• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Five-year bio-monitoring of aquatic ecosystems near Artigas Antarctic Scientific Base, King George Island

    2015-02-06 07:24:12MarMorelVictoriaBraCeciliaMartnezRosaleslicaCagideSusanaCastroSowinski
    Advances in Polar Science 2015年1期

    María A. Morel, Victoria Bra?a, Cecilia Martínez-Rosales,2, Célica Cagide& Susana Castro-Sowinski,2

    1 Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay;

    2 Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

    1 Introduction

    Throughout evolution, microorganisms have faced environmental pressures to which they have responded by various adaptation mechanisms. Thus, in permanently cold environments such as the Antarctic, a great extremophile microbial diversity has been described[1]. Examples of cold-adapted microorganisms isolated from Antarctic environments are bacteria of the generaPseudomonasandFlavobacterium[2], among many others. Fildes Peninsula in King George Island, Antarctica is a snow-free area during summer. Currently, it has a great concentration of international facilities, which support human activities. The presences of scientific stations and tourism activities have caused an exponential increase in human presence on the continent, affecting the ecosystem. Many human activities in scientific bases located throughout Antarctica have been associated with alteration in, and negative impact on, the environment[3-6].

    The impact of anthropogenic activity is a risk for biological conservation. Invasive alien bacteria introduced in Antarctica as a consequence of the use of the continent’s natural resources have changed the abundance of autochthonous bacteria[7-8]. Native biodiversity is also affected because of the vulnerability and low competitive abilities of indigenous organisms[5]. Many introduced species have survived invading the ecosystem[3-5]. Human activities related to food management, transportation systems[3]and wastewater management[4]are among the anthropogenic activities that introduce alien microbes. In this regard, urgent measures are needed, including environmental impact assessments, longterm monitoring, and regulation from national Antarctic organizations, among others.

    Among the international scientific stations located in Fildes Peninsula, the Artigas Antarctic Scientific Base(62°11′4′′S; 58°51′7′′W) (in Spanish Base Científica Antártica Artigas, BCAA) is administrated by the Uruguayan Antarctic Institute. Many freshwater lakes and ponds can be found in the vicinity of the BCAA. One such is the Uruguay Lake (also known as Profound Lake by the UK-Antarctic Place-Names Committee), a water body located 0.4 km northwest of Jasper Point that is used as a potable water supply by the Uruguayan scientific station. Thus, continuous monitoring of this lake is important in environmental management.

    Water entering the distribution system must be microbiologically safe and should ideally also be biologically stable[9]. Biological stability means that the concentration and composition of the microbial community does not change.In this work, we assessed the biological stability of Uruguay Lake and other freshwater sources near the BCAA by analysis of heterotrophic bacterial plate counts. Heterotrophic bacteria use organic carbon sources to grow and they can be isolated on agar-based medium under conditions of defined incubation temperature and time[10]. In water (where the input of organic matter is important), heterotrophic bacteria play an important role during the decomposition of organic matter, and they are highly affected by abiotic stresses[8]. Heterotrophic bacteria are found in all sources of water, and thus they are important microbiological indicators of water quality[11]. The assessment of heterotrophic populations is a useful tool for monitoring the efficiency of water treatment processes and water quality during distribution and storage.

    Among heterotrophic bacteria, the genusPseudomonasis routinely enumerated during the control of water quality,and is considered a microbial indicator by the World Health Organization (WHO)[12-13].Pseudomonasabundance in water is required information during water analysis because these species are able to inhibit the growth of some other heterotrophic bacteria (such as fecal coliforms).Pseudomonasspp. are also considered opportunistic pathogens when found in drinking water, but there is no clinical or epidemiological evidence to support this affirmation[14].

    In the present work, we investigated the abundance of heterotrophic bacteria and fluorescentPseudomonasspp.over 5 years (2010-2014) in water samples collected near the BCAA, Fildes Peninsula, King George Island, Antarctica. We attempt to correlate bacterial abundance and anthropogenic influence.

