• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A preliminary study of freshwater meiofaunal communities at Greenwich Island, South Shetland Islands, Antarctica

    2015-02-06 07:24:13SorayaSilvaMinervaCordovNoryGonzlezLeinnyGonzlez
    Advances in Polar Science 2015年1期

    Soraya J. Silva, Minerva Cordovés, Nory González & Leinny González

    Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Km 11, Carretera Panamericana, Apartado Postal 20632, Caracas 1020-A, Venezuela

    1 Introduction

    Although extreme meteorological conditions and continuous sub-zero temperatures render most of the Antarctic continent permanently ice-covered, the climate in the maritime region of the western side of the Antarctic Peninsula and nearby islands is less extreme, experiencing relatively higher mean temperatures and precipitation than elsewhere in Antarctica[1].A variety of water bodies can be found here during the austral summer, ranging from large deep lakes to small, temporary,shallow depressions fed by snow and melting ice[2].

    The invertebrate communities of shallow-water bodies can play important roles in nutrient cycling, energy flow,decomposition, herbivory, and parasitism[3-5]. Meiofauna,microscopic invertebrates that live within aquatic sediments,can stimulate microbial activity within sediments, provide food for higher trophic levels, and be a bioindicator of environmental impact; their production can even exceed that of macrofauna[6]. However, most research in the Antarctic has focused on aquatic benthic macrofauna instead[7], and marine meiofaunas[5,7-10].

    Studies in ice-free areas across Antarctica have revealed seasonal, habitat and geographic variation in microfaunal composition. Higher soil moisture content during summer have been related to increased growth of photosynthetic autotrophs, microbial and microfaunal species[11]; abiotic factors have been recognized to influence nematode communities more so than biotic factors[12]; and soil microfaunal community structure has been related to soil geochemistry[13]. In continental Antarctica, nematodes have been identified as the most diverse and abundant invertebrate group from Victoria land[14], but results from Dronning Maud Land shows that rotifers, followed by tardigrades and nematodes are the most common taxa[15-16]. The Antarctic peninsula is the most rapidly warming region in the world[17].Studies on limnology on King George Island, South Shetland islands started in the 1970’s[18]. The diversity of freshwater fauna of King George Island is lower than that of the South Orkney Islands, but richer than that of the Antarctic Peninsula[19]. In Admiralty Bay, the density of Monogononta,Bdelloidea, Tardigrada and Nematoda was lower than in the Antarctic lakes, and greatest in the moss banks, in which the highest densities of nematodes and tardigrades were also encountered[20]. Otherwise research effort on Antarctic soil ecosystems has been limited, hampering attempts to ascertain or predict the possible effects of warming throughout this region.

    Here we report freshwater meiofaunal community structure (main groups) and relate it to microphytobenthic biomass, water chemistry and soil geochemistry in three areas in Punta Fort Williams, Greenwich Island, in the South Shetland Islands. Our objective was to determine what, if any,relationship exists between community structure and a series of environmental variables. To the best of our knowledge no such investigation has been previously reported for this area.

    2 Methods

    Samples were collected from Punta Fort William at the northeastern tip of Greenwich Island, one of the southernmost islands in the South Shetland complex of islands in Antarctica (Figure 1). Punta Fort Williams is a headland(~1.6 km2) neighboring Quito Glacier, and although usually devoid of snow during summer[21], during our sampling in January of 2013 it was blanketed in snow, so sampling locations were distributed in the ice-free areas in the vicinity of the Ecuadorian station “Pedro Vicente Maldonado”.

    Three sites were selected (Zone A, B, C), within which sampling occurred two weeks following ice melt. In total 27 samples were collected from shallow water ponds and streams; nine samples from each site. Zone A, characterized by visible vegetation (moss, cyanobacteria or algae), zone B,near shore streams with visible dead macroalgae on bottom,and zone C, pond situated on glacial lateral moraines.

