• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A mobile polar atmospheric parameter measurement system:II. First atmospheric turbulence observation at Antarctic Taishan Station

    2015-02-06 08:30:23TIANQiguoJIANGPengWUXiaoqingJINXinmiaoLUShanJITuoCHAIBoZHANGShaohuaZHOUHongyan
    Advances in Polar Science 2015年2期

    TIAN Qiguo, JIANG Peng,, WU Xiaoqing, JIN Xinmiao, LU Shan, JI Tuo,CHAI Bo, ZHANG Shaohua & ZHOU Hongyan,

    1 Polar Research Institute of China, Shanghai 200136, China;

    2 Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China;

    3 Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

    1 Introduction

    “Seeing” is the most important environmental condition for optical astronomy observations. This is severely limited by atmospheric optical turbulence and generally considered as a superposition of contributions from two atmospheric layers: the surface boundary layer and free atmosphere above. Searching for sites with superb observing conditions has become an increasingly important matter in astronomy and great efforts have been made in worldwide site testing campaigns. The Antarctic Plateau, which provides a unique environment for observational astronomy, has drawn substantial attention in recent years[1-2]. The cold, dry and stable air, high altitude, weak surface wind speed, thin boundary layer, and long continuous observations during polar nights offer observation conditions recognized as superior to any other sites on the earth.

    Over the last two decades, great efforts have been made in campaigns of site testing in the Antarctic at four plateau sites, Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A, and Fuji Station at Dome F. These are operated by the United States,France/Italy, China, and Japan, respectively. The South Pole Station is the first location where astronomical activities were conducted on the Antarctic Plateau. Near-Infrared sky brightness observed there by the IRPS (InfraRed Photometer-Spectrometer) showed that flux in the Kdarkband is two orders of magnitude smaller than that at temperate observatories[3-5].Seeing, as measured by micro-thermal sensors[6], SODAR(Sound Detection And Ranging)[7]and DIMM (Differential Image Motion Monitor)[8], reaches 1.8 arcsec, is similar to that at temperate sites. However, the boundary layer (as low as 200–300 m)[9-10], isoplanatic angle and coherence time at South Pole station are superior to any of those sites. The depth of the boundary layer at South Pole is too high to consider raising a telescope above it. The katabatic wind in Antarctica starts from the highest points originally, therefore on the plateau summits, the wind speed is much reduced, leading to a significantly thinner surface boundary layer than that at the South Pole[9]. Joint observation using the MASS (Multi-Aperture Scintillation Sensor) and SODAR for experiments on seeing by J.S. Lawrence and coworkers indicated that average seeing above 30 m at Dome C was 0.27 arcsec[11].Ground-level seeing there was 1.3 arcsec[12-13]on average,and mid-infrared sky brightness is similar to that measured at the South Pole[14]. Nevertheless, boundary layer depth at Dome C is extraordinarily thin (~36 m). Raising a telescope above the boundary layer could realize superior seeing conditions. Promising site testing results at Dome C drove astronomers to conduct site testing campaigns at Dome A,which is the highest region (elevation 4 093 m) of the Antarctic Plateau[15-16]. An exciting development is depth measurement of the boundary layer using a sonic radar as described in Bonner et al.[17], showing that the median depth is as thin as 13.9 m,much thinner even than that at Dome C. Recently, seeing at Dome F was observed using a DIMM at height 11 m above the snow surface, and observed median seeing (0.52 arcsec)was similar to that at Dome C[18]. In addition to Kunlun Station at Dome A, a new inland station Taishan (+76°58′,-73°51′) was established during the 30th Chinese National Antarctic Research Expedition (CHINARE). Taishan Station is between Zhongshan and Kunlun stations at elevation 2 621 m. Easy access to Taishan Station makes astronomical activities easier to conduct. Site testing will provide key information for these activities. Seeing can be calculated by integratingmeasured with height in the atmosphere.Because of the simplicity and reliability, micro-thermal sensors normally carried by balloons[10,19]or installed on towers[6]have become a commonly used probe to measureheight distributions. In 1996, Marks et al. observed thedistribution and thereby obtained seeing conditions at the South Pole[6]using a 27-m tower equipped with three pairs of micro-thermal sensors at three different levels.

