• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network

    2015-02-05 03:30:52XianpingWANGGuishouCAOXiaohuaYANGQianruZHANGKaiLIHongyanLIZeminDUAN
    Agricultural Science & Technology 2015年6期
    關(guān)鍵詞:核桃田間學(xué)報(bào)

    Xianping WANG,Guishou CAO,Xiaohua YANG,Qianru ZHANG,Kai LI,Hongyan LI,Zemin DUAN

    Pomology Institute,Shanxi Academy of Agricultural Sciences/Shanxi Provincial Key Laboratory of Fruit Germplasm Innovation and Utilization,Taiyuan 030031,China

    Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network

    Xianping WANG,Guishou CAO,Xiaohua YANG,Qianru ZHANG,Kai LI,Hongyan LI,Zemin DUAN*

    Pomology Institute,Shanxi Academy of Agricultural Sciences/Shanxi Provincial Key Laboratory of Fruit Germplasm Innovation and Utilization,Taiyuan 030031,China

    The excessive staminate catkin thinning(emasculation)of proterandrous walnut is an important management measure for improving yield.To improve the excessive staminate catkin thinning efficiency,the model of quadratic polynomial regression equation and BP artificial neural network was developed.The effects of ethephon,gibberellin and mepiquat on shedding rate of staminate catkin of proterandrous walnut were investigated by modeling field test.Based on the modeling test results,the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established,and it was validated by field test next year.The test data were divided into training set,validation set and test set.The total 20 sets of data obtained from the modeling field test were randomly divided into training set(17)and validation set(3)by central composite design(quadric rotational regression test design),and the data obtained from the next-year field test were divided into the test set.The topological structure of BP artificial neural network was 3-5-1.The results showed that the prediction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1%and 0.353 8%,respectively;the difference between the predicted value by the BP neural network and validated value by field test was 2.04%,and the difference between the predicted value by the regression equation and validated value by field test was 3.12%;the prediction accuracy of BP neural network was over 1.0%higher than that of regression equation.The effective combination of quadratic polynomial stepwise regression and BP artificial neural network will not only help to determine the effect of independent parameter but also improve the prediction accuracy.

    Walnut;Staminate catkin of walnut(SCW);Thinning;BP artificial neural network;Regression;Prediction

    W alnut(Juglans regia)originated in China.Scientific investigation and geological excavations have proven that more than 2 500 years ago or in earlier period,there had been six walnut species. China is one the world’s three major centers of origin of walnut.In the 1st-2ndcentury,the economic cultivation of walnut appeared.A total of 380 walnut germplasms have been identified[1], and they are widely distributed in the northwestern,northern and eastern provinces.The acreage and yield of walnut in China all rank first in the world.In 2010,the harvested acreage of walnut was about 300 000 hm2,and the yield was about 3 541.2 kg/hm2. Compared with the general yield(6-7 t/hm2)of walnut in America,the gap is very obvious[2].

    Walnut is a monoecious and cross-pollinated plant,including proterandrous and protogynous types.

    Materials and Methods

    Field test

    The test was carried out in the Pomology Institute of Shanxi Academy of Agricultural Sciences in 2004.The tested walnut species was 28-year-old Liaohe No.1.According to the design requirements by BP neural network, the field tests were divided into BP modeling test and BP model validating test.Based on the competition of BP modeling test,the validating test was carried out next year.The substances used for emasculation included 95% ethephon(Eth),99%gibberellin(GA) and 95%mepiquat(Pix).

    Design and conducting of mathematical modeling testThe test adopted the quadratic general rotary utilized design of central composite design(CCD).A total of 3 factors,5 levels and 20 test combinations were designed.Based on X1(Eth),X2(GA), X3(Pix)and effective concentration ranges of ethephon,gibberellin and mepiquat,the encoding was performed using linear transformation according to following equations(Table 1):

    Wherein,Z2j,Z1jand Z0jrepresent the upper,lower and zero levels of each factor;△j and R represent the variation interval and asterisk arm value of each tested factor.

    The test was carried out in Jinzhong at the expanding-elongation phase of staminate catkin of walnut. The walnut branches with uniform growth were selected.The test adopted the randomized block design. There were 3 replicates for each test combination,and there were 80-120 male flowers in each replicate.After a 24-h treatment,the shedding rate of staminate catkin in each test combination was investigated day by day in the first 5-7 d.The effect of each test treatment was expressed as the average shedding rate of staminate catkin.