    At each site, water samples were collected to measure physicochemical parameters using a multiparameter sonde HORIBA UX22 (HORIBA Instruments Incorporated,Texas, USA), Additional samples were collected and filtered using membrane syringe filters of 25 mm inner diameter and 0.22 μm, for total organic carbon (TOC) and major ion determination. At each site, nine replicate meiofaunal samples were collected by PVC core of 3 cm inner diameter (surface area 10 cm2). Cores were carefully pushed into the sediment and brought to the surface as undisturbed as possible, with the upper 1 cm of each core removed, bagged and fixed in 4% formaldehyde until further analysis. Additional surface sediment samples were collected in the same place for microphytobenthic biomass analysis (Chlorophyllα), and elemental and granulometric analysis; these samples were kept frozen (-20°C) in the dark until processing. Analysis of TOC was performed using a Teledyne Tekmar-Apollo 9000 TOC Analyzer. Major cations in water were analyzed using an Atomic Absorption Spectrometer Perkin Elmer AAnalyst 200,and anions were analyzed using an Ionic Chromatographer Dionex ICS-2100.

    Fixed meiofaunal samples were washed over a 63 μm mesh using distilled water. Meiofauna and organic material were extracted from the remaining sand particles by density gradient treatment using a colloidal silica polymer (Ludox TM) as flotation medium[22]. Treated samples then were Rose Bengal stained, sorted using conventional light microscopy,and identified and counted[23-25].

    Microphytobenthic biomass or chlorophyllα(Chlα) concentration was determined from three replicate samples from each site. Sediment was lyophilized and homogenized, then extracted with 100% Acetone grade HPLC, and pigments separated using reverse phase highperformance liquid chromatography[26]. Samples for sediment grain-size analysis were first freeze dried, sieved through a 2.0 mm sieve, then processed using a granulometric analyzer Malvern Mastersizer 2000 with the dispersion unit Hydro 2000 G. Organic matter and moisture were determined using the ‘loss on ignition (LOI)’ procedure, using a combination of equations[27-29]. For elemental analysis (C, N, H and S),dried samples were analyzed using an Eager Analyzer 200 Stripchart.

    One-way ANOVA was performed to determine whether significant differences existed between sites; Spearman rank correlation was used to assess relationships among variables; and Canonical Correspondence Analysis (CCA)was performed on log(x+1)-transformed data (because of high variation in values between samples). All statistical analyses were conducted using PAST software, version 2.7.

    3 Results

    Water and sediment characteristics and microphytobenthic biomass for each site are presented in Table 1. Environmental variables differed significantly between sites (p<0.001). Zone A had the greatest temperature, dissolved oxygen, oxygen reduction potential, organic matter, TOC and chlorophyllα,with high silt, clay and sand contents in sediments, and high levels of N. However, the content of major ions within the water was the lowest of the three surveyed sites. Nitrate was below detection limits in all water samples.

    The meiofaunal community was dominated by tardigrades (85%), nematodes (11%) and bdelloid rotifers(3%), with the rest 1% comprising Oligochaeta, Collembola,crustacean larvae (nauplii) and other unidentified taxa.Tardigrades numerically dominated all three sites, being most abundant at Zone A (6 851 ind?cm-2) and least at Zone C(282 ind?cm-2), followed by nematodes and bdelloid rotifers,both of which were similarly more abundant at Zone A(1 036 ind?cm-2and 290 ind?cm-2respectively), and least abundant at Zone C (110 ind?cm-2and 29 ind?cm-2respectively) (Figure 2). Most nematodes have been referred toPlectus, and most tardigrades toHypsibius. Only one unidentified Oligochaete and three Collembola were found.

    Table 1 Physicochemical parameters of water, sediment characteristics and microphytobenthic biomass in sampling sites (DO = dissolved oxygen, TDS = total dissolved solids, ORP = oxygen reduction potential, Chl α = Chlorophyll α, OM = organic matter, TOC =total organic carbon)

    The Spearman rank correlation (Table 2) revealed significant and positive correlations between meiofaunal abundance with microphytobenthic biomass (Chlα) and silt, clay and sand content, and a negative correlation with gravel. Additionally, a significant and positive correlation was detected between all meiofaunal phyla and TOC, and the N,C and H content of sediments.

    CCA revealed axis 1 explained 54.75% of variance and axis 2 explained 25.11% of variance (Figure 3). Strong evidence of a relationship between nematode and tardigrade abundance with the content of C, silt and clay percentage in sediment, and chlorophyllαfrom the microphytobenthos exists.