    In 2013, a mobile polar atmospheric parameter measurement system was designed and constructed to measureand meteorological parameters in Antarctica[20].It was equipped with a pair of micro-thermal sensors,three-dimensional (3D) sonic anemometer, temperature and humidity sensors, wind speed and direction sensors,barometer, and infrared thermometer. We observedfor the first time at Taishan Station using the micro-thermal sensors and 3D sonic anemometer simultaneously. This paper presents our results from the 30th CHINARE at 2013/2014 season, between 30 December 2013 and 10 February 2014.After the observation at Taishan Station, the instrument was transported to Zhongshan Station to observein winter for the first time, and it is planned to perform such measurements at Kunlun Station in summer during the 31st CHINARE.The observation results will provide key information for astronomical activities at Taishan, Zhongshan and Kunlun stations.

    2 Experimental and theoretical background

    Details of the mobile polar atmospheric parameter measurement system have been described elsewhere[20]and only a brief description is presented here. Figure 1 shows a photograph of the apparatus at Taishan Station, which consists of a CR5000 data logger, a pair of micro-thermal sensors, CSAT3 3D sonic anemometer, HMP155 temperature and humidity sensors, 05103V wind speed and direction sensors, SI-111 infrared radiometer, CS106 barometer, power supply system, and 3 m-high tower. The key elements of the system are the micro-thermal sensors at ~2.0 m height, which were used to observeCn2with the high resolution of ~3×10-18m-2/3. The CSAT3 was mounted at the same altitude,to recordsimultaneously with the low resolution of ~5×10-16m-2/3. The HMP155 and 05103V were installed at heights 0.5 m and 2.0 m, respectively. The tower was on the upwind side of Taishan Station (wind direction is generally stable), ~500 m from the station center, so the effect of heat was minimal. The apparatus was powered by a generator at the station.

    The micro-thermal sensor pair measured the temperature structure constant associated with turbulence[21]:

    whereP(h) andT(h) are pressure and temperature,respectively.

    The diameter of the wire in the micro-thermal sensor is 10 μm, the resistance of which can be expressed as a function of temperatureT:

    whereR0is resistance at temperatureT0andαis the temperature coefficient of resistance. The resistance variation of the sensors, and thus the output voltage of which is proportional to the very small and rapid temperature fluctuations associated with the turbulence, say ΔR=aR0ΔTand ΔV=AΔT, whereAis the calibration coefficient. In this way, the connection between ΔVandis made. Then, data from the HMP155 and CS106 were used to translateto(Eq. 2).

    The 3D sonic anemometer[22]is based on the Doppler effect. From measurements of transmission time of the sonic pulse along three non-orthogonal axes, wind speed and sonic sound velocity can be obtained. Since the sound velocity is a function of temperature and humidity, then the so-called ultrasonic temperatureTscan be expressed as[22]

    whereqis specific humidity. Sinceqcan often be ignored,Tscan be used as temperature. In light of the Taylor assumption and observed wind speed, recorded temperature time sequences at a single point can be converted to the temperature difference between two spatially separated points. Thus,can be written as[21,23]

    whereτis the time interval indicated by the average wind speed. Then,can be obtained by Eq. (2).

    3 Results

    The site testing experiment was carried out by the mobile polar atmospheric parameter measurement system at Taishan Station from 30 December 2013 to 10 February 2014. The online data processing procedure recorded one measurement data every 20 s and, for the sake of clarity, average values over 10 min are presented herein.

    Figure 2 shows temperatures observed at 0.5-m and 2.0-m heights by the HMP155, along with the snow surface radiation temperature measured by the SI-111 infrared radiometer. Hour 0 in the figure corresponds to midnight 31 December 2013. Table 1 shows that maximum, minimum,and mean temperatures at 2.0 m were -12.2°C, -38.1°C, and-22.1°C, respectively. The temperature difference between the two levels was very small, with the difference between mean values less than 0.1°C. The maximum, minimum and mean snow-surface radiation temperature was -13.7°C,-41.8°C, and -24.5°C, respectively (Table 1). A histogram of temperature at 2.0-m height is shown in Figure 3. Also included in the figure are cumulative temperature distributions at 2.0 and 0.5 m and surface radiation temperature. The 25th, 50th and 75th percentiles of 2.0-m temperature were-26.1°C, -22.0°C and -18.5°C, respectively. Corresponding results are listed in Table 1.