    2 Materials and methods

    2.1 Source of samples

    Water samples were collected at various locations near the BCAA during January (austral summer) in consecutive years from 2010 to 2014 (Table 1 and Figure 1). Locations were selected based on their relative anthropogenic impact.The human impact was assessed based on the occurrence of human activities in the area. Uruguay Lake (medium to high human impact) is the water resource of the BCAA where the water pump is located and is a site of high human transit (BCAA personnel activate the pump at least twice a day). Northwest from the Uruguay Lake, three small waterponds are found (low to medium human impact) and they are subjected to low human transit (casual transit of personnel).Finally, the protected area under the Collins Glacier, where meltwater was collected, is far away from the BCAA and other operational bases (low to no human impact). At least three sites were sampled per location (separated by 100 m),and each sampling was performed in triplicate. Coordinates for each site were fixed by GPS.

    Samples were aseptically collected at 10-20 cm from the water surface in sterile tubes and kept at 4°C until processing. Some physical and chemical properties of the water samples (pH, temperature and conductivity)were measuredin situduring sampling. A LaMotte tracer measurement device for direct recording of physical properties of water was used.

    2.2 Bacterial count

    Water samples were filtered through sterile Whatman No. 1 cellulose filter paper (Millipore) and then used for microbiological analysis using a culture dependent approach. Two growth media were used: (1) Tryptic soy broth agar (TSA) plates (0.1% tryptic soy broth and 1.5%agar) for counting total aerobic heterotrophic bacteria; (2)King’s B medium (2% peptone mixture, 0.15% dipotassium phosphate, 0.15% magnesium sulfate, 1% glycerol and 1.5% agar) for fluorescentPseudomonasspp. detection(fluorescence under ultraviolet light)[15]. Colony forming units (CFU) per mL of sample were determined by spreadingserial 10-fold dilutions of samples onto the surfaces of both media (at least in triplicate). Plates were incubated at 4°C for 8 and 20 d for fluorescentPseudomonasspp. and total heterotrophic bacteria, respectively.

    Table 1 Locations of fresh water sampling. Three GPS locations per geographic location were fixed, but the coordinates of only one point are shown

    2.3 Statistical analyses

    Results are the mean of three independent replications. The data were subjected to one-way ANOVA analysis when possible, withpost hocpairwise comparisons based on Tukey’s HSD test, or Kruskal-Wallis one-way analysis of variance, using PAST software version 1.56[16]. Statistical significance was determined atp= 0.05.

    3 Results and discussion

    An overview of results using a non-parametric statistical test shows significant differences in both bacterial populations, i.e.of total heterotrophic bacteria andPseudomonas, between years and between sampled sites (Table 2). The variation in the number of heterotrophic bacteria andPseudomonasspp.in fresh water was in the order of 101(e.g., 104-105mL-1for water-pond samples collected in 2012). Bacterial counts are highly variable and depend on many factors. However,changes in the microbial component of water samples have been studied by quantifying bacterial and viral numbers before, with similar range count variations[17-18].

    Among sampled sites, and despite some statistical differences, the Uruguay Lake was the most consistent site (Table 2), suggesting that the number of heterotrophic bacteria in the lake did not change over the duration of this study. Similar results were obtained when studying the bacterial community in water samples collected inside, and in the vicinity of, the Chinese Great Wall Station, King George Island[19]. However, a comparison among samples from different years showed a remarkable change in the bacterial population of Uruguay Lake in 2013, which decreased with respect to 2011 and 2012, and then increased in 2014.Interestingly, during the summer month of January 2013, the lake was almost totally melted. Changes in physical properties of the water were also evident; in that year the lowest temperature and conductivity in this study were noted (Table 3). The variation in conductivity (24 and 130 μS?cm-1in 2013 and 2014, respectively; Table 3) may indicate a melting process that diluted the bacterial number to a minimum value in 2013, which would explain the lower levels of bacterial populations detected.

    Despite the relative invariability of bacterial population levels in Uruguay Lake, the number of bacteria in water samples collected from the water-ponds (near Uruguay Lake)and from Glacier Collins did change over the years studied(Table 2). The heterotrophic bacterial andPseudomonaspopulations gradually increased until, in 2014, reaching values even higher than those obtained for Uruguay Lake samples.