    Table 2 Spearman rank correlation for meiofauna groups with water physicochemical parameters, sediment features and microphytobenthic biomass (DO=dissolved oxygen; TDS=total dissolved solids; ORP= oxygen reduction potential; Chl α =Chlorophyll α; OM=organic matter; TOC=total organic carbon; -, non-significant; *p<0.05; **p<0.01)

    4 Discussion

    Climatic conditions in the maritime Antarctic are less extreme than those on the Antarctic continent. In Punta Fort William, terrestrial aquatic ecosystems such as ponds,lakes, and other water bodies usually contain liquid water and become ice-free in summer, allowing colonization by aquatic organisms[1,30-31]. The communities we describe likely comprise early stage colonizing taxa, therefore at an early stage of the ecological succession. The surveyed habitat was no more than 2 weeks old, and predatory taxa had yet to become established. Despite this, these communities were similar to that reported elsewhere in similar habitat throughout Antarctica[32].

    Various studies report different taxa to dominate different environment types: from nematodes in Antarctic soils and sediments[33], rotifers in freshwater environments(King George island)[19], to tardigrades in our small pond habitat from Greenwich Island. Although the feeding habits of tardigrades are not well established[14], we recognize their abundance to correlate with microphytobenthic biomass, and secondarily, with low numbers of nematodes(Plectussp.). Competition for food would be expected in environments with high microfaunal population densities[19].Tardigrades are linked to soils with high levels of carbon and microphytobenthic biomass, which agrees with results obtained by Velasco-Castrillón et al[12]. It is possible that tardigrades were more abundant than nematodes in our samples as predation pressure was low, perennial food abundance and highly developed cryptobiotic survival strategies, characteristics that have allowed them to reach very high population densities[33].

    High abundances of tardigrades, nematodes and rotifers generally appeared to be associated with samples with a presence of mosses, which could be related to resource availability (Zone A), as it has been showed in other Antarctic sites, where meiofauna populations could be high because of abundant food and low competition[14]. Microphytobenthos is an essential component of the benthic food web, and its significance for meiofauna as a potential food source has been often demonstrated[5]. Food availability is likely the most important factor determining the distribution of the meiofauna in Antarctica[34]. Our results show a very close relationship in meiofaunal abundance and microphytobenthic biomass, implying microphytobenthos can significantly affect meiofaunal distribution. CCA and Spearman rank correlation also revealed a high correlation between nematode abundance and the % of silt, clay and carbon in the sediment. The relationship of nematode distribution in soil is affected by carbon content and moisture even though the environmental requirements vary depending on the species. Courtright et al observed that soils with high content of carbon were inhabited predominantly byPlectus[35], as in this study.Plectussp. was the most abundant nematode, a bacterivorous that can also feed on microalgae[36], which potentially increase the range of habitats where it can be found. Zone A with presence of moss and microbial mats, favored the tardigrades. The climate inside the moss isolates the microfauna from very microclimatic changes, high organic material also favored nematodes, and the substrate is also energy rich with high content of Nitrogen and possibly high bacterial activity. Moss was absent in Zone B and C. At Zone B, organic material from dead macroalgae at the bottom of the stream could have favored the presence of nematodes and tardigrades, besides the microphytobenthic biomass. The Antarctic Peninsula is the most rapidly warming region in the world[16], with longer growing seasons and extended plant distributions predicted across the region. Although climatic conditions in maritime Antarctica are less severe than those of continental Antarctica,temperature and limited precipitation remain major constraints for meiofaunal communities. It has been found that increasing soil temperatures (combined with less temperature variability)and lower UV radiation have a strong positive influence on nematode abundance and caused a shift in the composition of nematode communities in Mars Oasis[36]. Considering our meiofaunal community was likely to be at an early stage of colonization, it is likely that abiotic factors have played a greater role in shaping it than biotic interactions, which will probably increase in importance later in community development and succession.

    We would expect changes in soil geochemistry to occur in warmer periods, where nutrients and carbon accumulate in lower-altitude sites. We would similarly expect seasonal variation in biotic-abiotic interactions[12]. Further research is required to better understand the biotic (competition and predation) and abiotic interactions in this Antarctic ecosystems and how these affect community structure.

    Although this was a preliminary study, our results contribute to a growing body of information on a largely neglected group of invertebrates from this region and are providing the baseline information about freshwater meiofauna in Punta Fort Williams, Greenwich Island.Accordingly, monitoring of meiofaunal taxa might facilitate rapid detection of anticipated environmental changes brought about as a consequence of global warming.