    Design and conducting of mathematical model validation test

    Based on the modeling test,the model validating test was carried out next year.The tested material,test location and investigation method were all as described above.According to the need to retain an appropriate proportion of staminate catkin and the results of modeling test,the shedding rate of staminate catkin of walnut was controlled in the range of 85%to 95%.The water treatment was treated as CK. The encoded values of X1,X2,X3were 0.087 9,-0.504 5 and 0.025 6,respectively.

    Design of BP artificial neural network

    Constitution of training set,validation set and test set of BP neural networkAccording to the requirements by BP neural network design, all the test data obtained from the 2-year field tests were divided into training set,validation set and test set. The 20 set of data obtained by BP modeling test were divided into training set and validation set.The training set was composed of 17 sets of data,and the validation set was composed of 3 sets of data.All the 3 sets of data obtained by BP model validating test in the next year were divided into the test set.

    Topological constitution of BP neural networkThe BP neural network was composed of input layer,output layer and hidden layer.The number of nodes in the input layer was the number of tested factors(n=3);and the number of nodes in the output layer was the number of response index (m=1);the number of nodes in the hidden layer was determined by comparing the effects of different network parameters on fitting residual.

    Analysis and calculation of test results

    The quadratic polynomial regression analysis of test results,the analysis of test results by BP neural network model and the generation of figures and tables were all performed using the DPS 14 software.The prediction error of different model was calculated according to the following formula:

    Results and Analysis

    Test results

    The effects of various tested factors(X1,X2,X3)and treatment combinations on shedding rate of staminate catkin of walnut(Y,%)were shown in Table 2.For the central composite design,the change range of average staminate catkin shedding rate of walnut reached 24.29%.So it was indicated that the results of field test were affected by a variety of factors.

    Regression analysis of test results

    In accordance with Table 1,the tested factors of X1,X2,X3were treated as independent variables,and the average staminate catkin shedding rate of walnut was treated as dependent variable.Then the quadratic polynomial stepwise regression analysis was performed. The obtained mathematical regression formula of the objective function was as follows:

    The values of multiple correlation coefficient(R),determination coefficient(R2),residual standard deviation (SSE),adjusted correlation coefficient(Ra)and adjusted determination coefficient(Ra2)were 0.909 869, 0.827 862,11.826 6,0.865 109 and 0.748 414,respectively.

    As shown in the mathematical regression model of the objection function,after the stepwise regression analysis and calculation,the X2was deleted in the linear term and quadratic term,indicating that the X2only played a meaningful role in the interaction.

    In the mathematical regression model,the action coefficients of various tested factors were analyzed.The results showed that the regression coefficient b1of linear term X1was>0; the regression coefficient b3 of linear term X3was<0;the regression coefficient of quadratic term X32was<0; among the interaction terms,the b13>b12>b23.It suggested that among the linear terms and interaction terms,the X1and X3play major roles.Their main effects and interaction effect were shown in Fig.1 and Fig.2.

    In a given range(R),the step size of X1,X2and X3was all assigned as 1, and the objective function(y)was assigned between 85%and 95%.According to the mathematical model,a total of 125 combination programs were obtained.Among them,a total of 23 combinations were in line with the given intervals of the objective function.The statistics results of frequency analysis can provide a reference for production practice.

    Analysis of test results using BP artificial neural network model

    Determination of parameters of BP artificial neural network model

    The BP neural network was composed of three layers,including input layer, output layer and hidden layer.After comparing the effects of different network structures and parameters on the fitting residuals of training samples,the topological structure of 3-5-1 was selected for the BP neural network.The raw data was normalized and then iteratively trained 1 000 times,and the fitting residual was 0.002 205 450 385 154 9.The fitting results by the BP neural network were analyzed(Table 3),and the results showed that the fitting residual of the BP neural network met the requirements by this test.

    Comparison of application effect between quadratic regression model and BP neural network modelThe investigation results of staminate catkin shedding rate of walnut in validating field test(Table 4)showed that large amounts of male flowers fell off on the 4thd after the test treatment. The average shedding rate reached 84.08%,which was increased by over 70%compared with that of the CK, meeting the requirements by control target(85%-95%).

