張躍其(綜述),王培昌(審校)
(首都醫(yī)科大學(xué)宣武醫(yī)院檢驗(yàn)科,北京 100053)
阿爾茨海默病相關(guān)信號轉(zhuǎn)導(dǎo)通路研究進(jìn)展
張躍其△(綜述),王培昌※(審校)
(首都醫(yī)科大學(xué)宣武醫(yī)院檢驗(yàn)科,北京 100053)
摘要:阿爾茨海默病(AD)是引起老年人癡呆的主要原因,目前尚無有效的治療方法,其發(fā)病機(jī)制仍未完全闡明。一般認(rèn)為基因突變、激素水平、環(huán)境影響、年齡等多個(gè)方面的因素均可導(dǎo)致AD的發(fā)生。目前研究發(fā)現(xiàn)多條信號轉(zhuǎn)導(dǎo)通路參與了AD的發(fā)病機(jī)制。各通路之間可相互影響,加速AD的病程。新信號轉(zhuǎn)導(dǎo)通路的發(fā)現(xiàn)不僅加深了AD發(fā)病過程的認(rèn)識,還使發(fā)現(xiàn)新的AD治療靶點(diǎn)成為可能。
關(guān)鍵詞:阿爾茨海默??;信號轉(zhuǎn)導(dǎo)通路;淀粉樣蛋白前體
阿爾茨海默病(Alzheimer′s disease,AD)是一種神經(jīng)退行性疾病,早期一般表現(xiàn)為多種精神癥狀,隨著病情的進(jìn)展,認(rèn)知水平逐步下降,影響記憶力、語言能力、計(jì)算力等認(rèn)知水平而出現(xiàn)癡呆的臨床癥狀。隨著診斷水平的進(jìn)步和人類平均壽命的延長,確診為AD的患者逐年增多。據(jù)估計(jì)到2030年全世界的AD患者將達(dá)到6500萬[1],還有更多的患者處于AD臨床前期和輕度認(rèn)知障礙期,AD將會給未來人們的生活造成沉重的負(fù)擔(dān)。AD的主要病理表現(xiàn)為由β淀粉樣蛋白(β-amyloid,Aβ)沉積為核心形成的細(xì)胞外老年斑、Tau蛋白過度磷酸化形成的神經(jīng)原纖維纏結(jié)和神經(jīng)元損傷,另外還有顆??张葑冃?、平野小體及腦血管改變。據(jù)2011年美國阿爾茨海默病診斷標(biāo)準(zhǔn)[2-3],依然強(qiáng)調(diào)Aβ及Tau蛋白的AD病理診斷標(biāo)準(zhǔn)關(guān)聯(lián)的重要性,因此現(xiàn)對各個(gè)信號轉(zhuǎn)導(dǎo)通路與Aβ、Tau蛋白的關(guān)系進(jìn)行總結(jié)概述。
1胰島素受體-磷脂酸肌醇3激酶-蛋白激酶B通路
Steen等[4]于2005年提出了AD是3型糖尿病的觀點(diǎn)。在對AD患者腦組織解剖后發(fā)現(xiàn),AD患者具有胰島素水平下降和胰島素抵抗的特點(diǎn)。大量研究表明,AD的病理變化與神經(jīng)元胰島素受體(insulin receptor,IR)信號轉(zhuǎn)導(dǎo)通路障礙有關(guān)[4-6],其中磷脂酸肌醇3激酶-蛋白激酶B(phosphoinositide 3 kinase-protein kinase B,PI3K-PKB)途徑是4種胰島素傳導(dǎo)通路里最重要的通路。在體外實(shí)驗(yàn)研究中發(fā)現(xiàn),抑制PI3K-PKB通路后,淀粉樣前體蛋白(amyloid precursor protein,APP)量無變化,而β分泌酶的切割產(chǎn)物增加[7],同時(shí)γ分泌酶活性增加[8],從而促進(jìn)了Aβ40和Aβ42的生成。另外,PKB可以調(diào)節(jié)下游的caspase 9、Bcl-xL/Bcl-2相關(guān)的死亡啟動因子、叉頭轉(zhuǎn)錄因子等底物,對細(xì)胞凋亡產(chǎn)生阻遏作用,發(fā)揮神經(jīng)保護(hù)作用。PKB被激活后其下游的糖原合成酶激酶-3(glycogen synthase kinase-3,GSK-3)被磷酸化后失去活性。