    1 Toro M, Camacho A, Rochera C, et al. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol, 2007, 30(5): 635-649

    2 N?dzareck A, Pociecha A. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci, 2010, 4(3): 457-467

    3 Bardgett R. The Biology of Soil: A community and ecosystem approach (Biology of Habitats). Oxford: Oxford University Press,2005: 254

    4 Ott D, Rall B C, Brose U. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Philos Trans R Soc Lond Biol Sci, 2012, 367(5): 3025-3032

    5 de Skowronki R S, Corbisier T N. Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biol, 2002, 25(2): 126-134

    6 Sommerfield P J, Rees H L, Warwick R M. Interrelationships in community structure between shallow-water marine meiofauna and macrofauna in relation to dredgings disposal. Mar Ecol Pro Ser, 1995,127: 103-112

    7 Pasotti F, Convey P, Vanreusel A. Potter Cove, west Antarctic Peninsula, shallow water meiofauna: a seasonal snapshot. Antarct Sci,2014, 26(5): 554-562

    8 Veit-K?hler G, Antacli J C, Rose A. Metazoan meiofauna in Potter Cove, King George Island//Wiencke C, Ferreyra G A, Abeke D,Marenssi S. The Antarctic ecosystem of Potter Cove, King-George Island. Berichte zur Polarforschung und Meeresforschung, 2008, 571:135-140

    9 Hong J H, Kim K C, Lee S H, et al. The community structure of meiofauna in Marian Cove, King George Island, Antarctica. Ocean Polar Res, 2011, 33(3): 265-280

    10 Bick A, Arlt G. Description of intertidal macro- and meiobenthic assemblages in Maxwell Bay, King George Island, South Shetland Islands, Southern Ocean. Polar Biol, 2013, 36(5): 673-689

    11 Convey P. Antarctic ecosystems//Levin S. Encyclopedia of biodiversity, second edition. San Diego: Elsevier, 2007, doi: 10.1016/BO-12-226865-2/00014-6

    12 Velasco-Castrillón A, Schultz M B, Colombo F, et al. Distribution and diversity of soil Microfauna from east Antarctica: assessing the link between Biotic and Abiotic factors. PloS One, 2014, 9(1): e87529.doi:10.1371/jornal.pone.0087529

    13 Wharton D A. The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B, 2003, 173(8): 621-628

    14 Sohlenius B, Bostr?m S, J?nsson K I. Occurrence of nematodes,tardigrades and rotifers on ice-free areas in East Antarctica.Pedobiologia, 2004, 48(4): 395-408

    15 Sohlenius B, Bostr?m S. The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biol, 2005, 28(6): 439-448

    16 Houghton J T. The Scientific Basis: contribution of working group I to the Third Assessment report of the intergovernmental panel on climate change, Climate Change. Cambridge: Cambridge University Press, 2001: 525-582

    17 Campos H J, Arenas J, Steffen W. Antecedentes y observaciones limnológicas en los principales lagos de la Isla rey Jorge, Shetland del Sur, Antarctica. Serie Cientifica, Instituto Antartico Chileno, 1978, 24:11-19

    18 Dartnall H J G. Rotifers of the Antarctic and Sub-Antarctic.Hydrobiologia, 1983, 104(1): 57-60

    19 Janiec K. The freshwater micro- and meiofauna of Admiralty Bay,King George Island, South Shetland Islands. Polar Biol, 1993, 6: 133-138

    20 Nielsen U N, Wall D H, Adams B J, et al. Antarctic Nematode communities: observed and predicted responses to climate change.Polar Biol, 2011, 34(11): 1701-1711

    21 Hii Y S, Alias S A, Riofrío M, et al. Spatial variability of soil nutrients in Punta Fort Williams, Greenwich Island, maritime Antarctic. Adv Polar Sci, 2013, 24(4): 273-280

    22 Heip C H R, Vincx M, Vranken G. The ecology of marine nematodes.Oceanogr Mar Biol Ann Rev, 1985, 23: 399-489

    23 Vincx M. Meiofauna in marine and freshwater sediments//Hall G S.Methods for the examination of organismal diversity in soils and sediments. Wallingford: CABI Publishing, 1996: 187-195

    24 Tumanov D V. Five new species of the genus Milnesium (Tardigrade,Eutardigrade, Milnesiidae). Zootaxa, 2006, 1122: 1-23

