劉娜娜,祝繼原(綜述),戚基萍,吳 鶴(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院病理科,哈爾濱 150001)
腦出血后的炎癥機(jī)制
劉娜娜△,祝繼原(綜述),戚基萍※,吳鶴(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院病理科,哈爾濱 150001)
摘要:炎癥可以加重腦出血后的繼發(fā)性損傷,并在其中發(fā)揮重要作用。腦出血后,血腫成分通過激活小膠質(zhì)細(xì)胞觸發(fā)炎性通路?;罨男∧z質(zhì)細(xì)胞釋放促炎性細(xì)胞因子和炎癥趨化因子來募集周圍的炎性細(xì)胞。滲入的炎性細(xì)胞和小膠質(zhì)細(xì)胞釋放炎性因子,最終導(dǎo)致細(xì)胞死亡。死亡的細(xì)胞釋放危險相關(guān)分子,加重炎癥反應(yīng),最終導(dǎo)致腦水腫和神經(jīng)功能障礙。該文對腦出血后的炎癥機(jī)制及其最新研究進(jìn)展予以綜述,以期發(fā)現(xiàn)腦出血新的治療靶點(diǎn)。
關(guān)鍵詞:腦出血;炎癥;小膠質(zhì)細(xì)胞; Toll樣受體4
腦出血是一種嚴(yán)重的中樞神經(jīng)系統(tǒng)損傷,其具有較高的致殘率和病死率。腦出血后腦損傷是由多種基因和信號通路參與的復(fù)雜的病理生理過程,包括血腫擴(kuò)張和顱內(nèi)壓增高導(dǎo)致的原發(fā)性損傷和細(xì)胞毒性、興奮性毒性、氧化性及炎癥引起的繼發(fā)性損傷;有效控制和減輕腦出血后繼發(fā)性損是腦出血神經(jīng)保護(hù)治療的關(guān)鍵,而炎癥在腦出血后繼發(fā)性損傷中起重要作用;炎癥機(jī)制涉及小膠質(zhì)細(xì)胞的活化、炎性細(xì)胞的滲入及細(xì)胞因子和炎癥趨化因子的釋放,最終導(dǎo)致細(xì)胞死亡,進(jìn)而加重大腦損傷[1]?,F(xiàn)對腦出血后炎癥損傷的機(jī)制及其最新進(jìn)展予以綜述。
1小膠質(zhì)細(xì)胞
1.1小膠質(zhì)細(xì)胞小膠質(zhì)細(xì)胞是大腦內(nèi)固有的非神經(jīng)元細(xì)胞。當(dāng)小膠質(zhì)細(xì)胞活化時,其本身發(fā)生形態(tài)和功能上的改變(包括:變大和深染、增殖、遷移和吞噬),同時其內(nèi)的促炎癥蛋白的表達(dá)發(fā)生上調(diào)[1]。小膠質(zhì)細(xì)胞在腦出血后早期即被激活,Wang[1]在膠原酶誘導(dǎo)的腦出血模型中發(fā)現(xiàn),出血后1 h內(nèi)即能觀察到活化的小膠質(zhì)細(xì)胞。Zhao等[2]發(fā)現(xiàn),在全血注入大鼠紋狀體后1~4 h,活化的小膠質(zhì)細(xì)胞出現(xiàn)在血腫周圍區(qū)域,在3~7 d達(dá)到高峰。以上研究說明,小膠質(zhì)細(xì)胞在腦出血后發(fā)生活化,并且可能參與早期的炎癥應(yīng)答。
1.2小膠質(zhì)細(xì)胞的活化由于腦是無菌器官,因此炎癥反應(yīng)可能由血腫成分觸發(fā)。血腫成分包括血細(xì)胞(紅細(xì)胞、白細(xì)胞和血小板)、凝血因子、補(bǔ)體成分和免疫球蛋白;體外研究發(fā)現(xiàn),紅細(xì)胞可以刺激小膠質(zhì)細(xì)胞呈天線樣變形[2]。另外,紅細(xì)胞通過與小膠質(zhì)細(xì)胞表面經(jīng)典Ⅱ型清道夫受體CD36結(jié)合,激活小膠質(zhì)細(xì)胞的吞噬活性,并上調(diào)促炎性因子,如腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、白細(xì)胞介素(interleukin,IL)1β和基質(zhì)金屬蛋白酶9的表達(dá)[3]。凝血因子纖維蛋白原通過促進(jìn)炎癥趨化因子的釋放誘導(dǎo)小膠質(zhì)細(xì)胞活化;此外,其他血腫成分(如凝血酶和補(bǔ)體)也可以激活小膠質(zhì)細(xì)胞[4-5]。血液凝固因子凝血酶可以增加小膠質(zhì)細(xì)胞中的鈣離子濃度,同時促進(jìn)TNF-α、IL-12和IL-6的釋放[4]。腦出血后凝血酶誘導(dǎo)的腦損傷,也有部分是由于補(bǔ)體的激活介導(dǎo)的;凝血酶可以促進(jìn)補(bǔ)體C3的裂解,促進(jìn)了腦出血介導(dǎo)的腦損傷[5]。使用藥物抑制補(bǔ)體系統(tǒng)減弱了凝血酶誘導(dǎo)的腦水腫形成和神經(jīng)功能損傷的作用[6]。
