• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur,Microcebus murinus

    2015-02-06 07:33:22InstituteofBiochemistryDepartmentofBiologyCarletonUniversityOttawaONKS5B6Canada
    Genomics,Proteomics & Bioinformatics 2015年2期

    Institute of Biochemistry&Department of Biology,Carleton University,Ottawa,ON KS 5B6,Canada

    2UMR 7179 Centre National de la Recherche Scientifque,Muse′um National d’Histoire Naturelle,Brunoy 91800,France

    3Department of Biology,Genetics Institute,University of Florida,Gainesville,FL 32611,USA

    4Biochemistry Department,Schulich School of Medicine and Dentistry,Western University,London,ON N6A 5C1,Canada

    5Chemistry and Chemical Engineering Department,Royal Military College Of Canada,Kingston,ON K7K 7B4,Canada

    6Department of Surgery&Center for Engineering in Medicine,Massachusetts General Hospital&Harvard Medical

    School,Charlestown,MA 02129,USA

    Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur,Microcebus murinus

    Cheng-Wei Wu1,3,#,a,Kyle K.Biggar1,4,#,b,Jing Zhang1,5,c, Shannon N.Tessier1,6,d,Fabien Piferi2,e,Martine Perret2,f, Kenneth B.Storey1,*,g

    1Institute of Biochemistry&Department of Biology,Carleton University,Ottawa,ON K1S 5B6,Canada

    2UMR 7179 Centre National de la Recherche Scientifque,Muse′um National d’Histoire Naturelle,Brunoy 91800,France

    3Department of Biology,Genetics Institute,University of Florida,Gainesville,FL 32611,USA

    4Biochemistry Department,Schulich School of Medicine and Dentistry,Western University,London,ON N6A 5C1,Canada

    5Chemistry and Chemical Engineering Department,Royal Military College Of Canada,Kingston,ON K7K 7B4,Canada

    6Department of Surgery&Center for Engineering in Medicine,Massachusetts General Hospital&Harvard Medical

    School,Charlestown,MA 02129,USA

    Heat shock proteins;

    Antioxidant capacity;

    Primate hypometabolism;

    Stress response

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability.Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions.To understand the molecular mechanisms that act to protect cells during primate torpor,the present study characterizes antioxidant and heat shock protein(HSP)responses in various organs of control(aroused)and torpid gray mouse lemurs,Microcebus murinus.Protein expression of HSP70 and HSP90α was elevated to 1.26 and 1.49 fold,respectively,in brown adipose tissue during torpor as compared with control animals,whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P<0.05).Among antioxidant enzymes,protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor,whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle(P<0.05).Additionally,total antioxidant capacity was increased to 1.6 fold in liver during torpor(P<0.05),while remaining unchanged in the fve other tissues.Overall,our data suggest that antioxidant and HSP responses are modifed in a tissue-specifc manner during daily torpor in gray mouse lemurs.Furthermore,our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.

    Introduction

    Survival in the face of unfavourable environmental conditions is a challenge for most animals.For instance,animal ftness is often limited by fuctuations in the availability of basic nutrients as well as by abiotic stresses(too hot,too cold,or too dry climate,low oxygen,etc.).When faced with environmental stresses,many animals exhibit adaptive responses that provide cytoprotection to combat potential damage to cells[1]. Changes in ambient temperature are among the most common stressors experienced by animals,which can often disrupt metabolic homeostasis.Such disruption can occur via a number of mechanisms including direct temperature effects on enzyme properties,protein conformation,and lipid fuidity, as well as secondary consequences such as changes in reactive oxygen species(ROS)generation.Many animals that must deal with extreme changes in temperature on a seasonal basis use strong metabolic rate depression to enter a torpid or dormant state when temperature is too cold(or too hot).They couple metabolic rate depression with enhanced cytoprotection,such as elevated levels of chaperones that help stabilize protein structure/function,as well as antioxidant defenses to deal with oxidative stress while in the hypometabolic state[2–4].

    One of the hallmark responses to high temperature stress is the induction of heat shock proteins(HSPs),a group of chaperone proteins that function to aid proteome stability[5]. However,HSPs are now well known to be induced by many abiotic stresses that disrupt the cellular proteome,such as hypoxia,ischemia,oxidative stress,heavy metals,UV radiation,and low temperature[6,7].HSP protein family members are named according to their molecular weight and the best known HSP proteinsincludeHSP27,HSP40,HSP60, HSP70,HSP90α,and HSP110.Moreover,the family now includes many other chaperone proteins[8,9].Although different HSPs respond to different cellular cues,their primary function is to maintain proteome stability,by guiding the folding of nascent proteins,re-folding misfolded proteins,preventing protein aggregation,and directing the degradation of unstable proteins[10,11].HSP induction is a known component of metabolic rate depression in many systems,supporting longterm survival in hypometabolic states including dormancy,torpor,aestivation,and diapause.For example,the expression of HSP10,60,90,and 110 was all upregulated in the hepatopancreas following 14 days of estivation in snails(Otala lactea)[7], whereas expression of HSP70 and HSP27(and its phosphorylated form)was upregulated in skeletal muscle of hibernating bats(Myotis lucifugus)[12,13].