    25 Holovachov O, Bostr?m S. Identification of Plectida (Nematode)EUMAINE, Gent and Nematology, UC Riverside, 2010: 98

    26 Van Heukelem L, Thomas C S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A,2001, 910(1): 31-49

    27 Dean W E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition;comparison with other methods. J Sedim Res, 1974, 44(1): 242-248

    28 Heiri O, Lotter A F, Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolim, 2001, 25(1): 101-110

    29 Santiesteban J I, Mediavilla R, López-Pamo E, et al. Loss on ignition:a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolim, 2004, 32(3): 287-299

    30 Camacho A. Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and Sub-antarctic Islands. Rev Environ Sci Biotechnol, 2006, 5(2-3): 167-185

    31 Pociecha A, Dumont H J. Life cycle of Boeckella poppei Mrazek and Branchinecta gaini Daday (King George Island, South Shetlands).Polar Biol, 2008, 31(2): 245-248

    32 Convey P, Gibson J A E, Hillenbrand C D, et al. Antarctic terrestrial life-challenging the history of the frozen continent? Biol Rev, 2008,83(2): 103-117

    33 McInnes S J, Chown S L, Dartnail H J G, et al. Milnesium cfr.tardigradum (Milnesiidae, Apochela, Tardigrada): a monitor of high altitude meiofauna on Sub-Antarctic Marion Island. Zool Anz, 2001,240(3-4): 461-465

    34 Vanhoe S, Lee H J, Beghyn M, et al. The metazoan meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK, 1998, 78(2): 411-434