    The predicted values by the regression equation and BP neural network and the results of validating field test were compared(Table 5).It showed that the difference between the predicted value by BP neural network and the actual value in field testwas 2.04%,and the difference between the predicted value by regression equation and the actual value in field test was 3.12%.The prediction accuracy of BP neural network was over 1.0%higher than that of regression equation.

    Table 1Types,concentrations and encoding schemes of substances used for emasculation of walnut mg/kg

    Table 2Test programs and test results

    Table 3Simulation validation of BP neural network structure%

    Table 4Shedding rates of staminate catkin of walnut in validating field test%

    Table 5Comparison of shedding rate of staminate catkin among regression prediction,BP prediction and validating field test

    Discussion

    During the rapid growth and numerous blooming of staminate catkin of proterandrous walnut,the female flower development is at a critical stage.The consumption of large quantities of nutrients and moisture by staminate catkin affects the development and fruit setting of female flowers.Moreover,walnut has large amounts of male flowers with large amounts of pollens,and the male flowers are all long-distance transmitted wind-pollinated flowers.However, 90%of the male flowers of walnut are invalid.Zhao et al.[21]found that removing 90%of the male flower buds at the germination phase or removing 60%and 90%of the male flower buds at the elongation period,along with fertilization at the flowering stage, could significantly improve the fruit setting rate,thereby improving yield. Zhang et al.[22]conducted a test in Yangbi County,Yunnan Province.The results showed that after the excessive staminate catkin in walnut was thinned,the female flowers obtained more nutrients,so their development and fruit setting were improved.Compared with that of the control,the fruit setting rate of the treatment group was increased by 12%-17%.But so far, manual operation is still the main method of walnut emasculation.According to the survey,the 18-year-old walnut tree has around 2 000 male flowers,and the 70-80-year-old walnut tree has about 3 150 male flowers, sometime even up to 12 741.Even worse,the duration suitable for walnut emasculation usually lasts for only 7-10 d in spring.Therefore,in the production and management of walnut, there are rare orchards which carry out excessive staminate catkin thinning.In 1996,some domestic scholars used alcohol for excessive staminate catkin thinning in walnut,and up to 51.1%of the male flowers had been thinned. Wang et al.[3]applied the ethephon in the walnut emasculation,and they carried out validating field test the following year and validated the feasibility of the technique.They pointed out that under the premise of saving the cost of production,in accordance with the appropriate mathematical model, the balanced combination of the 2 kinds of chemicals with growth-inhibiting effect and shedding effect is entirely feasible for walnut emasculation.

    The classical mathematical theory points out that when the regression equation is significant,the difference between the predicted value and actual value is not only related to the adopted statistical significance level and adopted sample size for statistical analysis but also related to the value of observation point.In general,only when the value of observation point is near the average value of observation points,the prediction makes sense. Moreover,the value of observation point must be in the sampling range for fitting regression equation,and cannot be extrapolated.The studies and practices have all shown that the prediction,application and analysis of mathematical model widely used by regression analysis can not go beyond the restriction of original data and the background conditions generated by original data,such as varieties,culti-vation and management technical measures and ecological environment. On one hand,the statistical model is established based on a large amount of data or test model.In the case of that the test data is less than that required by modeling,the modeling cannot be completed or the established model is out of work.Even under the condition of same basic data,the regression analysis results are usually different,or even differ significantly due to different mathematical models adopted for regression analysis.On the other hand,some undesirable accidents often occur in actual agricultural production,and traditional mathematical methods are difficult to describe the complex system of agricultural production.Therefore,only the appropriate selection and utilization of mathematical method can relatively accurately reflect the practical features of large agricultural production system.