    Entry into hypometabolic states can also cause fuctuations to aerobic metabolism,leading to altered ROS production and potential oxidative damages[14].This is particularly prominent in mammalian hibernation,since two factors come into play.First,intermittent arousals from torpor necessitate a huge increase in oxygen uptake and consumption(with a proportional increase in ROS generation)to power the thermogenesis required to rewarm the body to euthermia. Second,to maintain fuidity of lipid fuel depots at the low body temperature(Tb)during hibernation requires an increase in their polyunsaturated fatty acid(PUFA)content,which is highly susceptible to lipid peroxidation[15,16].Hence,antioxidant defenses are necessary during the hibernation.These are provided by both low molecular weight metabolic antioxidants as well as antioxidant enzymes including superoxide dismutase (SOD),catalase,peroxiredoxin(PRX),thioredoxin(TRX), glutathione peroxidase,and other glutathione-linked enzymes [17,18].

    Recent studies have presented the gray mouse lemur (Microcebus murinus)as a new model for the study of primate adaptation to environmental stress[19].These small primates utilize daily or multi-daily torpor,reducing their metabolic rate(a maximum of~80%reduction compare to resting metabolic rate recorded)in order to cope with unfavourable conditions during the dry season in Madagascar,when food and water are limited and ambient temperatures are reduced [19].Previous studies have shown that under short-day conditions combined with food restriction,gray mouse lemurs showed evidence of higher oxidative stress associated with increased torpor expression[20].To date,little is known about the cytoprotective responses of lemurs during torpor.We hypothesized that during torpor,lemurs activate endogenous defense mechanisms to alleviate cellular stress,potentially using similar mechanisms as observed during torpor in wellstudied mammalian hibernators(e.g.,bats and ground squirrels)[12,13,21–23].To test this hypothesis,we examined the expression of proteins involved in the heat shock response and antioxidant defense in lemurs during daily torpor to identify potential molecular mechanisms of the stress response in primate torpor.

    Results

    Expression of HSPs during torpor

    We frst examined the expression of three major heat shock proteins(HSP60,HSP70,and HSP90α)in control(aroused)and torpid animals.Multiplex assay was employed to evaluate the protein expression in lemur tissues including the liver,muscle,heart,kidney,white adipose tissue(WAT),and brown adipose tissue(BAT).As shown inFigure 1,expression of HSP70 and HSP90α in BAT was signifcantly higher during torpor as compared to control animals;which was 1.27±0.08 fold and 1.49±0.14 fold,respectively(P<0.05)(Figure 1A).Signifcantly higher amount of HSP60 was only observed in the liver during torpor(1.15±0.02 fold,compared to control;P<0.05)(Figure 1D).Otherwise,the expression of HSPs were comparable between control and torpor states in the WAT(Figure 1B),kidney(Figure 1C),heart(Figure 1E), and skeletal muscle(Figure 1F).

    Total antioxidant defense during torpor

    Figure 1 HSP expression in gray mouse lemurs during daily torpor

    Figure 2 Total antioxidant capacity in gray mouse lemurs during daily torpor

    We then evaluated the total antioxidant capacity in six lemur tissues comparing control and torpor conditions(Figure 2). The antioxidant assay kit measures the cumulative antioxidant capacity supplied by a variety of cellular antioxidant molecules including vitamin C,vitamin E,glutathione,bilirubin,albumin,and uric acid.This is accomplished by measuring the rate at which these cellular antioxidant molecules inhibit the metmyoglobin-catalyzed oxidation of 2,2′-azino-bis(3-ethyl benzthiazoline-6-sulfonic acid(ABTS)to its radical cation form.A signifcant change in tissue antioxidant capacity was observed only in liver,which is 1.61±0.16 fold in liver of torpid lemurs relative to control(aroused)animals(P<0.05). Totalantioxidantcapacity did notchange signifcantly between control and torpid lemurs in any of the other tissues, although antioxidant capacity in skeletal muscle tended to be lower during torpor.

    Expression of antioxidant enzymes during torpor

    The protein expression levels of fve antioxidant enzymes were measured using a Human Oxidative Stress Luminex panel in the six lemur tissues,comparing control(aroused)and torpor states.The fve antioxidant enzymes measured in this study are involved in the detoxifcation of ROS molecules and are crucial to the oxidative stress response.These enzymes include Cu/Zn-SOD1(the cytoplasmic form),Mn-SOD2(the mitochondrial form),catalase,thioredoxin 1(TRX1),and peroxiredoxin 2 (PRX2).Interestingly,expression of the majority of enzymes werecomparablebetweentorporand arousalin most of the tissues examined(Figure 3).Among them,SOD1 the protein expression of cytoplasmic SOD1 was signifcantly higher in both BAT and skeletal muscle during torpor (Figure 3A and F),which was 1.9±0.47 and 1.1±0.02 fold as compared to control,respectively(P<0.05).In addition, the expression of TRX1 was signifcantly higher during torpor(2.19±0.37 fold as compared with control)in WAT (Figure 3B;P<0.05).

    Discussion

    To survive in challenging environments,animals often need to display considerable phenotypic plasticity at a metabolic level to adjust their energy demands to the realities of fuel/energy availability in the environment.To date,it has been well documented that coordinated reductions in energy expenditures on nonessential metabolic processes and a shift toward an altered metabolism that includes multiple cytoprotective mechanisms are hallmarks of stress-induced hypometabolism[1].