    Figure 4 shows Taishan Station wind speeds at 0.5-m and 2.0-m heights observed by the 05103V and CSAT3.The 2.0-m wind speeds measured by the two sensors agree well. Maximum, minimum, and mean wind speeds from the 05103V were 14.91, 1.68 and 7.73 m.s-1, respectively. Speedsat the lower level were weaker than at the high level. Mean,minimum and maximum wind speed differences between the two levels were 0.6, 0.1 and 1.6 m.s-1, respectively.Figure 5 gives a histogram of wind speed at 2.0 m. Also shown are the cumulative distributions of speeds at 2.0 m and 0.5 m. The 25th, 50th and 75th percentiles of the 2.0-m speed were 5.39, 7.17 and 9.32 m.s-1, respectively. Corresponding measurements at 0.5 m are summarized in Table 1. Daily variations of relative humidity at the two levels and Taishan Station air pressure are plotted in Figures 6 and 7.

    Table 1 Temperature and wind speeds measured at Taishan Station

    at Taishan Station was measured independently by the micro-thermal sensors and CSAT3. Typicalmeasurements from January 11–14, 2014 are shown in Figure 8.Cn2shapes from the two sensors are consistent,but their magnitudes frequently deviate, especially for weak turbulence. This contrasts with the situation at Shanghai,China during performance testing of the apparatus, which indicated good agreement of both shapes and the magnitudes,at least for strong turbulence[20]. According to Eq. (5), the disagreement between the two methods might be related to the multiscale spatiotemporal turbulence structure and turbulence spectrum at Taishan Station, as well as to applicability of the Taylor assumption[24]. In addition, the CSAT3 might have vibrated because of strong wind at the station, which would have altered the transmission distance of the ultrasonic signals. Therefore, the wind could bias the measurement results according to Eq. (5). The data from CSAT3 need further analysis, and results will be reported in a subsequent paper.

    Figure 9 shows time series of dailyof Taishan Station. We discarded observations when wire of the micro-thermal sensors was broken. The data from 26 d with continuous observation (Figure 9) are averaged in Figure 10. These figures show thathad clear structures.There were two peaks around midnight and midday (local time), respectively, and two troughs around 7:30 and 17:00.typically varied over three orders of magnitudes, e.g.,from 10-17m-2/3to 10-14m-2/3. To elucidate the twice-daily minimum of, we present correlation between the daily variation ofand temperature gradients at the two heights(0.5 and 2.0 m) in Figure 8. Temperature inversions were observed at night and negative temperature gradients during daytime. There was strong temporal coincidence between vanishing of the temperature gradient and the minimum.Then, the decline ofwas speculatively put down to the minimum of temperature gradient in this period, resulting in extreme atmospheric stability. The twice-daily maximum ofmight have resulted from the temperature gradient maximum in this period, giving rise to atmospheric instability.There were no apparent relationships between, relative humidity, wind speed and temperature.

    A histogram ofmeasurements is shown in Figure 11.The mean and medianwere 4.7×10-15m-2/3and 2.8×10-15m-2/3, respectively. The 25th and 75th percentiles ofwere 9.6×10-16m-2/3and 6.2×10-15m-2/3.

    4 Conclusions

    Atmospheric optical turbulence at Taishan Station was measured for the first time using micro-thermal sensors and 3D sonic anemometer at height 2.0 m, from 30 December 2013 to 10 February 2014 during the 30th CHINARE. About 1 000 h of data were obtained. Althoughshapes from the two sensors agreed well, their magnitudes normally disagreed, which indicates the need for further data analysis.Thedistribution, measured by the micro-thermal sensors with high resolution, exhibits clear structures with two peaks around midnight and midday (local time), respectively, and two troughs around 7:30 and 17:00. Mean and median values ofwere 4.7×10-15m-2/3and 2.8×10-15m-2/3, respectively,and the 25th and 75th percentiles were 9.6×10-16m-2/3and 6.2×10-15m-2/3. We also acquired meteorological parameters such as temperature, relative humidity, wind speed and air pressure. The site testing data at Taishan Station will furnish key information for astronomical activities. The apparatus was transported to Zhongshan Station to observe atmospheric turbulence in winter for the first time during the 30th CHINARE. It is also planned to perform similar observations at Kunlun Station during the 31st CHINARE.A new instrument equipped with multi-level micro-thermal sensors has been designed, which will be used to observe ground-surface seeing at Taishan Station in the near future.