    Physico-chemical properties of the aquatic ecosystems near the BCAA were also monitored for the 5 years of this study to determine the effects of human activities. Variations in the physico-chemical parameters were observed from site to site and between years (Table 3). This was in agreement with previous work that reported the connection between human activities and physicochemical parameters of water[20].Human activities have a great influence on the pollution of water bodies, and can alter the physical, chemical andbiological nature of the receiving water[21-23]. For example,temperature affects the solubility of oxygen in water and,therefore, the organisms that live there, and biological oxygen demand has been correlated with the cleanliness of water[20].The variations in levels of most of the physico-chemical parameters tested here could be attributed to human activities in the BCAA.

    Table 2 Bacterial counting. The table shows the results from one of three independent experiments. Different superscript letters indicate significant differences among years within each sample site (p < 0.05)

    Table 3 Physical and chemical properties of freshwater in water samples over the years monitored. Values are the average of three measurements. ND means “not determined”

    The physical parameters of fresh water from Uruguay Lake and the water-ponds differed from Glacier Collins samples, which had colder and more alkaline water. The most distinct year was 2013, when a drastic decrease in temperature was registered in the three sites evaluated, and an increase in conductivity was observed in water from Collins Glacier and the water-ponds. These and other parameters (carbon and phosphorous contents, etc) might be involved in the gradual change of cultivable heterotrophic bacterial counts observed during the 5 years monitoring. Heterotrophic bacteria are also abundant in melted ice[24].

    Many Antarctic microbial communities are potentially sensitive to external impacts[25]. Thus, understanding the impact that anthropogenic activities have on these communities is of major relevance. We performed a time course analysis of the cultivable heterotrophic bacterial communities present in three water bodies subjected to different human impacts. Physical (e.g., abrasion, compaction,trampling) and chemical (e.g., eutrophication, fuel spills,waste management) impacts of human beings on Antarctic environments have been considered the most damaging factors that affect this habitat. However, human activities also significantly affect the environment by contamination with non-indigenous microorganisms such as human commensal and fecal microorganisms[25]. Global climate change also has the potential for dramatic impact on these environments(with an increase of 1.09°C per decade during winter and 0.56°C per decade annually), but during the time course of our analysis it may be unwise to assume any climate change effect. However, during the period of our analysis, the human disturbance caused by scientific station personnel may have been among the most significant environmental threats to the Fildes Peninsula, as was stated by Braun et al.[26]when monitoring human impacts on the Antarctic habitat.

    4 Conclusion

    Our results suggest that samples from Uruguay Lake (the most human transited location, where BCAA personnel drive the water pumps every day) have reached a constant heterotrophic bacterial abundance. The human impact on this lake may not have an important influence on incidence in microbial communities in the future if BCAA personnel continue applying protocols for environmental care.However, the water ponds and melt water from Glacier Collins showed an increased heterotrophic bacterial abundance during the time of our study. These areas are being subjected to increasing human influence, and this presence is probably currently shaping their microbial populations.However, these populations may have reached equilibrium,since samples from all locations monitored reached similar CFU?mL-1values in 2014.

    1 Quesada A, Vincent W F. Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol, 1997, 32(4): 335-342

    2 Martínez-Rosales C, Castro-Sowinski S. Antartic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res, 2011, 30: 7123

    3 Frenot Y, Chown S L, Whinam J, et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev, 2000, 80(1):45-72

    4 Tin T, Fleming Z L, Hughes K A. Impacts of local human activities on the Antarctic environment. Antarct Sci, 2006, 21(1): 3-33, doi:10.1017/S0954102009001722

    5 Convey P, Lebouvier M. Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc R Soc Tasmania,2009, 143(1): 33-44

    6 Cowan D A, Chown S L, Convey P, et al. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol, 2011, 19(11): 540-548, doi: 10.1016/j.tim.2011.07.008

    7 Vincent W F. Evolutionary origins of Antarctic microbiota: invasion,selection and endemism. Antarct Sci, 2000, 12(3): 374-385