    The present study focuses on these two classes of cytoprotective proteins to analyze their roles in lemur torpor.Interestingly,wefoundthatexpression ofHSPswasmostly unchanged during torpor,with signifcant upregulation of selected HSPs observed only in BAT and liver(Figure 1).Elevated expression of HSP70 and HSP90α in BAT is particularly interesting,since this tissue produces heat through nonshivering thermogenesis(NST)to rewarm animals during arousal back to euthermia[24–27].Previous studies have shown that gene and protein expression of HSP70 was upregulated in BAT of Sprague–Dawley rats during cold exposure, in parallel with the induction of uncoupling protein 1 (UCP1),suggesting a specifc role for HSPs in this thermogenic organ[28].Thermogenesis in BAT arises from uncoupling ATP synthesis from the electron transport chain in the mitochondria,which requires the expression of UCP1[25–28].In lemurs,expression of UCP1 is also upregulated in BAT to support NST during torpor and/or arousal[25].HSP70,alongwith HSP90α,also functions as a molecular chaperone in the mitochondria to promote translocation and folding of mitochondrialproteins[29,30].Upregulation ofHSP70and HSP90α could contribute to ensuring proper folding of UCP1 in the mitochondria,as an aid to NST during torpor in the lemur[28,29],and/or aid overall maintenance of the active conformations of proteins in the face of rapidly-rising temperatures in BAT during active NST.

    Figure 3 Expression of antioxidant enzymes in gray mouse lemurs during daily torpor

    Compared to the other tissues studied,expression of HSP60 was signifcantly upregulated only in the liver during torpor, albeit to a minor extent(Figure 1).HSP60 is a mitochondrial chaperone and plays a crucial role in regulating cell survival inresponse to increased levels of iron-dependent oxidative stress [31].Previous studies showed that peroxide levels were elevated in HSP60-depleted cells,while elevated expression of HSP60 led to greater cellular resistance against H2O2and superoxide anions[31].Additionally,recent studies have also shown that upregulation of HSP60 expression is linked to chemicallyinduced ROS elevation inDrosophila,as well as type-2 diabetes associated oxidative stress in HeLa cells[32,33]. Therefore,the upregulation of HSP60 in lemur torpor could function similarly in regulating ROS resistance.The expression of HSP60 is also elevated during hibernation of ground squirrels,with previous microarray screening studies showing putative up-regulation of HSP40,HSP60,and HSP70 in liver during torpor[34].Although the exact role of HSP60 in regulating oxidative stress is not fully understood,this link is not surprising due to the role of HSP60 in regulating mitochondrial protein import and folding[35].

    To better understand the state of oxidative stress in lemur tissues during torpor,the total antioxidant capacity of six tissues was measured,along with expression levels of fve antioxidant enzymes.An increase in total antioxidant capacity was observed in liver during torpor,but there were no signifcant changes in other tissues including BAT.The increase in liver antioxidant capacity may be indicative of a potential increase in oxidative stress during torpor.Interestingly,such increased antioxidant capacity was correlated with the elevated HSP60 expression,which was also seen in liver during torpor. Recent studies have also shown that the protein expression of SOD1 and catalase are elevated in some of tissues during hibernation of ground squirrels as compared to euthermic controls[21,36,37].We observed limited changes in the protein levels of antioxidant enzymes across the six tissues during lemur torpor,with signifcant upregulation observed only for TRX1 in WAT and SOD1 in skeletal muscle and BAT.The general lack of change in the protein expression levels of antioxidant enzymes was intriguing;however,it should be noted that the antioxidant capacity of the tissue is the real measure of their functionality during torpor.

    Conclusion

    The data presented in this study show that selected similarities in cytoprotective mechanisms occur between primate and rodent torpor,for example,activation of HSPs such as HSP60 in BAT and HSP70 in liver.However,in terms of antioxidant response,it appears that the transcriptional activation and increased synthesis of antioxidant enzymes are not the major responsive events in lemur torpor.This is in contrast to previous fndings in ground squirrel torpor,with evidence of upregulation of PRX in the BAT and the heart during torpor, catalase in the skeletal muscle,and both SOD1 and SOD2 in BAT in response to torpor[21,38].It is likely that the difference in duration and depth of torpor could differentially infuence the transcriptional responses observed between torpid lemurs and hibernating ground squirrels.Ground squirrel torpor bouts can last for 3–25 days during the hibernation season,whereas lemur average daily torpor is just 8–15 h [19,39].The shorter length of metabolic depression in lemur torporcould suggestthatothermorerapidly-activated mechanisms may be adapted in torpor.Such mechanisms of adaptation may include posttranslational modifcations to proteins/enzymes,as is also known for reversible protein phosphorylation in rodent hibernation[40].In conclusion, our study provides an initial insight into the molecular profles of the stress response during primate torpor and provides a basis for the future exploration into the cellular mechanisms that are utilized primates to coordinate either daily torpor or seasonal hibernation.

    Materials and methods

    Animal treatments

    A total of 8 female mouse lemurs(2–3 years of age)were used in the experiment.Animals were born in an authorized breeding colony at the National Museum of Natural History (Brunoy,France;European Institution Agreement No.D91-114-1).Protocols used for animal experiments were as described previously,and were carried out by Dr.Martine Perret and the Adaptive Mechanisms and Evolution Team [24,25].Detailed animal protocols can be found in[41].