    1 Burton M G. Astronomy in Antarctica. Astron Astrophys Rev, 2010,18(4): 417–469

    2 Burton M G, Lawrence J S, Ashley M C B, et al. Science programs for a 2-m class telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope. Publ Astron Soc Austr,2005, 22(3): 199-235

    3 Ashley M C B, Burton M G, Storey J W V, et al. South Pole observations of the near-infrared sky brightness. Publ Astron Soc Pac, 1996, 108(726): 721-723

    4 Nguyen H T, Rauscher B J, Severson S A, et al. The South Pole nearinfrared sky brightness. Publ Astron Soc Pac, 1996, 108: 718-720

    5 Phillips A, Burton M G, Ashley M C B, et al. The near-infrared sky emission at the South Pole in winter. Astrophys J, 1999, 527(2): 1009-1022

    6 Marks R D,Vernin J, Azouit M, et al. Antarctic site testing microthermal measurements of surface-layer seeing at the South Pole.Astron Astrophys Suppl Ser, 1996, 118(2): 385-390

    7 Travouillon T, Ashley M C B, Burton M G, et al. Atmospheric turbulence at the South Pole and its implications for astronomy.Astron Astrophys, 2003, 400(3): 1163-1172

    8 Travouillon T, Ashley M C B, Burton M G, et al. Automated Shack-Hartmann seeing measurements at the South Pole. Astron Astrophys,2003, 409(3): 1169-1173

    9 Marks R D. Astronomical seeing from the summits of the Antarctic plateau. Astron Astrophys, 2002, 385: 328-336

    10 Marks R D, Vernin J, Azouit M, et al. Measurement of optical seeing on the high Antarctic plateau. Astron Astrophys Suppl Ser,1999, 134:161-172

    11 Lawrence J S, Ashley M C B, Tokovinin A, et al. Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature,2004, 431(7006): 278-281

    12 Agabi A, Aristidi E, Azouit M, et al. First whole atmosphere nighttime seeing measurements at Dome C, Antarctica. Publ Astron Soc Pac,2006, 118(840): 344-348

    13 Aristidi E, Fossat E, Agabi A, et al. Dome C site testing: surface layer, free atmosphere seeing, and isoplanatic angle statistics. Astron Astrophys, 2009, 499(3): 955-965

    14 Walden V P, Town M S, Halter B, et al. First measurements of the infrared sky brightness at Dome C, Antarctica. Publ Astron Soc Pac,2005, 117(829): 300-308

    15 Yang H, Allen G, Ashley M C B, et al. The PLATO Dome A sitetesting observatory: Instrumentation andfirst results. Publ Astron Soc Pac, 2009, 121(876): 174-184

    16 Lawrence J S, Ashley M C B, Hengst S, et al. The PLATO Dome A site-testing observatory: Power generation and control systems. Rev Sci Instrum, 2009, 80(6): 064501-1-10

    17 Bonner C S, Ashley M C B, Cui X, et al. Thickness of the atmospheric boundary layer above Dome A, Antarctica, during 2009. Publ Astron Soc Pac, 2010, 122(895): 1122-1131

    18 Okita H, Ichikawa T, Ashley M C B, et al. Excellent daytime seeing at Dome Fuji on the Antarctic plateau. Astron Astrophys lett, 2013, 554:L5

    19 Wu X Q, Qian X M, Huang H H, et al. Measurements of Seeing,isoplanatic angle, and coherence time by using balloon-borne microthermal probes in Gaomeigu. Acta Astronomica Sinica, 2014,55(2): 144-153 (in Chinese with English abstrarct)