GSK-3存在α及β兩種亞型,在對AD患者的尸體解剖中發(fā)現(xiàn)GSK-3β升高[6],而GSK-3α被證實(shí)可以調(diào)節(jié)γ分泌酶來促進(jìn)Aβ的生成[9],有學(xué)者認(rèn)為GSK-3α在年齡相關(guān)的病理過程中起著樞紐調(diào)節(jié)的作用[10],并對調(diào)節(jié)哺乳動物雷帕霉素靶蛋白1型(mechanistic target of rapamycin complex 1,mTORC1)、自噬、老化起重要作用。
以往認(rèn)為人腦組織中不存在IR,隨著人們對AD研究的深入,發(fā)現(xiàn)腦組織中不僅有IR,還有胰島素生長因子1受體(insulin-like growth factor-1 receptor,IGF-1R),在IR基因敲除的小鼠(nIR-/-)及IGF-1R基因敲除的小鼠(nIGF-1R-/-)腦組織都發(fā)現(xiàn)了Aβ聚集的現(xiàn)象[11]?;贗R-PI3K-PKB在AD中的重要作用,研究人員開始尋找治療AD新的方法。臨床研究發(fā)現(xiàn)在鼻內(nèi)及外周應(yīng)用胰島素可以改善AD患者的記憶水平[11],羅格列酮是胰島素作用增敏劑,為噻唑烷二酮氧化物酶增殖物激活受體激動劑(peroxisome proliferator activated receptor γ,PPARγ),可減輕胰島素抵抗。Sato等[12]對42例AD患者使用羅格列酮治療后發(fā)現(xiàn)血漿Aβ40及Aβ42較對照組明顯降低,并且認(rèn)知水平改善,局部腦血流量提高。很多因素的神經(jīng)保護(hù)作用可能與PI3K-PKB途徑有關(guān)。在對α突觸核蛋白拮抗Aβ神經(jīng)毒性的研究中發(fā)現(xiàn)PI3K-PKB途徑參與了神經(jīng)保護(hù)機(jī)制[13]。針對PI3K-PKB通路的相關(guān)研究是目前AD領(lǐng)域內(nèi)的熱點(diǎn)之一,其對其他神經(jīng)退行性疾病的發(fā)生、發(fā)展亦有重要影響。
2哺乳動物雷帕霉素靶蛋白-核糖體蛋白S6激酶通路
哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)可接受PKB、腺苷酸活化蛋白激酶、GSK-3等蛋白的調(diào)控,其與不同的蛋白結(jié)合而形成mTORC1及mTORC2兩種復(fù)合體,作用于下游的核糖體蛋白S6激酶(70kDa ribosomal protein S6 kinase,P70S6K)、PPARγ、自噬相關(guān)蛋白13等,由于其調(diào)控模式復(fù)雜,能整合能量代謝、生長因子、氨基酸、激素等作用因素并作出反應(yīng),因而被認(rèn)為是一個(gè)調(diào)節(jié)細(xì)胞周期進(jìn)程和細(xì)胞生長的信號樞紐。雷帕霉素可特異性抑制mTORC1,美國食品藥品管理局已批準(zhǔn)雷帕霉素結(jié)合抑免蛋白FKBP12作為一種治療藥物,它可以延長大鼠壽命,且能通過增加自噬來減少早老素的聚集,因而可被用來治療包括AD在內(nèi)的神經(jīng)退行性疾病[14]。mTOR通過p70S6激酶使Tau蛋白發(fā)生超磷酸化,有研究發(fā)現(xiàn)mTOR不僅可以直接作用于Tau蛋白的3個(gè)磷酸化位點(diǎn),還調(diào)節(jié)了Tau蛋白的合成和聚集[15];mTOR信號通路還可以促進(jìn)Aβ的形成[16],mTOR介導(dǎo)的自噬減少在其中起重要作用?;衅魍挥|缺陷蛋白A(synapses of amphids defective kinase-A,SAD-A)為5′單磷酸腺苷活化蛋白激酶相關(guān)蛋白激酶,僅在胰腺及大腦中表達(dá),而mTOR在全身細(xì)胞均有表達(dá),最近發(fā)現(xiàn)SAD-A能作為mTORC1的信號傳遞因子[17],參與mTORC1的調(diào)控作用,因此對SAD-A的進(jìn)一步研究將有助于開發(fā)出針對AD的特異性藥物。