    Total protein lysate preparation

    Sample lysates were prepared according to the manufacturer’s protocol for the assay panels used(Luminex,Toronto ON, Canada).Briefy,tissue samples of~50 mg were homogenized 1:2(w/v)with a Dounce homogenizer using the supplied lysis buffer with the addition 1:100(v/v)protease inhibitor cocktail (Catalog No.PIC003.1,Bioshop,Burlington ON,Canada). Supernatants containing soluble proteins were removed after centrifugation at 4500×gfor 15 min,and protein concentrations were determined by the Bradford assay.Lysates were normalized to the same concentration and diluted with manufacturer’s assay buffer to a fnal concentration of 0.6 μg/μl for the oxidative stress panel and to 4.5 ng/μl for the heat shock protein panel.

    Luminex multiplex assay

    The multiplex immunoassays utilized for this study included the Human Oxidative Stress Magnetic Bead Panel(Catalog No.H0XSTMAG-18K,Millipore,Etobicoke ON,Canada) and the Heat Shock Protein Magnetic Bead 5-Plex Kit (Catalog No.48-615MAG,Millipore).Luminex assays were performed as instructed by the manufacturer’s protocol,which were described in detail by Biggar et al.[41]in this special issue.

    Antioxidant capacity assay

    Total antioxidant capacity was measured in control and torpid lemurs using an Antioxidant Assay kit(Catalog No.709001, Cayman Chemicals,Ann Arbor,MI,USA).This assay determines total cellular antioxidant levels by measuring the rateatwhich antioxidantsin each sampleinhibitthe metmyoglobin-catalyzed oxidation of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid(ABTS)to its radical cation form.Frozen tissue samples were homogenized at 1:4(w/v) in chilled antioxidant assay buffer with the addition of protease inhibitor as per manufacturer’s instructions.Sampleswere then centrifuged at 10,000×gfor 10 min at 4°C.The resulting supernatants were collected and soluble protein was determined using the Bradford assay.All samples were standardized to the same protein concentration for the following assays.The antioxidant assays were initiated by addition of sample lysate along with metmyoglobin and chromogen as per the manufacturer’s protocol.Antioxidant capacity was then measured at 750 nm and converted to Trolox equivalents (mM/mg wet mass)using a Trolox antioxidant assay standard curve.Total Trolox equivalents were subsequently converted to relative antioxidant levels,by standardizing against the frst control lemur sample.

    Statistical analysis

    Data were presented as mean±SEM(n=4).All statistical and graphing analyses were performed using Sigmaplot 12.0 software.Statistical test was performed using the two-tailed Student’st-test,with a signifcance level ofP<0.05.

    Authors’contributions

    All authors contributed to the conception and design of the project and to the editing of the manuscript.MP and FP carried out the animal experiments;CWW,KKB,SNT,and JZ conducted biochemical assays.Data analysis and assembly of the draft manuscript was carried out by KBS,CWW,and KKB.All authors read and approved the fnal manuscript.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    We thank Janet M.Storey for editorial review of the manuscript and Laurine Haro and Philippe Guesnet for technical and material assistance in the preparation of the lemur tissue samples.This work was supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC)of Canada(Grant No.6793)and a grant from the Heart and Stroke Foundation of Canada(Grant No.G-14-0005874)to KBS.KBS holds the Canada Research Chair in Molecular Physiology;CWW,KKB,and SNT all held NSERC postgraduate scholarships.

    [1]Storey KB,Storey JM.Metabolic rate depression in animals: transcriptional and translational controls.Biol Rev Camb Philos Soc 2004;79:207–33.

    [2]Joanisse DR,Storey KB.Oxidative damage and antioxidants inRana sylvatica,the freeze-tolerant wood frog.Am J Physiol 1996;271:R545–53.

    [3]Carey HV,Sills NS,Gorham DA.Stress proteins in mammalian hibernation.Am Zool 1999;39:825–35.

    [4]Carey HV,Frank CL,Seifert JP.Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine.J Comp Physiol B 2000;170:551–9.

    [5]Taylor RP,Benjamin IJ.Small heat shock proteins:a new classifcation scheme in mammals.J MolCellCardiol 2005;38:433–44.

    [6]Kregel KC.Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance.J Appl Physiol 1985;92:2177–86.

    [7]Storey KB,Storey JM.Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation.Res Rep Biol 2011;2:57–68.

    [8]Kampinga HH,Hageman J,Vos MJ,Kubota H,Tanguay RM, Bruford EA,et al.Guidelines for the nomenclature of the human heat shock proteins.Cell Stress Chaperones 2009;14:105–11.

    [9]Morano KA,Grant CM,Moye-Rowley WS.The response to heat shock and oxidative stress inSaccharomyces cerevisiae.Genetics 2012;190:1157–95.

    [10]Bukau B,Horwich AL.The Hsp70 and Hsp60 chaperone machines.Cell 1998;92:351–66.

    [11]Walter S,Buchner J.Molecular chaperones––cellular machines for protein folding.Angew Chem Int Ed Engl 2002;41:1098–113.

    [12]Lee K,Park JY,Yoo W,Gwag T,Lee JW,Byun MW,et al. Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy:proteomic and molecular assessment.J Cell Biochem 2008;104:642–56.

    [13]Eddy SF,McNally JD,Storey KB.Up-regulation of a thioredoxin peroxidase-like protein,proliferation-associated gene,in hibernating bats.Arch Biochem Biophys 2005;435:103–11.

    [14]Brown JC,Chung DJ,Belgrave KR,Staples JF.Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 2012;302:R15–28.

    [15]Frank CL,Storey KB.The optimal depot fat composition for hibernation by golden-mantled ground squirrels(Spermophilus lateralis).J Comp Physiol B 1995;164:536–42.