    After decades of research,BP neural network has around widespread attention due to it being able to solve complex nonlinear function approximation problem.It has been demonstrated that the three-layer forward network(including a hidden layer)can approximate any multivariate function.During the application, the network layers,each neuron number,fitting error,learning rate and sample data all should be determined according to the specific circumstances[11].Yi et al.[9]pointed out that although the overall prediction effect of regression analysis is relatively ideal, the prediction effect of BP neural network is very satisfactory.Yao et al.[23]fount that the BP neural network model had a strong learning ability.When the human activities or environment factors were greatly changed,it does not require special tests and identification parameters;the new information is only needed to be input and retrained,thus the changes in the system all can be tracked.However,BP neural network also has defects of slow convergence of learning process, poor global search ability,easy falling into local minimum,poor robustness and poor network performance[13]. Moreover,the personal experience and subjective judgements of data processor play an important role.This effect is produced not only on the design of network topology but also on the selection of network training sample data,selection of training parameters and comparison of error.In addition,the selection of samples for the training process of BP neural network has great effect on model determination and predictive application.So the intrinsic characteristics and laws of overall samples must be taken into account[24].The network training sample data includes the results obtained by complete design[17],orthogonal design[19],composite design[18]and surface design[16],as well as the accumulated observation(survey)data.Li et al.[25]pointed out that under the premise of large sample size,the accuracy of training results of BP neural network is higher than those of other mathematical models.The small sample size in researches and relatively insufficient training samples in the training all have certain effect on the prediction accuracy.In this study,the data was composed of training sample(17), model input(3)and model output(1), and the appropriate training parameters were selected.The overfitting and overtraining of the model were avoided,meeting the requirements by predictive application.

    Conclusions

    The quadratic polynomial stepwise regression analysis is adopted for the field test results.Thus the minor factors can be removed,but the important factors affecting the objective function can be retained.In addition, through analyzing the main effects, quadratic effects and interaction effects of important factors,the practical utilization value of the mathematical model is cleared.

    In the premise of no requirements for establishing complex mathematical models and analyzing effects of various factors,the BP neural network model can get relatively accurate predictions by determining the reasonable network structure and training parameters.

    The effective combination of quadratic polynomial stepwise regression analysis and BP artificial neural network not only can determine the effects of various factors but also can obtain relatively accurate predictions.

    [1]XI RT(郗榮庭),ZHANG YP(張毅萍). Chinese Fruit Trees:Walnut(中國果樹志核桃卷)[M].Beijing:China Forestry Publishing House(北京:中國林業(yè)出版社),1996.

    [2]PAN YH(潘月紅),ZHOU AL(周愛蓮). Analysis of the development status, prospects and countermeasures of Chinese walnut industry(中國核桃產(chǎn)業(yè)發(fā)展現(xiàn)狀前景及對策分析)[J].Food and Nutrition in China(中國食物與營養(yǎng)), 2012,18(5):22-25.

    [3]DUAN ZM(段澤敏),WANG XP(王賢萍), CAO GS(曹貴壽).Chemical male flower thinning technique in walnut(核桃化學(xué)去雄技術(shù)研究)[J].Journal of Shanxi Agricultural sciences(山西農(nóng)業(yè)科學(xué)), 2005,33(1):39-42.

    [4]REN GW(任廣偉),WANG FL(王鳳龍), GAO HJ(高漢杰),et al.Applying BP neural network to predict tobacco virus diseases transmitted by aphids(BP神經(jīng)網(wǎng)絡(luò)在煙草蚜傳病毒病預(yù)測中的應(yīng)用) [J].Acta Tabacaria Sinica(中國煙草學(xué)報(bào)),2004,10(4):23-26.

    [5]HU XP(胡小平),YANG ZW(楊之為),LI ZQ(李振岐),et al.Prediction of wheat strip rust in Hanzhong area by BP neural network(漢中地區(qū)小麥條銹病的BP神經(jīng)網(wǎng)絡(luò)預(yù)測)[J].Acta Agriculturae Boreali-Occidentalis Sinica(西北農(nóng)業(yè)學(xué)報(bào)),2000,9(3):28-31.

    [6]ZHOU M(周曼),ZHOU MQ(周明全).Automatic rice pest insects regognition based on BP neural network(基于BP神經(jīng)網(wǎng)絡(luò)的水稻害蟲自動識別)[J]. Journal of Beijing Normal University (Natural Sciences)(北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版)),2008,44(2):165-167.

    [7]HU XP(胡小平),LIANG CH(梁承華), YANG ZW(楊之為),et al.Development and application of the BP neural network rediction system on plant diseases and pests(植物病蟲害BP神經(jīng)網(wǎng)絡(luò)預(yù)測系統(tǒng)的研制與應(yīng)用)[J].Journal of Northwest Agriculture&Forestry University(Natural Sciences)(西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版)),2001,29(2): 73-76.