3Wnt通路
Wnt蛋白是一種分泌型糖蛋白,Wnt信號轉(zhuǎn)導(dǎo)通路是一條十分保守的信號轉(zhuǎn)導(dǎo)通路,對細(xì)胞間黏附和細(xì)胞分化方面有著十分重要的作用。β-聯(lián)蛋白(是Wnt下游的一個(gè)主要調(diào)控因子,研究發(fā)現(xiàn)Wnt/β聯(lián)蛋白可以阻止Aβ介導(dǎo)的細(xì)胞毒性作用[18],其傳導(dǎo)受損還可導(dǎo)致Tau蛋白過度磷酸化及神經(jīng)突觸可塑性受損。GSK-3β活性升高可以直接抑制Wnt/β聯(lián)蛋白信號通路,使β聯(lián)蛋白磷酸化修飾增強(qiáng)并促進(jìn)其降解,進(jìn)而促進(jìn)細(xì)胞凋亡[19]。最近在對石杉堿作用機(jī)制的研究中發(fā)現(xiàn)[20]對轉(zhuǎn)基因模型小鼠使用石杉堿鼻凝膠后可通過Wnt信號通路實(shí)現(xiàn)神經(jīng)保護(hù)作用,同時(shí)還發(fā)現(xiàn)非淀粉樣小體APP切割增強(qiáng)。基于Wnt信號通路多方面的功能,有學(xué)者認(rèn)為Wnt蛋白及其配體在神經(jīng)保護(hù)和觸可塑性中起關(guān)鍵作用[21]。
4Nocth通路
Notch信號轉(zhuǎn)導(dǎo)通路在動物中廣泛存在且高度保守,其在多種器官及細(xì)胞的生長發(fā)育中起重要作用。哺乳類動物中Notch通路的功能復(fù)雜多樣,其參與T細(xì)胞發(fā)育、血管生成、造血等重要生理過程,還與腫瘤和某些神經(jīng)系統(tǒng)疾病有密切關(guān)系。當(dāng)Notch受體與配體結(jié)合后相繼發(fā)生2次蛋白水解[22],先由金屬蛋白酶(a disintegrin and metalloproteinase,ADAM)家族的ADAM10、ADAM17切割為2個(gè)片段,N端裂解產(chǎn)物被配體表達(dá)細(xì)胞內(nèi)吞,C端裂解產(chǎn)物隨后被早老素1/2、Pen-2、APH-1和Nicastrin組成的γ-分泌酶復(fù)合體酶切,形成Notch結(jié)構(gòu)域片段,Berezovska等[23]對散發(fā)AD患者大腦組織進(jìn)行免疫組織化學(xué)分析后發(fā)現(xiàn)Notch水平明顯升高。
γ-分泌酶是一種膜內(nèi)蛋白酶,還可以切割β-APP而生成Aβ。Placanica等[24]在模擬PS1/2突變的小鼠中發(fā)現(xiàn)雌鼠的γ-分泌酶作用于β-APP的活力明顯升高,具有性別差異,而雄鼠和雌鼠隨著年齡增加γ-分泌酶切割Notch-1的活力下降,表明γ-分泌酶的活力和作用特異性的改變可能是散發(fā)AD的機(jī)制之一。在對γ-分泌酶細(xì)胞移行的研究中發(fā)現(xiàn)[25],APP在細(xì)胞內(nèi)的聚集可影響γ-分泌酶復(fù)合體其他3個(gè)組分(Pen-2、APH-1和Nicastrin)的穩(wěn)定性,PS1/γ-分泌酶在細(xì)胞內(nèi)移行受多種因素影響,包括APP和磷脂酶D1。Notch信號通路相對于其他通路結(jié)構(gòu)簡單,無第二信使,但其功能復(fù)雜,存在較多的修飾調(diào)節(jié)機(jī)制。Notch信號處于復(fù)雜的多維調(diào)控網(wǎng)絡(luò)之中,隨著研究的深入,AD與Notch通路的關(guān)系將更進(jìn)一步揭示。
5有絲分裂原激活的蛋白激酶通路