1.3小膠質(zhì)細(xì)胞活化的作用腦出血后小膠質(zhì)細(xì)胞/巨噬細(xì)胞中活化的核因子κB(nuclear factor κB,NF-κB)可以上調(diào)促炎性因子的表達(dá),并且導(dǎo)致腦損傷[7]。NF-κB活化發(fā)生在腦出血后數(shù)分鐘并持續(xù)數(shù)周[8]。紅細(xì)胞和血漿可能通過自由基、細(xì)胞因子和谷氨酸受體等一系列的信號通路激活NF-κB[7]。 研究發(fā)現(xiàn),抑制小膠質(zhì)細(xì)胞NF-κB信號通路可以改善神經(jīng)功能損傷[9]?;罨腘F-κB通過上調(diào)下游基因TNF-α和IL-1β的表達(dá),加重腦出血后血腦屏障的破壞和腦水腫[10-11]。和動物實(shí)驗(yàn)一致,在臨床中,血漿TNF-α水平與腦出血患者血腫周圍腦水腫程度有關(guān)[12]。早期抑制小膠質(zhì)細(xì)胞的活化可改善腦出血后的腦損傷[13]。然而,長時程的抑制有可能會削弱小膠質(zhì)細(xì)胞的有益作用。腦出血后血腫成分觸發(fā)小膠質(zhì)細(xì)胞/巨噬細(xì)胞活化,活化后的小膠質(zhì)細(xì)胞/巨噬細(xì)胞對血液和損傷、壞死組織進(jìn)行吞噬清除,進(jìn)而為組織修復(fù)提供一個更有營養(yǎng)的環(huán)境[14]。因此,活化的小膠質(zhì)細(xì)胞清除毒性物質(zhì)的特性可能具有神經(jīng)保護(hù)作用。有研究報道,在自體血和膠原酶兩種方式誘導(dǎo)的腦出血模型中均發(fā)現(xiàn),血腫體積在腦出血后7 d開始減小,并發(fā)現(xiàn)腦出血后小膠質(zhì)細(xì)胞活化的時間也接近7 d[15]。盡管血腫導(dǎo)致早期小膠質(zhì)細(xì)胞的活化和炎性因子的釋放,但是小膠質(zhì)細(xì)胞活化的高峰和血腫吸收的時間窗更接近。
2腦出血后炎性細(xì)胞及細(xì)胞應(yīng)答
2.1白細(xì)胞在腦出血早期白細(xì)胞滲入血腫,而中性粒細(xì)胞是最早出現(xiàn)在血腫中的白細(xì)胞[1]。在鼠類動物模型中,腦出血早期發(fā)現(xiàn)中性粒細(xì)胞滲入,約3 d達(dá)到高峰[16]。腦出血患者的尸檢顯示,中性粒細(xì)胞滲入最遲發(fā)生在腦出血后8 h,并在3 d時消失[17]。這些數(shù)據(jù)提示,早期中性粒細(xì)胞的滲入與腦出血后的急性炎癥有關(guān)。雖然還沒有研究指出中性粒細(xì)胞參與腦出血后腦損傷加重的確切機(jī)制,但人們發(fā)現(xiàn),在腦出血后中性粒細(xì)胞通過產(chǎn)生活性氧類、釋放促炎性因子(如TNF-α和IL-1β)、上調(diào)基質(zhì)金屬蛋白酶9表達(dá)、調(diào)節(jié)血腦屏障通透性和誘導(dǎo)小膠質(zhì)細(xì)胞/巨噬細(xì)胞活化等機(jī)制來加重腦損傷[18]。此外,中性粒細(xì)胞在2 d內(nèi)死亡,死亡的中性粒細(xì)胞通過刺激小膠質(zhì)細(xì)胞/巨噬細(xì)胞釋放多種細(xì)胞因子、炎癥趨化因子、自由基和其他毒性生物分子來加重腦損傷[16]。因此,中性粒細(xì)胞的滲入可能加重腦損傷。臨床研究也發(fā)現(xiàn),腦出血患者血腫周圍區(qū)域有中性粒細(xì)胞聚集,并且在腦出血發(fā)生后最初的72 h內(nèi)周圍中性粒細(xì)胞的數(shù)量與患者的不良預(yù)后有關(guān)[17]。