    8 Bastardo A, Bastardo H, Rosales J. Functional diversity of the heterotrophic bacteria in the lower Orinoco river, Venezuela.Ecotropicos, 2007, 20(1): 15-23

    9 World Health Organization (WHO). Guidelines for drinking-water quality: incorporating first addendum. Vol. 1, Recommendations, third ed. Geneva, Switzerland: WHO Press, 2006

    10 Allen M J, Edberg S C, Reasoner D J. Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol, 2004, 92(3): 265- 274

    11 Miravent M E. Abundancia, actividad y diversidad de las bacterias heterótrofas en el Golfo de Batabanó y su uso como indicadoras ambientales. Dissertation, Ministerio de Ciencia, Tecnología y Medio Ambiente, Ciudad Habana, 2003

    12 Martin Delgado M M, Hernández García A M, Felipe Hormigo A M,et al. Analisis microbiologico y fisicoquimico del agua de piscinas de la isla de Tenerife. Rev San Hig Púb, 1992, 66: 281-289

    13 Mora-Alvaradp D A. Evolución de las guías microbiológicas de la OMS para evaluar la calidad del agua para consumo humano:1984-2004. Dissertation, Instituto costarricense de acueductos y alcantarillados, 2005

    14 Marchand E O. Microorganismos indicadores de la calidad del agua de consumo humano en Lima metropolitana. Lima Perú: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Biológicas,2002

    15 Johnsen K, Nielsen P. Diversity of Pseudomonas strains isolated with King’s B and Gould’s S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterization. FEMS Microbiol Lett, 1999, 173(1): 155-162

    16 Hammer ?, Harper D, Ryan P. PAST: paleontological statistic software package for education and data analysis. Palaeontol Electron,2001, 4: 9

    17 Ruiz G M, Rawlings T K, Dobbs F C, et al. Global spread of microorganisms by ships. Nature, 2000, 408(6808): 49-50

    18 Drake L A, Choi K H, Ruiz G M, et al. Global redistribution of bacterioplankton and virioplankton communities. Biol Invasions,2001, 3(2): 193-199

    19 Xiao X, Li M G, You Z Y, et al. Bacterial communities inside and in the vicinity of the Chinese Great Wall Station, King George Island,Antarctica. Antarct Sci, 2007, 19(1): 11-16

    20 Izonfuo L W A, Bariweni A P. The effect of urban runoff water and human activities on some physic-chemical parameters of the epie creek in the Niger Delta. J Appl Sci Environ Mgt, 2001, 5(1): 47-55

    21 Sangodoin A Y. Groundwater and surface water pollution by open refuse dump in Ibadan, Nigeria. J Discovery Innovations, 1991, 3(1):24-31

    22 Adekunle A S, Eniola I T K. Impact of industrial effluents on quality of segment of Asa River within an industrial estate in Ilorin, Nigeria.NY Sci J, 2008, 1(1): 17-21

    23 Ewa E E, Iwara A I, Adeyemi J A, et al. Impact of industrial activities on water quality of Omoku Creek. Sacha J Environ Studies, 2011,1(2): 8-16

    24 Junge K, Imhoff F, Staley T, et al. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol, 2002, 43(3): 315-328, doi:10.1007/s00248-001-1026-4

    25 Cowan D A, Tow L A. Endangered Antarctic environments. Ann Rev Microbiol, 2004, 58: 649-690

    26 Braun C, Mustafa O, Nordt A, et al. Environmental monitoring and management proposals for the Fildes Region, King George Island,Antarctica. Polar Res, 2012, 31: 18206