    35 Courtright E M, Wall D H, Virginia R A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci, 2001, 13(1): 9-17

    36 Convey P, Wynn-Williams D D. Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol, 2002, 38(3-4): 255-259

    淫妇啪啪啪对白视频| 亚洲自偷自拍图片 自拍| 色哟哟哟哟哟哟| 婷婷六月久久综合丁香| 一夜夜www| 精品无人区乱码1区二区| 国内精品久久久久精免费| 国产精品99久久99久久久不卡| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 国产aⅴ精品一区二区三区波| 曰老女人黄片| 久热这里只有精品99| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看 | 久久香蕉激情| 99精品在免费线老司机午夜| 国产精品综合久久久久久久免费| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 一区二区三区国产精品乱码| 男人舔奶头视频| 久久香蕉国产精品| 操出白浆在线播放| 在线国产一区二区在线| av天堂在线播放| 91成年电影在线观看| 日本一区二区免费在线视频| 99国产精品99久久久久| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 看黄色毛片网站| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| 老熟妇乱子伦视频在线观看| 黄色女人牲交| 黄片大片在线免费观看| 一级毛片女人18水好多| 好男人电影高清在线观看| 一二三四社区在线视频社区8| 大香蕉久久成人网| 啦啦啦韩国在线观看视频| 欧美亚洲日本最大视频资源| av有码第一页| aaaaa片日本免费| 午夜日韩欧美国产| 久久久国产欧美日韩av| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 一本大道久久a久久精品| 波多野结衣av一区二区av| 久久中文字幕一级| 成熟少妇高潮喷水视频| 国产黄片美女视频| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 国产99白浆流出| 十八禁网站免费在线| 两性夫妻黄色片| 日韩大尺度精品在线看网址| 久久欧美精品欧美久久欧美| 一夜夜www| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 午夜福利一区二区在线看| 欧美成人一区二区免费高清观看 | 亚洲第一欧美日韩一区二区三区| 欧美日韩精品网址| 国产精品,欧美在线| 禁无遮挡网站| 男男h啪啪无遮挡| 久久久久久人人人人人| 国产亚洲欧美在线一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲av成人一区二区三| 最好的美女福利视频网| 亚洲黑人精品在线| 男女那种视频在线观看| 男人舔女人的私密视频| 欧美一级毛片孕妇| 黄片播放在线免费| 老司机深夜福利视频在线观看| 侵犯人妻中文字幕一二三四区| 国产高清视频在线播放一区| 国产又爽黄色视频| 黄色视频不卡| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 50天的宝宝边吃奶边哭怎么回事| 日韩国内少妇激情av| 色哟哟哟哟哟哟| 亚洲精品久久成人aⅴ小说| 91成年电影在线观看| 一本久久中文字幕| 久久草成人影院| 成人一区二区视频在线观看| 一级黄色大片毛片| 久久久水蜜桃国产精品网| 国产精品美女特级片免费视频播放器 | 美女高潮喷水抽搐中文字幕| 国产成人av教育| 中文资源天堂在线| 日韩欧美一区视频在线观看| 后天国语完整版免费观看| 成人欧美大片| 美女免费视频网站| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频 | 亚洲精品粉嫩美女一区| 亚洲成国产人片在线观看| 欧美不卡视频在线免费观看 | 国产精品嫩草影院av在线观看| 成人欧美大片| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| 两性午夜刺激爽爽歪歪视频在线观看| 香蕉av资源在线| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 国产v大片淫在线免费观看| 看十八女毛片水多多多| 国产一区二区在线av高清观看| 免费在线观看成人毛片| av天堂中文字幕网| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 国产精品三级大全| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 综合色av麻豆| 亚洲不卡免费看| 亚洲第一区二区三区不卡| 97在线视频观看| 欧美中文日本在线观看视频| 日本成人三级电影网站| 欧美一区二区国产精品久久精品| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 99久久久亚洲精品蜜臀av| 黄色视频,在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| or卡值多少钱| 一本精品99久久精品77| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区成人| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| 久久韩国三级中文字幕| 人人妻人人看人人澡| av国产免费在线观看| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 色吧在线观看| 性欧美人与动物交配| av天堂中文字幕网| 欧美性感艳星| 国产在视频线在精品| 大型黄色视频在线免费观看| 男女视频在线观看网站免费| 日韩一区二区视频免费看| 日韩欧美精品v在线| 国产成人影院久久av| 赤兔流量卡办理| 最新中文字幕久久久久| 热99re8久久精品国产| 国产毛片a区久久久久| 精品午夜福利在线看| 久久99热6这里只有精品| 波野结衣二区三区在线| 中国国产av一级| 亚洲国产精品国产精品| 欧美日本亚洲视频在线播放| 亚洲va在线va天堂va国产| 波多野结衣巨乳人妻| 一区福利在线观看| 麻豆乱淫一区二区| av.