    20 Tian Q G, Chai B, Wu X Q, et al. A mobile polar atmospheric parameter measurement system: I. development and performance testing. Chinese J of Polar Res, 2015, 27(2):125-131(in Chinese with English abstrarct)

    21 Tatarskii V I. Wave propagation in a turbulent medium. New York:McGraw-HILL BOOK Company, INC., 1961

    22 Campbell Scientific, Inc. CSAT3 three dimensional sonic anemometer instruction manual. Logan, Utah: Campbell Scientific, Inc., 2012

    23 Zhu X T, Wu X Q, Li D Y. Characteristics of ASL turbulence spectra andusing three-dimensional ultrasonic anemometer. J Atmos and Environ Opt, 2012, 7(1): 6-12 (in Chinese with English abstrarct)

    24 Nichols-Pagel G A, Percival D B, Reinhall P G, et al. Should structure functions be used to estimate power laws in turbulence? A comparative study. Phys D: Nonl Phen, 2008, 237(5): 665-677

    成年人免费黄色播放视频| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| svipshipincom国产片| 亚洲av欧美aⅴ国产| 亚洲黑人精品在线| 中文欧美无线码| 亚洲欧洲国产日韩| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 国产一级毛片在线| 少妇被粗大的猛进出69影院| 国产亚洲精品久久久久5区| 欧美成狂野欧美在线观看| 狂野欧美激情性xxxx| 两个人看的免费小视频| 国产片特级美女逼逼视频| 自线自在国产av| 宅男免费午夜| 大话2 男鬼变身卡| 波野结衣二区三区在线| 极品少妇高潮喷水抽搐| 亚洲成人手机| 观看av在线不卡| 国产熟女午夜一区二区三区| www.熟女人妻精品国产| 色婷婷久久久亚洲欧美| 国产xxxxx性猛交| 国产一区二区激情短视频 | 久久人妻熟女aⅴ| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 丰满饥渴人妻一区二区三| 巨乳人妻的诱惑在线观看| 视频区欧美日本亚洲| 久久99精品国语久久久| 伦理电影免费视频| 又粗又硬又长又爽又黄的视频| 一区二区三区精品91| 午夜老司机福利片| 久久精品国产综合久久久| 国产高清视频在线播放一区 | 久久天躁狠狠躁夜夜2o2o | 日韩欧美一区视频在线观看| 欧美精品一区二区大全| 欧美日韩亚洲国产一区二区在线观看 | 中文欧美无线码| 丰满人妻熟妇乱又伦精品不卡| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 亚洲国产精品999| 一级,二级,三级黄色视频| 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| avwww免费| 欧美激情高清一区二区三区| 国产一区二区在线观看av| 我的亚洲天堂| 欧美 日韩 精品 国产| 亚洲精品一二三| 国产福利在线免费观看视频| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 国产成人精品久久二区二区91| 首页视频小说图片口味搜索 | 老鸭窝网址在线观看| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 熟女av电影| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 麻豆乱淫一区二区| 一二三四社区在线视频社区8| 免费高清在线观看视频在线观看| 脱女人内裤的视频| 韩国精品一区二区三区| 香蕉丝袜av| 色婷婷av一区二区三区视频| 久久精品亚洲熟妇少妇任你| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 中国国产av一级| 亚洲五月色婷婷综合| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 免费一级毛片在线播放高清视频 | 丰满饥渴人妻一区二区三| 欧美老熟妇乱子伦牲交| av福利片在线| 午夜福利影视在线免费观看| 一区福利在线观看| 欧美日韩成人在线一区二区| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 久久中文字幕一级| 欧美日韩av久久| 国产主播在线观看一区二区 | 国产精品一二三区在线看| 成年人午夜在线观看视频| 国产精品久久久久久精品电影小说| 久久狼人影院| 一区二区三区精品91| 人人澡人人妻人| 