    网址你懂的国产日韩在线| 亚洲成a人片在线一区二区| 亚洲av.av天堂| 色在线成人网| av天堂在线播放| 人人妻人人澡欧美一区二区| 日韩人妻高清精品专区| 在线观看免费视频日本深夜| 亚洲精品一卡2卡三卡4卡5卡| av在线亚洲专区| 特级一级黄色大片| 亚洲人成网站在线观看播放| 国产大屁股一区二区在线视频| 国内精品久久久久精免费| 中出人妻视频一区二区| 91精品国产九色| 亚洲图色成人| 亚洲人成网站高清观看| 麻豆一二三区av精品| 亚洲丝袜综合中文字幕| 91狼人影院| 99久久精品一区二区三区| 如何舔出高潮| 精品99又大又爽又粗少妇毛片| 又爽又黄a免费视频| 久久久久精品国产欧美久久久| 可以在线观看的亚洲视频| 一级黄片播放器| 欧美极品一区二区三区四区| 免费看av在线观看网站| 亚洲av不卡在线观看| 久久久久久久久久久丰满| 天堂网av新在线| 真人做人爱边吃奶动态| 小蜜桃在线观看免费完整版高清| a级一级毛片免费在线观看| 成人高潮视频无遮挡免费网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲性久久影院| 久久鲁丝午夜福利片| 国产黄片美女视频| 插逼视频在线观看| 婷婷精品国产亚洲av在线| 国产av在哪里看| 永久网站在线| 欧美一区二区精品小视频在线| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 亚洲av.av天堂| or卡值多少钱| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| 秋霞在线观看毛片| 久久精品国产鲁丝片午夜精品| 欧美潮喷喷水| 久久久久国产网址| 国产视频一区二区在线看| 亚洲一区二区三区色噜噜| ponron亚洲| 色噜噜av男人的天堂激情| 国产成年人精品一区二区| 九色成人免费人妻av| 中国国产av一级| 天天躁日日操中文字幕| 亚洲四区av| 亚洲精品456在线播放app| 最近最新中文字幕大全电影3| 国产欧美日韩精品一区二区| 小蜜桃在线观看免费完整版高清| 午夜视频国产福利| 国语自产精品视频在线第100页| 九九在线视频观看精品| 国产高清视频在线播放一区| 搡老岳熟女国产| 波多野结衣高清作品| 露出奶头的视频| 日本一二三区视频观看| 亚洲国产精品成人久久小说 | 99在线人妻在线中文字幕| 国产黄色小视频在线观看| 久久韩国三级中文字幕| 亚洲av免费高清在线观看| 最近的中文字幕免费完整| 干丝袜人妻中文字幕| 又爽又黄a免费视频| 日韩成人伦理影院| 精品福利观看| 国产午夜福利久久久久久| 91久久精品电影网| 蜜臀久久99精品久久宅男| 国产不卡一卡二| 深夜精品福利| 偷拍熟女少妇极品色| 久久综合国产亚洲精品| 亚洲高清免费不卡视频| 在线免费观看不下载黄p国产| 午夜精品国产一区二区电影 | www.色视频.com| 亚洲18禁久久av| a级毛片a级免费在线| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 麻豆成人午夜福利视频| av在线播放精品| 久久午夜亚洲精品久久| 麻豆av噜噜一区二区三区| 又爽又黄a免费视频| 尾随美女入室| 人妻夜夜爽99麻豆av| av天堂在线播放| 在线免费观看的www视频| 69人妻影院| 日韩 亚洲 欧美在线| 精品久久久久久成人av| 亚洲在线观看片| 欧美+日韩+精品| 欧美+亚洲+日韩+国产| 国产私拍福利视频在线观看| 综合色av麻豆| 97热精品久久久久久| 在线免费观看不下载黄p国产| 国产色爽女视频免费观看| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩东京热| 亚洲中文字幕一区二区三区有码在线看| 免费无遮挡裸体视频| 永久网站在线| 亚洲自偷自拍三级| 精品久久久久久久末码| 免费人成视频x8x8入口观看| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| 亚洲精品亚洲一区二区| 国产一区二区激情短视频| 熟女人妻精品中文字幕| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 看非洲黑人一级黄片| 日韩av在线大香蕉| 校园春色视频在线观看| 免费无遮挡裸体视频| 欧美bdsm另类| 日韩av在线大香蕉| 亚洲久久久久久中文字幕| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区 | 国产乱人视频| 波多野结衣高清作品| 最后的刺客免费高清国语| 级片在线观看| 中文亚洲av片在线观看爽| 美女黄网站色视频| 日韩欧美精品免费久久| 在线播放国产精品三级| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 