最近,Easton[19]認(rèn)為,中性粒細(xì)胞在中樞神經(jīng)系統(tǒng)中依據(jù)環(huán)境的不同存在兩種表型,一種是促炎癥的N1型,另一種是抗炎癥的N2型;當(dāng)中性粒細(xì)胞的數(shù)量超過臨界閾值時,中性粒細(xì)胞表現(xiàn)出N2型,這暗示在卒中和其他中樞神經(jīng)系統(tǒng)炎癥疾病中,促進(jìn)中性粒細(xì)胞的浸潤可以改善預(yù)后。
2.2T細(xì)胞研究發(fā)現(xiàn),T細(xì)胞參與腦出血后大腦繼發(fā)性損傷的調(diào)控;在動物模型中發(fā)現(xiàn),CD8陽性T細(xì)胞水平在腦出血后24 h增加,并在2~7 d達(dá)到高峰[20]。此外,還發(fā)現(xiàn)CD4陽性細(xì)胞數(shù)量在腦出血后4 d也發(fā)生增加,這暗示CD4、CD8陽性T細(xì)胞可能參與腦出血后的炎癥反應(yīng)[21]。Fingolimod是一種減少T細(xì)胞循環(huán)池的藥物,在鼠類自體血或膠原酶誘導(dǎo)的腦出血模型中發(fā)現(xiàn),其可以減少血腫周圍T細(xì)胞數(shù)量,減小腦水腫并下調(diào)炎性介質(zhì)(如γ干擾素、IL-17和細(xì)胞內(nèi)黏附分子1)的表達(dá);在小鼠紋狀體自體血和膠原酶誘導(dǎo)的腦出血模型中發(fā)現(xiàn), Fingolimod改善神經(jīng)功能并減小腦出血后24 h和72 h的腦水腫;Fingolimod處理組的血和腦樣本中的淋巴細(xì)胞明顯比對照組少,并且Fingolimod治療明顯降低了腦出血后72 h小鼠腦內(nèi)細(xì)胞間黏附分子1、γ干擾素和IL-17的表達(dá)[22]。這些結(jié)果初步暗示,腦出血后T細(xì)胞參與加重炎癥性損傷。
2.3Toll樣受體(Toll like receptors,TLR)4信號通路TLR4在自身免疫和炎癥應(yīng)答中具有重要作用。TLR由富含亮氨酸的重復(fù)區(qū)域和細(xì)胞內(nèi)Toll-IL-1受體(Toll-interleukin 1 receptor,TIR)區(qū)域組成;其中,TLR通過富含亮氨酸的重復(fù)區(qū)域與配體結(jié)合,TIR區(qū)域募集細(xì)胞內(nèi)接頭蛋白;細(xì)胞內(nèi)接頭蛋白包括骨髓分化因子88(myeloid differentiation factor 88,MyD88)、TLR相關(guān)的干擾素活化子(TIR domain-containing adaptor-inducing interferons,TRIFs)、含TIR功能區(qū)域的接頭蛋白和TRIF相關(guān)接頭蛋白分子;一旦發(fā)生募集,這些接頭蛋白激活下游信號通路,包括轉(zhuǎn)錄因子的活化(如NF-κB)和下游多種促炎性細(xì)胞因子的表達(dá)(如IL-6、IL-1和TNF-α)[23]。TLR4主要在CD11b陽性小膠質(zhì)細(xì)胞中表達(dá),在血腫周圍的白細(xì)胞、巨噬細(xì)胞和血小板中也有表達(dá)[10]。TLR4信使RNA和蛋白在腦出血后6 h顯著增加,3 d時達(dá)到高峰,之后下降,但是在腦出血后7 d仍維持較高水平[24]。這說明TLR4對腦出血后的炎癥可能具有一定的作用。TLR4抑制劑可改善炎癥損傷和神經(jīng)缺陷[25]。同樣,TLR4剔除的小鼠也表現(xiàn)出明顯的神經(jīng)功能的改善,包括腦水腫減輕、炎性細(xì)胞滲入和炎性因子釋放的減少[10]。這暗示TLR4可能通過調(diào)節(jié)炎性因子的表達(dá)介導(dǎo)腦出血后的炎癥性損傷。和動物研究一致,腦出血患者TLR4表達(dá)的增加與患者不良的臨床表現(xiàn)和較大的損傷面積有關(guān)[26]。