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| www日本在线高清视频| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 欧美在线一区亚洲| 精品一区二区三区av网在线观看 | 一级毛片女人18水好多 | 国产精品人妻久久久影院| 久久精品亚洲熟妇少妇任你| 久久亚洲国产成人精品v| 青草久久国产| 99久久综合免费| av线在线观看网站| 亚洲国产欧美一区二区综合| 亚洲,一卡二卡三卡| 欧美+亚洲+日韩+国产| 大陆偷拍与自拍| 亚洲国产欧美在线一区| 侵犯人妻中文字幕一二三四区| 久久亚洲国产成人精品v| 99香蕉大伊视频| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 日韩av不卡免费在线播放| 久久ye,这里只有精品| 亚洲精品在线美女| 老司机影院毛片| 亚洲国产欧美在线一区| 亚洲国产欧美日韩在线播放| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 国产在线一区二区三区精| 亚洲成色77777| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| 亚洲免费av在线视频| 美女国产高潮福利片在线看| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 下体分泌物呈黄色| 国产三级黄色录像| 日韩中文字幕视频在线看片| 精品国产超薄肉色丝袜足j| 美女高潮到喷水免费观看| 七月丁香在线播放| 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 欧美日韩一级在线毛片| 亚洲欧美中文字幕日韩二区| 19禁男女啪啪无遮挡网站| 99久久精品国产亚洲精品| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 我要看黄色一级片免费的| av视频免费观看在线观看| 美女主播在线视频| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 男人操女人黄网站| 欧美日韩av久久| www.999成人在线观看| 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 欧美日韩综合久久久久久| 国产成人啪精品午夜网站| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 日日夜夜操网爽| 亚洲第一av免费看| 日本午夜av视频| 超碰成人久久| 捣出白浆h1v1| 婷婷丁香在线五月| 妹子高潮喷水视频| 大话2 男鬼变身卡| 99国产精品99久久久久| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 美女视频免费永久观看网站| a级毛片在线看网站| 黄色毛片三级朝国网站| 久久精品熟女亚洲av麻豆精品| 午夜av观看不卡| 亚洲成人手机| 熟女av电影| e午夜精品久久久久久久| 少妇 在线观看| videosex国产| 久久午夜综合久久蜜桃| 精品国产一区二区三区四区第35| 国产真人三级小视频在线观看| 天天操日日干夜夜撸| 久久精品久久精品一区二区三区| 欧美精品高潮呻吟av久久| 久久99精品国语久久久| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 久久久久精品国产欧美久久久 | 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 不卡av一区二区三区| 亚洲成av片中文字幕在线观看| 可以免费在线观看a视频的电影网站| 性色av一级| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕av电影在线播放| 国产淫语在线视频| 亚洲伊人久久精品综合| 999精品在线视频| 国产成人精品无人区| xxxhd国产人妻xxx| 亚洲成人国产一区在线观看 | 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av综合色区一区| 久久人妻熟女aⅴ| 日本av手机在线免费观看| 美女午夜性视频免费| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 热99久久久久精品小说推荐| 午夜激情久久久久久久| 97在线人人人人妻| 大香蕉久久成人网| 久热爱精品视频在线9| 天天添夜夜摸| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 国产麻豆69| 99热全是精品| 天天操日日干夜夜撸| 国产成人精品久久二区二区免费| 亚洲国产日韩一区二区| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 菩萨蛮人人尽说江南好唐韦庄| 在线观看www视频免费| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 中文字幕人妻丝袜一区二区| 欧美精品av麻豆av| 久热这里只有精品99| 亚洲免费av在线视频| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o | 丝袜人妻中文字幕| 一本大道久久a久久精品| 亚洲国产日韩一区二区| 男女国产视频网站| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 