44(5):627-634.
[33]Zhang SX,Sanders E,Fliesler SJ,etal.Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration[J].Exp Eye Res,2014,125(8):30-40.
《 醫(yī) 學(xué) 綜 述 》投稿郵箱:yxzs@chinajournal.net.cnyxzs2005@163.com
本刊官網(wǎng):www.yxzszz.com
Study on the Mechanism of Endoplasmic Reticulum Stress in Diabetic Nephropathy
LIYun,XIChun-sheng. (DepartmentofNephrology,LanzhouGeneralHospitalofChinesePLALanzhouCommand,Lanzhou730050,China)
Abstract:Endoplasmic reticulum stress(ERS) is an adaptive response to the accumulation of misfolded proteins in the endoplasmic reticulum.In recent years,increasing evidences have shown that ERS plays an important role in diabetic nephropathy.In the progression of diabetic nephropathy,moderate ERS can protect renal cells from being harmed by risk factors such as high blood sugar,but the activation of unfolded protein response can enhance the progress of diabetic nephropathy,while excessive and prolonged ERS triggers cell apoptosis through disturbing the functions of the endoplasmic reticulum.These unfolded proteins aggregated in the endoplasmic reticulum can disturb the function of endoplasmic reticulum and trigger some related cellular signal pathways in down stream,and finally results in apoptosis which promotes the progress of diabetic kidney disease.Therefore,the role of ERS in both diabetes and its complications should be further explored.
Key words:Diabetic nephropathy; Endoplasmic reticulum stress; Diabetes
收稿日期:2014-05-26修回日期:2014-11-20編輯:相丹峰
doi:10.3969/j.issn.1006-2084.2015.10.039
中圖分類號(hào):R587.1
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)10-1834-03