最近發(fā)現(xiàn),MyD88和TRIF信號通路參與TLR4介導(dǎo)的腦出血后炎癥應(yīng)答;MyD88和TRIF缺失的轉(zhuǎn)基因小鼠表現(xiàn)出神經(jīng)功能的改善,并且炎性細(xì)胞因子的釋放和巨噬細(xì)胞滲入也發(fā)生減少;腦出血后TLR4剔除的小鼠中MyD88和TRIF的表達(dá)降低;此外,在TLR4剔除的小鼠中,NF-κB活性明顯降低,暗示TLR4介導(dǎo)的炎癥通過激活NF-κB,進(jìn)而調(diào)節(jié)促炎性細(xì)胞因子的表達(dá)[10]。TLR4剔除導(dǎo)致血腫周圍CD36表達(dá)的上調(diào),而CD36在腦出血后的小膠質(zhì)細(xì)胞/巨噬細(xì)胞中表達(dá)并介導(dǎo)對紅細(xì)胞的吞噬,因此TLR4在血腫吸收中也具有一定的作用[27]??傊?,抑制TLR4通路可以減弱腦出血誘導(dǎo)的炎癥性損傷,然而TLR4的抑制在臨床研究中的作用還有待進(jìn)一步研究。
3細(xì)胞死亡與炎癥的正反饋?zhàn)饔?/p>
炎癥最終導(dǎo)致細(xì)胞凋亡和壞死。一些動物和臨床研究顯示,腦出血后存在細(xì)胞凋亡和壞死[28-29]。細(xì)胞凋亡或壞死后,釋放大量細(xì)胞信號分子,其可觸發(fā)炎癥,被稱為危險相關(guān)分子,包括高遷移率族蛋白(high mobility group box 1,HMGB1)、熱激蛋白、透明質(zhì)酸和硫酸肝素等[30]。除了HMGB1直接觸發(fā)炎癥反應(yīng),其余可以通過降解基質(zhì)蛋白(如膠原蛋白、纖維蛋白和透明質(zhì)酸)來促進(jìn)促炎性細(xì)胞因子的產(chǎn)生[31]。目前對HMGB1的研究比較多,HMGB1是一種細(xì)胞內(nèi)DNA結(jié)合蛋白,可以調(diào)節(jié)轉(zhuǎn)錄;在動物模型和腦出血患者中均發(fā)現(xiàn)腦出血后早期HMGB1增多[32-33],且增多的HMGB1與疾病嚴(yán)重程度有關(guān)[33]?;罨男∧z質(zhì)細(xì)胞/巨噬細(xì)胞也可以分泌HMGB1,HMGB1可以刺激TLR2和TLR4誘導(dǎo)炎癥應(yīng)答;HMGB1的抑制劑甘草皂苷可以減弱腦出血后的腦水腫,并抑制神經(jīng)元死亡和改善神經(jīng)功能[17]。以上研究提示,HMGB1參與腦出血后的炎癥損傷。
4小結(jié)
炎癥在腦出血后的繼發(fā)性損傷中具有重要作用。血腫成分觸發(fā)的炎癥信號導(dǎo)致小膠質(zhì)細(xì)胞活化、周圍炎性細(xì)胞的滲入和促炎性介質(zhì)的釋放,進(jìn)而導(dǎo)致細(xì)胞死亡和腦損傷。細(xì)胞死亡進(jìn)一步反饋性加重炎癥反應(yīng),最終加重腦出血后繼發(fā)性損傷。因此,發(fā)現(xiàn)抑制炎癥的藥物對減小繼發(fā)性損傷非常重要。近年來,發(fā)現(xiàn)了一些抑制炎癥通路的藥物,都具有不同程度的抑制炎癥的作用。未來還需要進(jìn)一步研究這些藥物的臨床實(shí)用性,并發(fā)現(xiàn)更有效的抑制炎癥通路的藥物。
參考文獻(xiàn)
[1]Wang J.Preclinical and clinical research on inflammation after intracerebral hemorrhage[J].Prog Neurobiol,2010,92(4):463-
477.
[2]Zhao X,Sun G,Zhang J,etal.Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol,2007,61(4):352-362.
[3]Zhao X,Grotta J,Gonzales N,etal.Hematoma resolution as a therapeutic target:the role of microglia/macrophages[J].Stroke,2009,40(Suppl 3):92-94.