有絲分裂原激活的蛋白激酶(mitogen-activated protein kinase,MAPK)參與了細(xì)胞生長、發(fā)育、細(xì)胞間的功能同步以及分裂等多種生理過程。真核細(xì)胞中存在4條MAPK通路:p38通路、細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)通路、ERK5通路和c-Jun氨基末端激酶(c-Jun N-terminal kinase,c-JNK)通路,其中p38通路與AD關(guān)系研究較多,其在炎癥、應(yīng)激反應(yīng)及細(xì)胞的分化發(fā)育等過程中起重要作用,影響細(xì)胞的凋亡,而ERK通路主要促細(xì)胞存活。Swatton等[26]在對AD患者的尸解中發(fā)現(xiàn),p38、SAPK、ERK1/2的活性均升高,證實(shí)了MAPK通路參與了AD的病理反應(yīng)。將Aβ42注入小鼠雙側(cè)海馬發(fā)現(xiàn)[27],甘草酸二胺阻遏小膠質(zhì)神經(jīng)細(xì)胞炎癥反應(yīng)的機(jī)制可能與MAPK信號通路被抑制有關(guān)。在AD的病理改變中,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞活化參與炎癥反應(yīng)為一個(gè)重要表現(xiàn),一般認(rèn)為p38參與了炎癥反應(yīng)并與Aβ的毒性有關(guān)。大量體外研究證明p38通路與Tau蛋白過度磷酸化有關(guān)[28-29],也有研究發(fā)現(xiàn)c-JNK通路亦參與了Tau蛋白的過度磷酸化[30]。APP的T668位點(diǎn)磷酸化可以改變Aβ的沉積位置,誘發(fā)神經(jīng)變性,當(dāng)機(jī)體在應(yīng)激狀態(tài)時(shí)c-JNK 可以磷酸化T668位點(diǎn)[31],Sclip等[32]用JNR抑制劑阻斷c-JNK對T668位點(diǎn)的磷酸化,發(fā)現(xiàn)APP的淀粉樣切割減少,Aβ生成減少,實(shí)驗(yàn)轉(zhuǎn)基因小鼠的認(rèn)知水平改善。JNK相互作用蛋白1(JNK interacting protein 1,JIP-1)是c-JNK通路束縛酶的支架蛋白,在腦組織中高度表達(dá)[33],它可以將c-JNK、 促絲裂原活化蛋白激酶激酶7、促絲裂原活化蛋白激酶激酶激酶家族等蛋白進(jìn)行組裝,進(jìn)而抑制c-JNK的生理作用[34]。因此有學(xué)者認(rèn)為將JIP-1作為AD的治療靶點(diǎn)有可能會取得良好的治療效果[33,35]。
6核因子κB通路
核因子κB(nuclear factor κB,NF-κB)是一種調(diào)控轉(zhuǎn)錄的蛋白復(fù)合體,靜息狀態(tài)下,NF-κB二聚體與核因子κB抑制蛋白(inhibitor of NF-κB,IκB)結(jié)合形成三聚體,當(dāng)受到胞外刺激可激活I(lǐng)κB泛素化降解途徑,而使NF-κB二聚體進(jìn)入胞核,調(diào)節(jié)基因轉(zhuǎn)錄活性[36]。NF-κB可以被多種因子所激活,其中包括細(xì)胞因子、病毒感染、病毒蛋白、鈣離子載體,亦與突觸可塑性及記憶過程有著密切關(guān)系[37]。在對多奈哌齊和銀杏葉提取物的研究發(fā)現(xiàn)[38],兩種藥物都可以作用于NF-κB通路,同時(shí)提高了外周白細(xì)胞的抵抗能力。Toll樣受體(Toll-like receptors,TLR)是近年來發(fā)現(xiàn)的一組Ⅰ型跨膜模式識別受體,能直接識別某些病原體共有的高度保守分子結(jié)構(gòu),其被激活后可導(dǎo)致神經(jīng)變性及炎癥反應(yīng),在AD的發(fā)病中起重要作用[39]。