在线天堂| 亚洲性夜色夜夜综合| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| а√天堂www在线а√下载| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 欧美成人一区二区免费高清观看| 搞女人的毛片| 精品久久国产蜜桃| 午夜久久久久精精品| 日本五十路高清| 亚洲va在线va天堂va国产| 国产精品不卡视频一区二区| 天堂动漫精品| 国产久久久一区二区三区| 国产乱人视频| 午夜免费激情av| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品在线观看| 成年版毛片免费区| 18禁在线播放成人免费| 成人综合一区亚洲| 国产精品久久久久久精品电影| 少妇人妻精品综合一区二区 | 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 伦精品一区二区三区| 亚洲av免费在线观看| 亚洲精品456在线播放app| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 搡老熟女国产l中国老女人| 99久久中文字幕三级久久日本| 最新在线观看一区二区三区| 国产爱豆传媒在线观看| 成人无遮挡网站| 极品教师在线视频| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 日本a在线网址| 91精品国产九色| 久久久久国产精品人妻aⅴ院| 少妇丰满av| 岛国在线免费视频观看| 老司机福利观看| 欧美不卡视频在线免费观看| 成人国产麻豆网| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 网址你懂的国产日韩在线| 亚洲综合色惰| 国产成人影院久久av| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 欧美绝顶高潮抽搐喷水| 五月玫瑰六月丁香| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| 中文字幕av在线有码专区| 国产成人91sexporn| 女人被狂操c到高潮| 国产免费一级a男人的天堂| 亚洲高清免费不卡视频| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 赤兔流量卡办理| 亚洲精品色激情综合| 内地一区二区视频在线| 国产一区二区三区av在线 | 波多野结衣巨乳人妻| 99久久中文字幕三级久久日本| 极品教师在线视频| 亚洲欧美日韩无卡精品| 国产成人aa在线观看| 熟女电影av网| 国产精品久久视频播放| 网址你懂的国产日韩在线| 免费大片18禁| 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 国产精品一区二区免费欧美| avwww免费| 成年免费大片在线观看| 欧美又色又爽又黄视频| 最近2019中文字幕mv第一页| 免费观看在线日韩| 18禁在线无遮挡免费观看视频 | 春色校园在线视频观看| 国产精品一区二区三区四区免费观看 | 中文在线观看免费www的网站| 久久国产乱子免费精品| 色视频www国产| 午夜福利高清视频| 国产精品一区www在线观看| 99视频精品全部免费 在线| 欧美zozozo另类| 91在线观看av| 国产精品精品国产色婷婷| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 国产av在哪里看| 熟女人妻精品中文字幕| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久com| 国语自产精品视频在线第100页| 日韩欧美免费精品| 亚洲无线观看免费| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添小说| 97超视频在线观看视频| 亚洲国产精品国产精品| 一进一出好大好爽视频| 亚洲第一电影网av| 精品一区二区免费观看| 又爽又黄a免费视频| 少妇丰满av| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 18禁在线无遮挡免费观看视频 | 别揉我奶头~嗯~啊~动态视频| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 国产高清不卡午夜福利| 性色avwww在线观看| 波野结衣二区三区在线| 日韩欧美精品免费久久| 插逼视频在线观看| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 国产真实乱freesex| 身体一侧抽搐| 国产精品一区www在线观看| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 国产午夜福利久久久久久| 最近手机中文字幕大全| 国内精品美女久久久久久| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| .国产精品久久| 国产精品久久久久久av不卡| 久久久久国产精品人妻aⅴ院| 嫩草影院新地址| 欧美人与善性xxx| 深爱激情五月婷婷| 亚洲欧美日韩东京热| 日本爱情动作片www.在线观看 | 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 日韩精品青青久久久久久| 久久精品夜色国产| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 嫩草影视91久久| 久久精品夜色国产| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 国产av在哪里看| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| 午夜精品国产一区二区电影 | 一级毛片电影观看 | 桃色一区二区三区在线观看| 亚洲精品日韩av片在线观看| 蜜桃久久精品国产亚洲av| 精品国产三级普通话版| 精品久久久久久久久久久久久| av免费在线看不卡| 人妻丰满熟妇av一区二区三区| 国产av不卡久久| 国产av麻豆久久久久久久| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| or卡值多少钱| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜爱| 国产白丝娇喘喷水9色精品| 六月丁香七月| 永久网站在线| 少妇人妻精品综合一区二区 | 国产成人91sexporn| 午夜久久久久精精品| 99热只有精品国产| 亚洲av中文字字幕乱码综合| 中国国产av一级| 欧美+日韩+精品| av在线播放精品| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 