    [16]Frank CL,Karpovich S,Barnes BM.Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels.Physiol Biochem Zool 2008;81:486–95.

    [17]Hermes-Lima M,Zenteno-Savin T.Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C:Toxicol Pharmacol 2002;133:537–56.

    [18]Hall A,Karplus PA,Poole LB.Typical 2-Cys peroxiredoxins––structures,mechanisms and functions.FEBS J 2009;276:2469–77.

    [19]Schmid J.Daily torpor in the gray mouse lemur(Microcebus murinus)in Madagascar:energetic consequences and biological signifcance.Oecologia 2000;123:175–83.

    [20]Giroud S,Perret M,Gilbert C,Zahariev A,Goudable J,Le Maho Y,et al.Dietary palmitate and linoleate oxidations,oxidative stress,and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation.Am J Physiol Regul Integr Comp Physiol 2009;297:R950–9.

    [21]Vucetic M,Stancic A,Otasevic V,Jankovic A,Korac A,Markelic M,et al.The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel(Spermophilus citellus): an update.Free Radic Biol Med 2013;65:916–24.

    [22]Storey KB.Mammalian hibernation:transcriptional and translational controls.In:Roach RC,Wagner PD,Hackett PH,editors. Hypoxia through the lifecycle.New York:Kluwer/Plenum Academic;2003.p.21–38.

    [23]Yan J,Burman A,Nichols C,Alila L,Showe LC,Showe MK, et al.Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays.Physiol Genomics 2006;25:346–53.

    [24]Giroud S,Blanc S,Aujard F,Bertrand F,Gilbert C,Perret M. Chronic food shortage and seasonal modulation of daily torpor and locomotor activity in the grey mouse lemur(Microcebus murinus).Am J Physiol 2008;294:R1958–67.

    [25]Ge′nin F,Nibbelink M,Galand M,Perret M,Ambid L.Brown fat and nonshivering thermogenesis in the gray mouse lemur(Micro-cebus murinus).Am J Physiol Regul Integr Comp Physiol 2003;284:R811–8.

    [26]Scantlebury M,Lovegrove BG,Jackson CR,Bennett NC, Lutermann H.Hibernation and non-shivering thermogenesis in the Hottentot golden mole(Amblysomus hottentottus longiceps).J Comp Physiol B 2008;178:887–97.

    [27]Barger JL,Barnes BM,Boyer BB.Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak.J Appl Physiol 2006;101:339–47.

    [28]Matz JM,LaVoi KP,Moen RJ,Blake MJ.Cold-induced heat shock protein expression in rat aorta and brown adipose tissue. Physiol Behav 1996;60:1369–74.

    [29]Altieri DC.Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis.Cell Mol Life Sci 2013;70:2463–72.

    [30]Deshaies RJ,Koch BD,Werner-Washburne M,Craig EA, Schekman R.A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988;332:800–5.

    [31]Cabiscol E,Bell?′G,Tamarit J,Echave P,Herrero E,Ros J. Mitochondrial Hsp60,resistance to oxidative stress,and the labile iron pool are closely connected inSaccharomyces cerevisiae.J Biol Chem 2002;277:44531–8.

    [32]Singh MP,Reddy MM,Mathur N,Saxena DK,Chowdhuri DK. Induction of hsp70,hsp60,hsp83 and hsp26 and oxidative stress markers in benzene,toluene and xylene exposedDrosophila melanogaster:role of ROS generation.Toxicol Appl Pharmacol 2009;235:226–43.

    [33]Hall L,Martinus RD.Hyperglycaemia and oxidative stress upregulate HSP60 and HSP70 expression in HeLa cells.Springerplus 2013;2:431.

    [34]Storey KB.Mammalian hibernation:transcriptional and translational controls.Adv Exp Med Biol 2003;543:21–38.

    [35]Cheng MY,Hartl FU,Martin J,Pollock RA,Kalousek F, Neupert W,et al.Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria.Nature 1989;337:620–5.

    [36]Morin Jr P,Ni Z,McMullen DC,Storey KB.Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels,Spermophilustridecemlineatus.MolCellBiochem 2008;312:121–9.

    [37]Wu CW,Storey KB.FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator. Mol Cell Biochem 2014;390:185–95.

    [38]Morin P,Storey KB.Antioxidant defense in hibernation:cloning and expression of peroxiredoxins from hibernating ground squirrels,Spermophilustridecemlineatus.Arch Biochem Biophys 2007;461:59–65.

    [39]Carey HV,Andrews MT,Martin SL.Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature.Physiol Rev 2003;83:1153–81.

    [40]Storey KB,Wu CW.Stress response and adaptation:a new molecular toolkit for the 21st century.Comp Biochem Physiol A: Mol Integr Physiol 2013;165:417–28.

    [41]Biggar KK,Wu CW,Tessier SN,Zhang J,Pifferi F,Perret M, Storey KB.Primate torpor:regulation of stress-activated protein kinases during daily torpor in the gray mouse lemur,Microcebus murinus.Genomics Proteomics Bioinformatics 2015;13:81–90.

    Received 13 February 2015;accepted 24 March 2015

    Available online 17 June 2015

    Handled by Jun Yu

    *Corresponding author.

    E-mail:kenneth_storey@carleton.ca(Storey KB).

    #Equal contribution.

    aORCID:0000-0001-6370-429x.

    bORCID:0000-0002-1204-3329.

    cORCID:0000-0002-6076-7321.

    dORCID:0000-0003-2373-232x.

    eORCID:0000-0001-9316-1935.

    fORCID:0000-0002-3801-0453.

    gORCID:0000-0002-7363-1853.

    Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2015.03.004

    1672-0229?2015 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    免费观看精品视频网站| 在线观看66精品国产| 成人国产一区最新在线观看| 亚洲成人国产一区在线观看| 人成视频在线观看免费观看| 久久久国产成人精品二区 | 久热这里只有精品99| 午夜亚洲福利在线播放| 亚洲欧美激情综合另类| 精品国产乱子伦一区二区三区| 少妇 在线观看| 美女午夜性视频免费| 美女高潮到喷水免费观看| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 欧美日韩亚洲高清精品| 免费高清视频大片| 制服诱惑二区| 精品一区二区三区av网在线观看| 国产精品98久久久久久宅男小说| 波多野结衣高清无吗| 欧美黄色片欧美黄色片| 国产成人影院久久av| 欧美中文综合在线视频| 9热在线视频观看99| 成人三级黄色视频| 国产三级黄色录像| 在线观看日韩欧美| 可以在线观看毛片的网站| 国产一区二区三区视频了| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| av片东京热男人的天堂| 香蕉久久夜色| 国产男靠女视频免费网站| 视频区欧美日本亚洲| 99香蕉大伊视频| 我的亚洲天堂| 999精品在线视频| 亚洲成av片中文字幕在线观看| 日韩高清综合在线| 成人影院久久| 久久香蕉精品热| 在线永久观看黄色视频| 国产黄色免费在线视频| 正在播放国产对白刺激| 午夜两性在线视频| 欧美黄色片欧美黄色片| 日本a在线网址| 久久精品成人免费网站| 国产黄色免费在线视频| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 久久香蕉精品热| 亚洲激情在线av| 一边摸一边抽搐一进一小说| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 亚洲av美国av| 国产av又大| 黄色怎么调成土黄色| 国产99白浆流出| 亚洲男人天堂网一区| 中文欧美无线码| 人人妻人人添人人爽欧美一区卜| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 久久久久久久午夜电影 | 久久国产精品影院| 国产欧美日韩一区二区三区在线| 国产精品国产av在线观看| 天天添夜夜摸| 午夜精品在线福利| 免费不卡黄色视频| 一本综合久久免费| 99re在线观看精品视频| 亚洲五月天丁香| 成人18禁在线播放| 亚洲熟女毛片儿| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 咕卡用的链子| 成人三级黄色视频| 亚洲黑人精品在线| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 99热只有精品国产| 午夜精品久久久久久毛片777| 久久 成人 亚洲| 成人国产一区最新在线观看| av在线天堂中文字幕 | 成人av一区二区三区在线看| 亚洲人成77777在线视频| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 亚洲国产看品久久| 亚洲五月天丁香| 两个人看的免费小视频| 999久久久国产精品视频| 淫秽高清视频在线观看| 国产单亲对白刺激| 国产乱人伦免费视频| 国产精品久久久人人做人人爽| 99riav亚洲国产免费| 9色porny在线观看| 日韩免费av在线播放| 亚洲人成77777在线视频| 国产成人欧美在线观看| 亚洲专区国产一区二区| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频 | 久久中文字幕人妻熟女| av网站在线播放免费| av免费在线观看网站| 亚洲第一青青草原| 无人区码免费观看不卡| 日韩免费高清中文字幕av| 啦啦啦免费观看视频1| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 身体一侧抽搐| 黄色视频,在线免费观看| 中出人妻视频一区二区| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 日本wwww免费看| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 久久性视频一级片| 色综合婷婷激情| 在线视频色国产色| 久久久久国内视频| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 免费看十八禁软件| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 99riav亚洲国产免费| 国产成人免费无遮挡视频| 亚洲成人免费av在线播放| 亚洲国产精品999在线| 亚洲国产欧美一区二区综合| xxxhd国产人妻xxx| 村上凉子中文字幕在线| 久久精品成人免费网站| 中文字幕高清在线视频| 在线观看一区二区三区| 波多野结衣一区麻豆| 9191精品国产免费久久| 国产高清激情床上av| 中文欧美无线码| 9191精品国产免费久久| 黄色女人牲交| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 国产av一区二区精品久久| 一区二区三区精品91| 看片在线看免费视频| 成人三级黄色视频| 制服诱惑二区| 高清欧美精品videossex| av视频免费观看在线观看| 99在线视频只有这里精品首页| 韩国av一区二区三区四区| 久久精品aⅴ一区二区三区四区| 成人黄色视频免费在线看| 韩国av一区二区三区四区| 精品人妻在线不人妻| 一区在线观看完整版| 精品久久久精品久久久| 黄片小视频在线播放| 热99re8久久精品国产| 曰老女人黄片| 成年人免费黄色播放视频| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 可以免费在线观看a视频的电影网站| 亚洲人成网站在线播放欧美日韩| 亚洲狠狠婷婷综合久久图片| 精品久久蜜臀av无| 国产免费男女视频| 久久久国产欧美日韩av| 国产精品日韩av在线免费观看 | 精品第一国产精品| 老熟妇乱子伦视频在线观看| 午夜影院日韩av| 极品教师在线免费播放| 国产精华一区二区三区| 多毛熟女@视频| 国产精品久久久久成人av| 精品电影一区二区在线| 国产成年人精品一区二区 | 一级黄色大片毛片| 