九九热线精品视视频播放| 国产成人aa在线观看| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 男人舔女人下体高潮全视频| 99久久无色码亚洲精品果冻| 蜜桃亚洲精品一区二区三区| 久久鲁丝午夜福利片| 少妇丰满av| 女人十人毛片免费观看3o分钟| 欧美成人免费av一区二区三区| 成人高潮视频无遮挡免费网站| 国产男靠女视频免费网站| 成人漫画全彩无遮挡| 久久久久性生活片| 午夜免费男女啪啪视频观看 | 最近的中文字幕免费完整| 人人妻人人看人人澡| 两个人的视频大全免费| 亚洲av.av天堂| 给我免费播放毛片高清在线观看| 蜜桃久久精品国产亚洲av| 亚洲最大成人中文| 成人三级黄色视频| 91在线精品国自产拍蜜月| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 久久这里只有精品中国| 亚洲国产精品成人综合色| 91精品国产九色| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 99热6这里只有精品| 亚洲精华国产精华液的使用体验 | 成年版毛片免费区| 大型黄色视频在线免费观看| 色吧在线观看| 天美传媒精品一区二区| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 免费av不卡在线播放| 人人妻人人澡欧美一区二区| 亚州av有码| 亚洲av熟女| 桃色一区二区三区在线观看| 天堂网av新在线| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 少妇丰满av| 淫秽高清视频在线观看| 日本欧美国产在线视频| 性欧美人与动物交配| 中文字幕av在线有码专区| av福利片在线观看| 国产三级在线视频| 麻豆国产97在线/欧美| 欧美zozozo另类| 一进一出抽搐动态| 亚洲国产精品国产精品| 国产成人一区二区在线| 免费在线观看影片大全网站| 最新中文字幕久久久久| 超碰av人人做人人爽久久| 最好的美女福利视频网| 日韩欧美三级三区| 国产精品久久久久久av不卡| 色视频www国产| 国产又黄又爽又无遮挡在线| 内射极品少妇av片p| 91午夜精品亚洲一区二区三区| www.色视频.com| 卡戴珊不雅视频在线播放| 成人鲁丝片一二三区免费| 精品一区二区三区av网在线观看| 国语自产精品视频在线第100页| 色在线成人网| 亚洲av成人av| 精品久久久久久久末码| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 亚洲欧美精品自产自拍| 国产真实伦视频高清在线观看| 九九热线精品视视频播放| 久久午夜亚洲精品久久| 十八禁国产超污无遮挡网站| 欧美日韩综合久久久久久| 男女做爰动态图高潮gif福利片| 免费大片18禁| 最近的中文字幕免费完整| 成人综合一区亚洲| 99视频精品全部免费 在线| 热99在线观看视频| 亚洲内射少妇av| 亚洲国产精品成人久久小说 | 精品人妻熟女av久视频| 久久久久久久久久久丰满| 亚洲成人av在线免费| 搡老岳熟女国产| 欧美日韩乱码在线| 在线免费观看不下载黄p国产| 联通29元200g的流量卡| 国产极品精品免费视频能看的| 成人国产麻豆网| 女人十人毛片免费观看3o分钟| 麻豆av噜噜一区二区三区| 少妇的逼水好多| 国产免费一级a男人的天堂| 日韩欧美一区二区三区在线观看| 一夜夜www| 特大巨黑吊av在线直播| 97超碰精品成人国产| 亚洲美女黄片视频| 最近中文字幕高清免费大全6| 最新在线观看一区二区三区| 亚洲精华国产精华液的使用体验 | 午夜福利高清视频| 午夜a级毛片| 丝袜美腿在线中文| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 大型黄色视频在线免费观看| 久久精品综合一区二区三区| 禁无遮挡网站| 老师上课跳d突然被开到最大视频| 国语自产精品视频在线第100页| av国产免费在线观看| av在线天堂中文字幕| 少妇人妻精品综合一区二区 | 最近2019中文字幕mv第一页| 啦啦啦韩国在线观看视频| 小说图片视频综合网站| 色噜噜av男人的天堂激情| 狂野欧美激情性xxxx在线观看| 别揉我奶头~嗯~啊~动态视频| 久久人妻av系列| 在线天堂最新版资源| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 在线播放无遮挡| av在线观看视频网站免费| 国产精品爽爽va在线观看网站| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 国产成人精品久久久久久| 国产精品国产三级国产av玫瑰| 给我免费播放毛片高清在线观看| 校园春色视频在线观看| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| 