国产成人欧美| 日本av免费视频播放| a级毛片黄视频| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 两个人免费观看高清视频| 国产97色在线日韩免费| 精品人妻1区二区| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 视频在线观看一区二区三区| 手机成人av网站| 精品国产一区二区三区久久久樱花| 一级毛片女人18水好多 | 91精品伊人久久大香线蕉| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 女警被强在线播放| 在线亚洲精品国产二区图片欧美| 免费观看a级毛片全部| 国产精品免费视频内射| 欧美激情高清一区二区三区| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| 青春草亚洲视频在线观看| 在线观看免费视频网站a站| 免费不卡黄色视频| 97在线人人人人妻| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 一区二区三区精品91| 午夜激情av网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产av成人精品| 亚洲av日韩精品久久久久久密 | 午夜免费观看性视频| 国产成人欧美在线观看 | 亚洲精品国产一区二区精华液| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 久久国产精品影院| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 黄色a级毛片大全视频| 免费看不卡的av| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲欧美在线一区二区| 久久 成人 亚洲| 欧美人与善性xxx| 久久久精品94久久精品| 免费看不卡的av| svipshipincom国产片| 国产淫语在线视频| 欧美中文综合在线视频| 两个人免费观看高清视频| 午夜激情久久久久久久| av欧美777| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 亚洲av男天堂| av在线老鸭窝| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 国产精品久久久av美女十八| av网站在线播放免费| 免费黄频网站在线观看国产| 精品欧美一区二区三区在线| 国产淫语在线视频| 欧美另类一区| 亚洲视频免费观看视频| 国产精品一区二区免费欧美 | 国产黄频视频在线观看| 久久久久久免费高清国产稀缺| 只有这里有精品99| 婷婷成人精品国产| 99香蕉大伊视频| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 一区二区三区激情视频| 两性夫妻黄色片| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 老汉色∧v一级毛片| 国产精品一国产av| 亚洲国产欧美日韩在线播放| 国产国语露脸激情在线看| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 国产精品久久久av美女十八| 国产激情久久老熟女| 国产xxxxx性猛交| 亚洲综合色网址| 国产在线观看jvid| 啦啦啦在线观看免费高清www| 欧美在线黄色| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 国产精品免费大片| 国产精品久久久人人做人人爽| 亚洲欧洲日产国产| 91麻豆精品激情在线观看国产 | 日韩中文字幕欧美一区二区 | 亚洲少妇的诱惑av| 欧美黄色淫秽网站| 国产xxxxx性猛交| 日韩av免费高清视频| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 韩国精品一区二区三区| 久久精品亚洲av国产电影网| 国产精品久久久久成人av| 欧美人与善性xxx| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 黄色一级大片看看| 欧美另类一区| 男女午夜视频在线观看| 亚洲人成电影观看| 中文字幕高清在线视频| 成年动漫av网址| 99精品久久久久人妻精品| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 久久 成人 亚洲| 久热这里只有精品99| 高清欧美精品videossex| 国产欧美亚洲国产| 国产视频首页在线观看| 男女午夜视频在线观看| 香蕉国产在线看| 亚洲精品第二区| 亚洲欧美一区二区三区黑人| 99国产精品99久久久久| 在线精品无人区一区二区三| 青青草视频在线视频观看| 在线天堂中文资源库| 亚洲成人手机| 国产免费福利视频在线观看| 久久人人爽人人片av| 日本av免费视频播放| 亚洲国产成人一精品久久久| 久久久久久亚洲精品国产蜜桃av| 成年动漫av网址| 搡老乐熟女国产| 久久精品国产亚洲av涩爱| 国精品久久久久久国模美| videosex国产| 色婷婷久久久亚洲欧美| 嫁个100分男人电影在线观看 | av福利片在线| 99久久人妻综合| 国产一区二区在线观看av| 91成人精品电影| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| av天堂久久9| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区久久| 