久久国产精品男人的天堂亚洲| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 一级毛片精品| 精品一区二区三区视频在线观看免费 | 女性被躁到高潮视频| 麻豆久久精品国产亚洲av | 91精品国产国语对白视频| 好男人电影高清在线观看| 亚洲色图av天堂| 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 久久午夜综合久久蜜桃| 女人被狂操c到高潮| 超碰成人久久| 99久久久亚洲精品蜜臀av| 99国产精品免费福利视频| 午夜精品久久久久久毛片777| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 99在线人妻在线中文字幕| 色精品久久人妻99蜜桃| 色婷婷av一区二区三区视频| 一区在线观看完整版| 9191精品国产免费久久| 97碰自拍视频| 国产精品九九99| 日本撒尿小便嘘嘘汇集6| 女人被狂操c到高潮| www日本在线高清视频| 丰满的人妻完整版| 国产一区二区激情短视频| 亚洲欧美激情综合另类| 一边摸一边抽搐一进一出视频| 午夜a级毛片| 日日干狠狠操夜夜爽| 免费在线观看亚洲国产| 搡老熟女国产l中国老女人| 午夜影院日韩av| 99国产综合亚洲精品| 欧美丝袜亚洲另类 | 亚洲成人免费av在线播放| 日日干狠狠操夜夜爽| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久成人av| 丁香六月欧美| 99国产精品99久久久久| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 色婷婷av一区二区三区视频| 中文字幕高清在线视频| 免费看a级黄色片| 国产一区二区三区在线臀色熟女 | 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 亚洲aⅴ乱码一区二区在线播放 | 一本大道久久a久久精品| 丁香欧美五月| 中文字幕人妻丝袜制服| 精品熟女少妇八av免费久了| 伦理电影免费视频| 亚洲人成网站在线播放欧美日韩| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产区一区二| 国产一区二区三区综合在线观看| 中文欧美无线码| 真人做人爱边吃奶动态| 亚洲自拍偷在线| 免费搜索国产男女视频| 伦理电影免费视频| 妹子高潮喷水视频| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 成人手机av| 手机成人av网站| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 老司机福利观看| 乱人伦中国视频| 久久性视频一级片| 国产视频一区二区在线看| 高清黄色对白视频在线免费看| 国产亚洲精品综合一区在线观看 | 国产亚洲精品综合一区在线观看 | 国产精品久久久久成人av| 国产精品日韩av在线免费观看 | 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女 | 亚洲av第一区精品v没综合| 色综合婷婷激情| 久久精品影院6| 制服人妻中文乱码| 日本 av在线| 欧美黄色淫秽网站| 国产精品亚洲一级av第二区| 日韩三级视频一区二区三区| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久成人网| 九色亚洲精品在线播放| 欧美在线一区亚洲| 色老头精品视频在线观看| 亚洲九九香蕉| 在线观看舔阴道视频| 五月开心婷婷网| 9色porny在线观看| 黄片小视频在线播放| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 免费不卡黄色视频| 国产av在哪里看| 视频区图区小说| 国产成人欧美| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 视频在线观看一区二区三区| 水蜜桃什么品种好| 母亲3免费完整高清在线观看| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| www日本在线高清视频| 精品国产乱码久久久久久男人| 亚洲国产欧美网| 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| www.999成人在线观看| 制服人妻中文乱码| 日韩欧美三级三区| 我的亚洲天堂| 日本黄色日本黄色录像| 怎么达到女性高潮| 在线天堂中文资源库| 午夜免费鲁丝| 亚洲熟妇熟女久久| 啦啦啦在线免费观看视频4| 亚洲久久久国产精品| 成人影院久久| 18禁国产床啪视频网站| 搡老乐熟女国产| 婷婷六月久久综合丁香| 亚洲精品国产色婷婷电影| 婷婷六月久久综合丁香| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 丰满人妻熟妇乱又伦精品不卡| 国产高清激情床上av| 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 在线观看一区二区三区| 成人18禁在线播放| 亚洲第一青青草原| 午夜免费鲁丝| 国产三级黄色录像| 9191精品国产免费久久| 免费观看人在逋| 成人永久免费在线观看视频| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 91九色精品人成在线观看| 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 99精国产麻豆久久婷婷| 久久精品亚洲精品国产色婷小说| 欧美成人性av电影在线观看| 欧美日韩av久久| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 亚洲人成电影观看| 老司机靠b影院| 国产熟女午夜一区二区三区| 男人舔女人的私密视频| 亚洲成a人片在线一区二区| 国产男靠女视频免费网站| 女人精品久久久久毛片| 丁香欧美五月| 久久伊人香网站| 欧美午夜高清在线| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 日本a在线网址| 日韩精品中文字幕看吧| 麻豆av在线久日| 久久香蕉精品热| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼 | 少妇被粗大的猛进出69影院| 91老司机精品| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| av网站免费在线观看视频| 