[4]M?ller T,Hanisch UK,Ransom BR.Thrombin-induced activation of cultured rodent microglia[J].J Neurochem,2000,75(4):1539-1547.
[5]Babu R,Bagley JH,Di C,etal.Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention[J].Neurosurg Focus,2012,32(4):E8.
[6]Gong Y,Xi GH,Keep RF,etal.Complement inhibition attenuates brain edema and neurological deficits induced by thrombin[J].Acta Neurochir Suppl,2005,95:389-392.
[7]Wagner KR.Modeling intracerebral hemorrhage:glutamate,nuclear factor-kappa B signaling and cytokines[J].Stroke,2007,38(Suppl 2):753-758.
[8]Zhao X,Zhang Y,Strong R,etal.Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit,iNOS,and COX-2 expression[J].J Neurochem,2007,101(3):652-663.
[9]Su X,Wang H,Zhu L,etal.Ethyl pyruvate ameliorates intracerebral hemorrhage induced brain injury through anti-cell death and anti-inflammatory mechanisms[J].Neuroscience,2013,245:99-
108.
[10]Lin S,Yin Q,Zhong Q,etal.Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage[J].J Neuroinflamm,2012,9:46.
[11]Zhang X,Li H,Hu S,etal.Brain edema after intracerebral hemorrhage in rats:the role of inflammation[J].Neurol India,2006,54(4):402-407.
[12]Castillo J,Dávalos A,Alvarez-Sabín J,etal.Molecular signatures of brain injury after intracerebral hemorrhage[J].Neurology,2002,58(4):624-629.
[13]Wu J,Yang S,Hua Y,etal.Minocycline attenuates brain edema,brain atrophy and neurological deficits after intracerebral hemorrhage[J].Acta Neurochir Suppl,2010,106:147-150.
[14]Cox G,Crossley J,Xing Z.Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo[J].Am J Respir Cell Mol Biol,1995,12(2):232-237.
[15]Wang J,Rogove AD,Tsirka AE,etal.Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage[J].Ann Neurol,2003,54(5):655-664.