女同久久另类99精品国产91| 一本一本综合久久| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 国产 一区 欧美 日韩| 免费不卡的大黄色大毛片视频在线观看 | 国产伦精品一区二区三区四那| 一级毛片电影观看 | 极品教师在线视频| 丰满的人妻完整版| 免费人成在线观看视频色| 欧美一区二区国产精品久久精品| 欧美人与善性xxx| 久久6这里有精品| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| av天堂在线播放| 老司机午夜福利在线观看视频| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 天堂动漫精品| 国产精品不卡视频一区二区| 99国产精品一区二区蜜桃av| 在线天堂最新版资源| 久久久国产成人免费| 亚洲激情五月婷婷啪啪| 极品教师在线视频| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 精品人妻熟女av久视频| 国产 一区精品| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲91精品色在线| 亚洲无线观看免费| 亚洲五月天丁香| 寂寞人妻少妇视频99o| 一进一出抽搐动态| 搡老岳熟女国产| 别揉我奶头 嗯啊视频| 亚洲精品色激情综合| 国产在线男女| 两个人视频免费观看高清| 小说图片视频综合网站| 亚洲国产精品成人久久小说 | 综合色丁香网| 小说图片视频综合网站| 最近2019中文字幕mv第一页| 五月伊人婷婷丁香| 观看免费一级毛片| 综合色av麻豆| 亚洲av五月六月丁香网| 最近在线观看免费完整版| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 亚洲高清免费不卡视频| 日韩制服骚丝袜av| 国产 一区 欧美 日韩| 国产一区二区在线av高清观看| av在线亚洲专区| 嫩草影院入口| 1000部很黄的大片| 久久久国产成人精品二区| 日韩制服骚丝袜av| a级一级毛片免费在线观看| 日韩成人av中文字幕在线观看 | 国产麻豆成人av免费视频| 深夜a级毛片| 国产精品永久免费网站| 麻豆国产97在线/欧美| 亚洲,欧美,日韩| 久久午夜福利片| 成人毛片a级毛片在线播放| 日本黄色片子视频| 国产精品一及| 日韩欧美在线乱码| 久久韩国三级中文字幕| 国产精品综合久久久久久久免费| 亚洲欧美精品综合久久99| 精品乱码久久久久久99久播| 日韩成人伦理影院| 欧美xxxx黑人xx丫x性爽| 午夜福利高清视频| 精品久久久久久成人av| 精品久久久久久久久av| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 99国产极品粉嫩在线观看| 欧美高清性xxxxhd video| 国产av不卡久久| 国产探花极品一区二区| 99久国产av精品国产电影| 2021天堂中文幕一二区在线观| 99久久成人亚洲精品观看| 97在线视频观看| 99久久九九国产精品国产免费| 午夜精品在线福利| 日韩欧美精品v在线| 国产 一区 欧美 日韩| 国产一区二区三区在线臀色熟女| 亚洲专区国产一区二区| 一级黄片播放器| 精品国产三级普通话版| 看片在线看免费视频| 亚洲av第一区精品v没综合| 你懂的网址亚洲精品在线观看 | 国产美女午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 99精品在免费线老司机午夜| 欧美激情在线99| 国产免费一级a男人的天堂| 成年女人毛片免费观看观看9| 久久久久久久久久黄片| 成人永久免费在线观看视频| 毛片女人毛片| 午夜福利18| 日本一本二区三区精品| 国产精品女同一区二区软件| 亚洲电影在线观看av| 国产69精品久久久久777片| 99久久中文字幕三级久久日本| 亚洲欧美成人精品一区二区| 亚洲va在线va天堂va国产| av中文乱码字幕在线| 日韩欧美国产在线观看| 偷拍熟女少妇极品色| 你懂的网址亚洲精品在线观看 | 久久精品夜色国产| 久久这里只有精品中国| 中文字幕av在线有码专区| 久久天躁狠狠躁夜夜2o2o| 波多野结衣高清无吗| 久久久久久久久久久丰满| 亚洲无线在线观看| 三级男女做爰猛烈吃奶摸视频| 少妇人妻精品综合一区二区 | 狂野欧美激情性xxxx在线观看| 亚洲专区国产一区二区| 日本撒尿小便嘘嘘汇集6| 色吧在线观看| 内射极品少妇av片p| 亚洲欧美日韩高清专用| 亚洲精品成人久久久久久| 免费人成在线观看视频色| 日韩av在线大香蕉| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| av.在线天堂| 中出人妻视频一区二区| 色哟哟·www| 波野结衣二区三区在线| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| 搞女人的毛片| 人妻少妇偷人精品九色| 久久99热这里只有精品18| 国产亚洲精品综合一区在线观看| 日本一二三区视频观看| 欧美日韩精品成人综合77777| 日日摸夜夜添夜夜添小说| 18禁在线无遮挡免费观看视频 | 尤物成人国产欧美一区二区三区| 18禁在线播放成人免费| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 国产一区二区激情短视频| .国产精品久久| 最新在线观看一区二区三区| 国产亚洲91精品色在线| h日本视频在线播放| 97超级碰碰碰精品色视频在线观看| 日韩三级伦理在线观看| 日韩精品中文字幕看吧| 精品无人区乱码1区二区| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久久av| av天堂中文字幕网| 久久精品国产99精品国产亚洲性色| 亚洲熟妇熟女久久| 看十八女毛片水多多多| 99热这里只有是精品在线观看| 亚洲国产欧洲综合997久久,| 亚洲色图av天堂| 麻豆精品久久久久久蜜桃| 日韩欧美三级三区| 大香蕉久久网| 免费在线观看成人毛片| 天堂动漫精品| 婷婷精品国产亚洲av| 亚洲一区高清亚洲精品| 亚洲精品粉嫩美女一区| 国产亚洲精品久久久久久毛片| 国产v大片淫在线免费观看| 欧美一区二区国产精品久久精品| 亚洲中文字幕日韩| 欧美极品一区二区三区四区| 嫩草影院精品99| 人妻夜夜爽99麻豆av| 亚洲国产精品国产精品| 男女之事视频高清在线观看| 91午夜精品亚洲一区二区三区| av在线老鸭窝| 一个人观看的视频www高清免费观看| av天堂在线播放| 99热精品在线国产| 性色avwww在线观看| 看非洲黑人一级黄片| 中国美白少妇内射xxxbb| 成人av在线播放网站| 美女黄网站色视频|