最近在對小鼠的研究中發(fā)現(xiàn)TLR通過NF-κB通路參與了Aβ介導(dǎo)的炎癥反應(yīng)[40]。在穩(wěn)定轉(zhuǎn)染的表達(dá)β-APP的HEK293細(xì)胞中,Chami等[41]發(fā)現(xiàn)NF-κB活化了β位點(diǎn)APP剪切酶1和部分γ-分泌酶亞基的轉(zhuǎn)錄,增加了蛋白表達(dá)和酶的活性,從而促進(jìn)了Aβ的生成,同時(shí)還發(fā)現(xiàn)經(jīng)典和非經(jīng)典的NF-κB通路均介導(dǎo)了Aβ的生成。
7結(jié)語
AD是多種因素長期共同作用的結(jié)果。有學(xué)者認(rèn)為AD的各種機(jī)制間不僅是相容的,如代謝紊亂機(jī)制和血管損傷機(jī)制中包括了炎癥反應(yīng)[42],而且還互相影響,例如:胰島素受體可以作用于Wnt通路、MAPK通路等,并因影響ATP的形成而參與調(diào)節(jié)AMPK途徑,非經(jīng)典Wnt通路可以經(jīng)過卷曲蛋白激活鈣調(diào)蛋白激酶Ⅱ及蛋白激酶C[19]從而參與AD的發(fā)病。雖然現(xiàn)已明確多個(gè)通路與Aβ形成、Tau蛋白過度磷酸化及神經(jīng)元凋亡有關(guān),但其中的具體作用機(jī)制尚不清楚,并且AD的發(fā)病因素涉及年齡、環(huán)境影響、基因異常等方面,使各個(gè)信號系統(tǒng)在具體的AD發(fā)病過程中占有不同的權(quán)重,因此對AD中的各個(gè)信號轉(zhuǎn)導(dǎo)系統(tǒng)還需更深入的研究。
參考文獻(xiàn)
[1]Claeysen S,Cochet M,Donneger R,etal.Alzheimer culprits:cellular crossroads and interplay[J].Cell Signal,2012,24(9):1831-
1840.
[2]Jack Jr CR,Albert MS,Knopman DS,etal.Introduction to the recommendations from the National Institute on Aging-Alzheimer′s Association workgroups on diagnostic guidelines for Alzheimer′s disease[J].Alzheimers Dement,2011,7(3):257-262.
[3]McKhann GM,Knopman DS,Chertkow H,etal.The diagnosis of dementia due to Alzheimer′s disease:Recommendations from the National Institute on Aging-Alzheimer′s Association workgroups on diagnostic guidelines for Alzheimer′s disease[J].Alzheimers Dement,2011,7(3):263-269.
[4]Steen E,Terry BM,Rivera EJ,etal.Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer′s disease-is this type 3 diabetes?[J].J Alzheimers Dis,2005,7(1):63-80.
[5]de la Monte SM,Wands JR.Alzheimer-associated neuronal thread protein mediated cell death is linked to impaired insulin signa-ling[J].J Alzheimers Dis,2004,6(3):231-242.