久久国产精品影院| 真人一进一出gif抽搐免费| 一进一出抽搐gif免费好疼 | 亚洲激情在线av| 两个人看的免费小视频| av有码第一页| 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 一边摸一边抽搐一进一出视频| 中亚洲国语对白在线视频| 亚洲五月色婷婷综合| 大香蕉久久成人网| 91字幕亚洲| 桃色一区二区三区在线观看| 一a级毛片在线观看| 高清在线国产一区| 免费高清视频大片| 国产亚洲精品综合一区在线观看 | 夜夜看夜夜爽夜夜摸 | 麻豆成人av在线观看| 国产精品偷伦视频观看了| 欧美日韩黄片免| 国产国语露脸激情在线看| 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 国产高清激情床上av| 精品第一国产精品| 黄色视频不卡| 日韩免费高清中文字幕av| 男女下面插进去视频免费观看| 一级黄色大片毛片| av福利片在线| 欧美av亚洲av综合av国产av| 国产片内射在线| 91精品三级在线观看| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 久久久水蜜桃国产精品网| 亚洲国产欧美网| 日本a在线网址| 在线观看66精品国产| 真人一进一出gif抽搐免费| 韩国精品一区二区三区| 久久草成人影院| 丰满的人妻完整版| 国产精品野战在线观看 | 国产亚洲av高清不卡| 久久久国产成人免费| 乱人伦中国视频| 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 日本免费a在线| 欧美日韩精品网址| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 亚洲avbb在线观看| 午夜福利欧美成人| 高清在线国产一区| av有码第一页| 欧美日韩瑟瑟在线播放| 午夜免费激情av| 天天躁夜夜躁狠狠躁躁| 欧美一级毛片孕妇| 宅男免费午夜| 美女福利国产在线| 69av精品久久久久久| 久久精品91蜜桃| 国产麻豆69| 精品国产一区二区三区四区第35| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲| 精品福利观看| 一区在线观看完整版| 午夜影院日韩av| 高清在线国产一区| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新免费中文字幕在线| 老汉色∧v一级毛片| 女人精品久久久久毛片| av视频免费观看在线观看| 99精品在免费线老司机午夜| 精品免费久久久久久久清纯| 在线观看www视频免费| 热99re8久久精品国产| 精品一区二区三卡| 一级毛片女人18水好多| 日本a在线网址| 丰满饥渴人妻一区二区三| 免费在线观看亚洲国产| 日韩欧美一区二区三区在线观看| 在线观看免费高清a一片| 亚洲一码二码三码区别大吗| 国产成人欧美| 精品午夜福利视频在线观看一区| 99精品欧美一区二区三区四区| 咕卡用的链子| 久久久久国内视频| 婷婷精品国产亚洲av在线| 日本三级黄在线观看| 国产一区二区在线av高清观看| 日韩国内少妇激情av| 国产精品成人在线| 亚洲成人精品中文字幕电影 | 天天影视国产精品| 黄片播放在线免费| 嫩草影院精品99| 久热爱精品视频在线9| bbb黄色大片| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 香蕉丝袜av| 亚洲欧美激情在线| 性少妇av在线| a级片在线免费高清观看视频| 男男h啪啪无遮挡| 老鸭窝网址在线观看| 日韩免费av在线播放| 欧美另类亚洲清纯唯美| 国产精品九九99| 手机成人av网站| 免费在线观看黄色视频的| 久久国产精品男人的天堂亚洲| 夜夜躁狠狠躁天天躁| 久久中文字幕一级| 夜夜看夜夜爽夜夜摸 | 天天躁夜夜躁狠狠躁躁| www.精华液| 成人免费观看视频高清| 国产精品免费视频内射| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 亚洲午夜理论影院| 国产黄色免费在线视频| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 日本免费a在线| 亚洲一区二区三区色噜噜 | 亚洲伊人色综图| 级片在线观看| 国产精品av久久久久免费| 一区二区三区激情视频| 欧美黄色淫秽网站| 天堂动漫精品| 一边摸一边抽搐一进一出视频| 操出白浆在线播放| 国产蜜桃级精品一区二区三区| 麻豆一二三区av精品| av网站免费在线观看视频| 成人国产一区最新在线观看| 正在播放国产对白刺激| 91av网站免费观看| 麻豆久久精品国产亚洲av | 日本黄色日本黄色录像| 亚洲av五月六月丁香网| 一进一出抽搐动态| 亚洲视频免费观看视频| 中文字幕精品免费在线观看视频| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 十八禁人妻一区二区| 亚洲国产毛片av蜜桃av| 免费观看精品视频网站| 老鸭窝网址在线观看| av天堂在线播放| 久久国产精品人妻蜜桃| 中文字幕人妻丝袜制服| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 亚洲人成77777在线视频| 日本黄色视频三级网站网址| 精品久久蜜臀av无| 亚洲中文av在线| 亚洲五月色婷婷综合| 国产精品亚洲av一区麻豆| 亚洲成av片中文字幕在线观看| 亚洲国产精品合色在线| 精品国产一区二区久久| 精品乱码久久久久久99久播| 色婷婷久久久亚洲欧美| 午夜老司机福利片| 亚洲av美国av| 一边摸一边抽搐一进一出视频| 国产麻豆69| 日本精品一区二区三区蜜桃| 亚洲av五月六月丁香网| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 激情在线观看视频在线高清| 亚洲欧美激情综合另类| 亚洲熟妇中文字幕五十中出 | 别揉我奶头~嗯~啊~动态视频| 国产免费av片在线观看野外av| 国产伦一二天堂av在线观看| 麻豆国产av国片精品| 精品人妻在线不人妻| 日韩免费高清中文字幕av| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 久久精品亚洲熟妇少妇任你| 在线观看免费午夜福利视频| 亚洲成人国产一区在线观看| 欧美日韩瑟瑟在线播放| 精品久久久久久电影网| www.999成人在线观看| 亚洲专区国产一区二区| 成年女人毛片免费观看观看9| 琪琪午夜伦伦电影理论片6080| 天堂俺去俺来也www色官网|