99精国产麻豆久久婷婷| 曰老女人黄片| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 国产熟女午夜一区二区三区| 国产亚洲精品第一综合不卡| 日韩av免费高清视频| 熟女av电影| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 91九色精品人成在线观看| 国产免费福利视频在线观看| 亚洲成人免费电影在线观看 | 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| www.999成人在线观看| 亚洲国产欧美网| 满18在线观看网站| 精品国产超薄肉色丝袜足j| 人人妻人人澡人人看| 亚洲成人免费av在线播放| 亚洲欧洲日产国产| 国产在线视频一区二区| 一本大道久久a久久精品| 亚洲国产欧美一区二区综合| 免费在线观看影片大全网站 | 老汉色∧v一级毛片| 老司机午夜十八禁免费视频| 国产淫语在线视频| 黄色怎么调成土黄色| 色网站视频免费| 9热在线视频观看99| 91国产中文字幕| 欧美+亚洲+日韩+国产| 777米奇影视久久| 宅男免费午夜| 精品卡一卡二卡四卡免费| 国产成人精品久久久久久| 久久久久国产精品人妻一区二区| 操出白浆在线播放| 搡老岳熟女国产| 国产日韩一区二区三区精品不卡| 女性生殖器流出的白浆| 亚洲国产精品成人久久小说| 国产精品一国产av| av在线老鸭窝| 亚洲国产精品一区三区| 成在线人永久免费视频| 国产精品一区二区精品视频观看| 欧美日韩福利视频一区二区| 欧美97在线视频| 黄片播放在线免费| 国产熟女欧美一区二区| 日韩一区二区三区影片| 精品国产一区二区久久| 久久久精品免费免费高清| xxxhd国产人妻xxx| 日本a在线网址| 国产日韩欧美视频二区| 精品国产一区二区久久| 两个人免费观看高清视频| 亚洲,一卡二卡三卡| 国产免费福利视频在线观看| 婷婷色av中文字幕| 十分钟在线观看高清视频www| 国产又色又爽无遮挡免| 国产免费一区二区三区四区乱码| 亚洲国产欧美一区二区综合| 狠狠精品人妻久久久久久综合| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 夜夜骑夜夜射夜夜干| 欧美亚洲 丝袜 人妻 在线| 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美在线一区二区| 黄色视频在线播放观看不卡| 18禁黄网站禁片午夜丰满| 久久国产精品男人的天堂亚洲| 色视频在线一区二区三区| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| 最新在线观看一区二区三区 | 又粗又硬又长又爽又黄的视频| 在线精品无人区一区二区三| 国产精品熟女久久久久浪| 亚洲五月婷婷丁香| 女人高潮潮喷娇喘18禁视频| 在线观看国产h片| 国产av精品麻豆| 亚洲精品成人av观看孕妇| 人人妻人人澡人人看| 成人午夜精彩视频在线观看| 午夜日韩欧美国产| 这个男人来自地球电影免费观看| 新久久久久国产一级毛片| 成人18禁高潮啪啪吃奶动态图| 国产精品av久久久久免费| 秋霞在线观看毛片| 一级毛片 在线播放| 国产一卡二卡三卡精品| 一级毛片我不卡| 久久精品亚洲av国产电影网| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品一区三区| 久久人妻熟女aⅴ| 老汉色∧v一级毛片| 一级片'在线观看视频| 国产精品九九99| 国产精品久久久久久精品电影小说| 精品熟女少妇八av免费久了| 久久精品aⅴ一区二区三区四区| 中文字幕高清在线视频| 又大又爽又粗| 91成人精品电影| 久久热在线av| 国产亚洲精品久久久久5区| 一区二区三区激情视频| 国产精品人妻久久久影院| 久久久欧美国产精品| 99国产精品99久久久久| 久久免费观看电影| av在线app专区| 国产日韩一区二区三区精品不卡| 国产伦人伦偷精品视频| 久久久久久人人人人人| 国产精品三级大全| 国产男女超爽视频在线观看| 亚洲三区欧美一区| xxx大片免费视频| 黄色一级大片看看| 侵犯人妻中文字幕一二三四区| 一级毛片 在线播放| 91麻豆精品激情在线观看国产 | 波多野结衣av一区二区av| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 涩涩av久久男人的天堂| 一级片'在线观看视频| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 久久天堂一区二区三区四区| 久久热在线av| 国产欧美亚洲国产| 午夜91福利影院| 高清黄色对白视频在线免费看| 秋霞在线观看毛片| 美女主播在线视频| 在线观看人妻少妇| 亚洲国产中文字幕在线视频| 亚洲第一青青草原| 啦啦啦视频在线资源免费观看| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 久久人人97超碰香蕉20202| 日韩中文字幕视频在线看片| 久久天堂一区二区三区四区| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 久久久久国产精品人妻一区二区| 波多野结衣一区麻豆| 精品人妻一区二区三区麻豆| 国产成人啪精品午夜网站| 十八禁网站网址无遮挡| 女人爽到高潮嗷嗷叫在线视频| √禁漫天堂资源中文www| 欧美日韩综合久久久久久|