久久久国产成人精品二区| 日韩,欧美,国产一区二区三区 | 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 草草在线视频免费看| 69人妻影院| 人妻久久中文字幕网| 久久精品国产亚洲av涩爱 | 日本色播在线视频| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 在线国产一区二区在线| 日本与韩国留学比较| 日韩成人av中文字幕在线观看 | 成人三级黄色视频| 99九九线精品视频在线观看视频| 成人二区视频| 又黄又爽又免费观看的视频| 热99在线观看视频| 久久韩国三级中文字幕| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看 | 日韩一区二区视频免费看| 欧美一区二区精品小视频在线| 噜噜噜噜噜久久久久久91| 国产欧美日韩一区二区精品| 日韩大尺度精品在线看网址| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久| 成人性生交大片免费视频hd| 天堂网av新在线| 看免费成人av毛片| 一进一出好大好爽视频| 俺也久久电影网| 一本精品99久久精品77| 亚洲一区二区三区色噜噜| 精品久久久久久久久av| 秋霞在线观看毛片| 久久久久国产网址| 久久精品久久久久久噜噜老黄 | 亚洲经典国产精华液单| 免费av毛片视频| 给我免费播放毛片高清在线观看| 色尼玛亚洲综合影院| 两个人的视频大全免费| 久久精品综合一区二区三区| 三级毛片av免费| 久久精品国产亚洲av涩爱 | 美女大奶头视频| 免费人成视频x8x8入口观看| 中文字幕免费在线视频6| 久久久久国产精品人妻aⅴ院| 我的女老师完整版在线观看| 久久精品夜色国产| 欧美人与善性xxx| 香蕉av资源在线| 国产成人影院久久av| 看片在线看免费视频| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 亚洲真实伦在线观看| or卡值多少钱| 乱系列少妇在线播放| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 色哟哟·www| 欧美中文日本在线观看视频| 欧美激情国产日韩精品一区| 国产高清激情床上av| 成人av在线播放网站| 真人做人爱边吃奶动态| 少妇被粗大猛烈的视频| videossex国产| 国产欧美日韩精品一区二区| 嫩草影视91久久| 欧美zozozo另类| 老师上课跳d突然被开到最大视频| 一进一出抽搐gif免费好疼| 最近视频中文字幕2019在线8| 国产精品伦人一区二区| av.在线天堂| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 久久人妻av系列| 国产精品无大码| 国产淫片久久久久久久久| 国产亚洲精品av在线| 久久精品国产自在天天线| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 国产高清激情床上av| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 日韩欧美三级三区| 美女高潮的动态| 在线观看免费视频日本深夜| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 国产精品综合久久久久久久免费| 亚洲最大成人av| 直男gayav资源| av在线观看视频网站免费| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 精品国产三级普通话版| 日韩亚洲欧美综合| 国产精品不卡视频一区二区| www.色视频.com| 97超级碰碰碰精品色视频在线观看| 欧美日韩综合久久久久久| 深爱激情五月婷婷| 精品国内亚洲2022精品成人| 看非洲黑人一级黄片| 一进一出抽搐动态| 亚洲av二区三区四区| 久久综合国产亚洲精品| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 男人的好看免费观看在线视频| 午夜免费男女啪啪视频观看 | 免费看日本二区| 欧美区成人在线视频| 在线观看美女被高潮喷水网站| 淫妇啪啪啪对白视频| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 尾随美女入室| 久久精品影院6| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 亚洲欧美日韩东京热| 我的女老师完整版在线观看| 日本一二三区视频观看| 在线播放无遮挡| 国产精品一区二区三区四区久久| 99久国产av精品| 亚洲激情五月婷婷啪啪| 性色avwww在线观看| 欧美+日韩+精品| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 国产成人freesex在线 | 成人综合一区亚洲| www.