[6]Liu Y,Liu F,Grundke-Iqbal I,etal.Deficient brain insulin signalling pathway in Alzheimer′s disease and diabetes[J].J Pathol,2011,225(1):54-62.
[7]Adlerz L,Holback S,Multhaup G,etal.IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways[J].J Biol Chem,2007,282(14):10203-10209.
[8]Rickle A,Bogdanovic N,Volkman I,etal.Akt activity in Alzheimer′s disease and other neurodegenerative disorders[J].Neuroreport,2004,15(6):955-959.
[9]Phiel CJ,Wilson CA,Lee VM,etal.GSK-3α regulates production of Alzheimer′s disease amyloid-β peptides[J].Nature,2003,423(6938):435-439.
[10]Zhou J,Freeman TA,Ahmad F,etal.GSK-3α is a central regulator of age-related pathologies in mice[J].J Clin Invest,2013,123(4):1821-1832.
[11]Zemva J,Schubert M.The role of neuronal insulin/ IGF-1 signaling for the pathogenesis of Alzheimer′s disease:possible therapeutic implications[J].CNS Neurol Disord Drug Targets,2014,13(2):322-337.
[12]Sato T,Hanyu H,Hirao K,etal.Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease[J].Neurobiol Aging,2011,32(9):1626-1633.
[13]Resende R,Marques SC,Ferreiro E,etal.Effect of α-synuclein on amyloid β-Induced toxicity:relevance to lewy body variant of Alzheimer disease[J].Neurochem Res,2013,38(4):797-806.
[14]Mendelsohn AR,Larrick JW.Rapamycin as an antiaging therapeutic:targeting mammalian target of rapamycin to treat Hutchinson-Gilford progeria and neurodegenerative diseases[J].Rejuvenation Res,2011,14(4):437-441.
[15]Tang Z,Bereczki E,Zhang H,etal.Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis implication for Alzheimer disease[J].J Biol Chem,2013,288(22):15556-15570.
[16]Caccamo A,Majumder S,Richardson A,etal.Molecular interplay between mammalian target of rapamycin (mTOR),amyloid-beta,and Tau:effects on cognitive impairments[J].J Biol Chem,2010,285(17):13107-13120.
[17]Nie J,Liu X,Lilley BN,etal.SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling[J].Proc Natl Acad Sci U S A,2013,110(34):13857-13862.
[18]Inestrosa NC,Montecinos-Oliva C,Fuenzalida M.Wnt signaling:role in Alzheimer disease and schizophrenia[J].J Neuroimmune Pharmacol,2012,7(4):788-807.
[19]Clevers H.Wnt/β-catenin signaling in development and disease[J].Cell,2006,127(3):469-480.
[20]Wang CY,Zheng W,Wang T,etal.Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model[J].Neuropsychopharmacology,2011,36(5):1073-1089.
[21]Inestrosa NC,Arenas E.Emerging roles of Wnts in the adult nervous system[J].Nat Rev Neurosci,2009,11(2):77-86.
[22]Fischer DF,van Dijk R,Sluijs JA,etal.Activation of the Notch pathway in Down syndrome:cross-talk of Notch and APP[J].FASEB J,2005,19(11):1451-1458.
[23]Berezovska O,Xia MQ,Hyman BT.Notch is expressed in adult brain,is coexpressed with presenilin-1,and is altered in Alzheimer disease[J].J Neuropathol Exp Neurol,1998,57(8):738-745.
[24]Placanica L,Zhu L,Li YM.Gender-and age-dependent γ-secretase activity in mouse brain and its implication in sporadic Alzheimer disease[J].PLoS One,2009,4(4):e5088.
[25]Liu Y,Zhang YW,Wang X,etal.Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1[J].J Biol Chem,2009,284(18):12145-12152.
[26]Swatton JE,Sellers LA,Faull RL,etal.Increased MAP kinase activity in Alzheimer′s and Down syndrome but not in schizophrenia human brain[J].Eur J Neurosci,2004,19(10):2711-2719.