[16]Wang J,Doré S.Inflammation after intracerebral hemorrhage[J].J Cereb Blood Flow Metab,2007,27(5):894-908.
[17]Zhou Y,Wang Y,Wang J,etal.Inflammation in intracerebral hemorrhage:from mechanisms to clinical translation[J].Prog Neurobiol,2014,115:25-44.
[18]Moxon-Emre I,Schlichter LC.Neutrophil depletion reduces blood-brain barrier breakdown,axon injury,and inflammation after intracerebral hemorrhage[J].J Neuropathol Exp Neurol,2011,70(3):218-235.
[19]Easton AS.Neutrophils and stroke-can neutrophils mitigate disease in the central nervous system?[J].Int Immunopharmacol,2013,17(4):1218-1225.
[20]Xue M,Del Bigio MR.Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats[J].J Stroke Cerebrovasc Dis,2003,12(3):152-159.
[21]Loftspring MC,McDole J,Lu A,etal.Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes[J].J Cereb Blood Flow Metab,2009,29(1):137-143.
[22]Rolland WB,Lekic T,Krafft PR,etal.Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage[J].Exp Neurol,2013,241:45-55.
[23]Kong Y,Le Y.Toll-like receptors in inflammation of the central nervous system[J].Int Immunopharmacol,2011,11(10):1407-
1414.
[24]Teng W,Wang L,Xue W,etal.Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats[J].Mediators Inflamm,2009,2009:473276.
[25]Wang YC,Wang PF,Fang H,etal.Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury[J].Stroke,2013,44(9):2545-2552.
[26]Rodríguez-Yáez M,Brea D,Arias S,etal.Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage[J].J Neuroimmunol,2012,247(1/2):75-80.
[27]Sansing LH,Harris TH,Welsh FA,etal.Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage[J].Ann Neurol,2011,70(4):646-656.
[28]Huang M,Hu Y,Dong XQ,etal.The protective role of oxymatrine on neuronal cell apoptosis in the hemorrhagic rat brain[J].J Ethnopharmacol,2012,143(1):228-235.
[29]Zhu X,Tao L,Tejima-Mandeville E,etal.Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice[J].Stroke,2012,43(2):524-531.
[30]Rivest S.Regulation of innate immune responses in the brain[J].Nat Rev Immunol,2009,9(6):429-439.
[31]Kono H,Rock KL.How dying cells alert the immune system to danger[J].Nat Rev Immunol,2008,8(4):279-289.
[32]Lei C,Lin S,Zhang C,etal.Highmobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats[J].Neuroscience,2013,228:190-199.
[33]Zhou Y,Xiong KL,Lin S,etal.Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage[J].Mediators Inflamm,2010,2010:142458.
Mechanisms of Inflammation after Intracerebral Hemorrhage
LIUNa-na,ZHUJi-yuan,QIJi-ping,WUHe.
(DepartmentofPathology,theFirstAffiliatedHospitalofHarbinMedeicalUniversity,Harbin150001,China)
Abstract:Numerous studies have demonstrated that inflammation can aggravate the secondary injury after intracerebral hemorrhage,which is very important.Hematoma components activate inflammatory via activating microglia after intracerebral hemorrhage.Activated microglia release inflammatory cytokines and chemokines which recruit inflammatory cells.The recruited inflammatory cells and microglia induce cell death via releasing inflammatory cytokines.Danger-associated molecules released from dead cells aggravates inflammatory injury,which lead to cerebral edema and neurological deficit ultimately.To identify new therapeutic targets for the treatment of intracerebral hernorrhag,here summarizes recent progress concerning the mechanism of intracerebral hernorrhag-induced inflammation.
Key words:Intracerebral hemorrhage; Inflammation; Microglia; Toll like receptor 4
收稿日期:2014-07-14修回日期:2014-10-17編輯:鄭雪
基金項(xiàng)目:國家自然科學(xué)基金青年科學(xué)基金(81200885)
doi:10.3969/j.issn.1006-2084.2015.10.002
中圖分類號:R363.21
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-2084(2015)10-1732-04