色视频.com| 亚洲欧美精品综合久久99| 此物有八面人人有两片| 五月玫瑰六月丁香| 久久精品夜色国产| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 成人美女网站在线观看视频| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 亚洲成人av在线免费| 欧美激情在线99| 亚洲人成网站在线观看播放| 亚洲av.av天堂| 亚洲欧美精品综合久久99| 亚洲真实伦在线观看| 男人的好看免费观看在线视频| 亚洲欧美日韩东京热| 哪里可以看免费的av片| 别揉我奶头 嗯啊视频| www日本黄色视频网| 热99re8久久精品国产| 成人av一区二区三区在线看| 亚洲av熟女| av在线亚洲专区| 久久精品影院6| 九九爱精品视频在线观看| 亚洲精品日韩av片在线观看| 99热全是精品| 身体一侧抽搐| 男人的好看免费观看在线视频| 欧美激情国产日韩精品一区| 亚洲精品国产成人久久av| 欧美潮喷喷水| 亚洲综合色惰| 国内久久婷婷六月综合欲色啪| 欧美日韩精品成人综合77777| 午夜精品在线福利| 日本黄色视频三级网站网址| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 亚州av有码| 亚洲在线自拍视频| 美女黄网站色视频| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 成人午夜高清在线视频| av专区在线播放| 十八禁网站免费在线| 直男gayav资源| 日韩精品青青久久久久久| 中国美女看黄片| 又黄又爽又免费观看的视频| 五月玫瑰六月丁香| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 18禁裸乳无遮挡免费网站照片| 伦精品一区二区三区| 露出奶头的视频| 免费观看精品视频网站| 日韩三级伦理在线观看| 丝袜喷水一区| 久久久久久久久久黄片| 午夜精品国产一区二区电影 | 1024手机看黄色片| 亚洲精品一卡2卡三卡4卡5卡| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 哪里可以看免费的av片| 观看免费一级毛片| avwww免费| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 国内精品宾馆在线| 精品一区二区三区视频在线观看免费| 国产精品久久视频播放| 国产成人一区二区在线| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 国产精品,欧美在线| 老司机福利观看| 成人国产麻豆网| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲| 成人二区视频| 看非洲黑人一级黄片| 亚洲国产精品久久男人天堂| 精华霜和精华液先用哪个| 99热全是精品| 国产真实伦视频高清在线观看| 国产69精品久久久久777片| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 久久精品人妻少妇| 国产麻豆成人av免费视频| 午夜福利高清视频| 在线免费十八禁| ponron亚洲| 秋霞在线观看毛片| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 大型黄色视频在线免费观看| aaaaa片日本免费| 精品人妻视频免费看| 免费看av在线观看网站| 亚洲精品成人久久久久久| 午夜精品国产一区二区电影 | 又爽又黄a免费视频| 色综合亚洲欧美另类图片| 久久精品国产鲁丝片午夜精品| 久久中文看片网| 青春草视频在线免费观看| 久久久精品欧美日韩精品| 国产成人freesex在线 | 亚洲色图av天堂| 插阴视频在线观看视频| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| www日本黄色视频网| 色av中文字幕| 久久婷婷人人爽人人干人人爱| 天堂影院成人在线观看| 亚洲av成人av| a级一级毛片免费在线观看| 久久综合国产亚洲精品| 少妇高潮的动态图| 俺也久久电影网| 亚洲人成网站在线播放欧美日韩| 国产淫片久久久久久久久| 国产男靠女视频免费网站| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆 | 日本一二三区视频观看| 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| 亚洲一区二区三区色噜噜| 成人性生交大片免费视频hd| 中文字幕av成人在线电影| 欧美中文日本在线观看视频| 亚洲精品成人久久久久久|