[27]Zhao H,Wang SL,Qian L,etal.Diammonium glycyrrhizinate attenuates Abeta(1-42)-induced neuroinflammation and regulates MAPK and NF-kappaB pathways in vitro and in vivo[J].CNS Neurosci Ther,2013,19(2):117-124.
[28]Cao M,Liu F,Ji F,etal.Effect of c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) in morphine-induced tau protein hyperphosphorylation[J].Behav Brain Res,2013,237:249-255.
[29]Yasuda S,Sugiura H,Tanaka H,etal.p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases[J].Cent Nerv Syst Agents Med Chem,2011,11(1):45-59.
[30]Ando K,Uemura K,Kuzuya A,etal.N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein:implications for neurodegeneration in Alzheimer disease[J].J Biol Chem,2011,286(9):7619-7628.
[31]Whitmarsh AJ.The JIP family of MAPK scaffold proteins[J].Biochem Soc Trans,2006,34(Pt 5):828-832.
[32]Sclip A,Antoniou X,Colombo A,etal.c-Jun N-terminal kinase regulates soluble Aβ oligomers and cognitive impairment in AD mouse model[J].J Biol Chem,2011,286(51):43871-43880.
[33]Helbecque N,Abderrhamani A,Meylan L,etal.Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer′s disease[J].Mol Psychiatry,2003,8(4):413-422.
[34]Beeler N,Riederer BM,Waeber G,etal.Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes[J].Brain Res Bull,2009,80(4):274-281.
[35]Miklossy J,Qing H,Radenovic A,etal.Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes[J].Neurobiol Aging,2010,31(9):1503-1515.
[36]Niederberger E,Geisslinger G.Proteomics and NF-κB:an update[J].Expert Rev Proteomics,2013,10(2):189-204.
[37]Levenson JM,Choi S,Lee SY,etal.A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel[J].J Neurosci,2004,24(16):3933-3943.
[38]Sochocka M,Zaczyńska E,Tabo? A,etal.The influence of donepezil and EGb 761 on the innate immunity of human leukocytes:effect on the NF-κB system[J].Int Immunopharmacol,2010,10(12):1505-1513.
[39]Okun E,Griffioen KJ,Lathia JD,etal.Toll-like receptors in neurodegeneration[J].Brain Res Rev,2009,59(2):278-292.
[40]Lin W,Ding M,Xue J,etal.The role of TLR2/JNK/NF-κB pathway in amyloid β peptide-induced inflammatory response in mouse NG108-15 neural cells[J].Int Immunopharmacol,2013,17(3):880-884.
[41]Chami L,Buggia-Prévot V,Duplan E,etal.Nuclear factor-κB regulates βAPP and β-and γ-secretases differently at physiological and supraphysiological Aβ concentrations[J].J Biol Chem,2012,287(29):24573-24584.
[42]Accardi G,Caruso C,Colonna-Romano G,etal.Can Alzheimer disease be a form of type 3 diabetes?[J].Rejuvenation Res,2012,15(2):217-221.
Research Progress of Signal Transduction Pathways in Alzheimer Disease
ZHANGYue-qi,WANGPei-chang.
(DepartmentofClinicalLaboratory,XuanwuHospitalofCapitalMedicalUniversity,Beijing100053,China)
Abstract:Alzheimer disease(AD)is the primary cause of dementia in the elderly worldwide.There is no effective treatment for AD,and its pathogenesis is still not fully elucidated.Gene mutations,hormone level, environmental impact, age, and many other factors are believed to cause the occurrence of AD.Through years′ study many signal transduction pathways have been found to participate in the pathogenesis of AD.Interactions between various pathways can accelerate the course of AD.The discovery of new signal transduction pathways has not only deepened the understanding of the process of AD,but also revealed new therapeutic targets of AD.
Key words:Alzheimer disease; Signal transduction pathway; Amyloid precursor protein
收稿日期:2014-05-19修回日期:2014-09-28編輯:相丹峰
doi:10.3969/j.issn.1006-2084.2015.10.008
中圖分類號:R741.2
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-2084(2015)10-1748-04