    [8]HAN L(韓磊),LI R(李銳),ZHU HL(朱會利).Comprehensive evaluation model of soil nutrition based on BP neural network(基于BP神經(jīng)網(wǎng)絡(luò)的土壤養(yǎng)分綜合評價(jià)模型)[J].Transactions of the Chinese Society of Agricultural Machinery (農(nóng)業(yè)機(jī)械學(xué)報(bào)),2011,42(7):109-115.

    [9]YI XS(易湘生),LI GS(李國勝),YIN YY (尹衍雨).Establishment and comparison of pedotransfer functions of soil moisture constant in the Three-River Headwaers Region of Qinghai Province (青海三江源地區(qū)土壤水分常數(shù)轉(zhuǎn)換函數(shù)的建立與比較)[J].?Chinese Journal of Eco-Agriculture(中國生態(tài)農(nóng)業(yè)學(xué)報(bào)),2012,20(8):1096-1104.

    [10]LI S(李珊),MA LL(馬麗麗),GE CX(賀超興),et al.Simulation study between water evaporation of cultivation substrate and environmental factor of greenhouse(溫室栽培基質(zhì)耗水量與環(huán)境因子相關(guān)性的研究)[J].Chinese A-gricultural Science Bulletin(中國農(nóng)學(xué)通報(bào)),2011,27(8):144-149.

    [11]ZHANG B(張兵),YUAN SQ(袁壽其), CHENG L(成立),et al.Model for predicting crop water requirements by using L-M optimization algorithm BP neural network(基于L-M優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)的作物需水量預(yù)測模型) [J].Transactions of the CSAE(農(nóng)業(yè)工程學(xué)報(bào)),2004,20(6):73-76.

    [12]NIU ZX(牛之賢),LI WP(李武鵬), ZHANG WJ(張文杰).Prediction of grain yield using AIGA-BP neural network(基于AIGA-BP神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量預(yù)測研究)[J].Computer Engineering and Applications(計(jì)算機(jī)工程與應(yīng)用),2012,48(2):235-237.

    [13]SU B(蘇博),LIU L(劉魯),YANG FT(楊方廷).Comparison and research of grain production forecasting with methods of GM(1,N)gray system and BPNN(GM(1,N)灰色系統(tǒng)與BP神經(jīng)網(wǎng)絡(luò)方法的糧食產(chǎn)量預(yù)測比較研究)[J]. Journal of China Agricultural University (中國農(nóng)業(yè)大學(xué)學(xué)報(bào)),2006,11(4):99-104.

    [14]MOSTAFA KHAJEH,MANSOUR GHAFFARI MOGHADDAM,MOHAMMAD SHAKERI.Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction[J].Journal of Supercritical Fluids,2012,69:91-96.

    [15]JUN X,XUE YJ,XU YX,et al.Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols[J].Food Chemistry,2013,141(1):320-326.

    [16]KA SINHAA,PAPITA DAS SAHAA, SIDDHARTHA DATTAB.Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind[J].Industrial Crops and Products,2012,37:408-414.

    [17]KOSTIC MILAN D,JOKOVIC NATASA M,STAMENKOVIC OLIVERA S, et al.Optimization of hempseed oil extraction by n-hexane[J].Industrial Crops and Products,2013,48:133-143.

    [18]KEKA SINHA,SHAMIK CHOWDHURY,PAPITA DAS SAHA,et al. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana(Annatto)using response surface methodology(RSM)and artificial neural network(ANN)[J].Industrial Crops and Products,2013,41:165-171.

    [19]ZENG XY(曾祥燕),ZHAO LZ(趙良忠), SHENG Y(盛巖).Optimization of extraction technology of rutin from Sophora japonica based on BP neural network(BP神經(jīng)網(wǎng)絡(luò)優(yōu)化槐花中蘆丁的提取工藝)[J].Natural Product Research and Development(天然產(chǎn)物研究與開發(fā)),2013,25:312-316.

    [20]HAN W(韓偉),XUN XH(孫曉海),LUO WF(羅文峰).Optimization and BP neural network model of extraction of polysaccharide from Albizia julibrissin Durazz(合歡皮多糖提取工藝優(yōu)化及BP神經(jīng)網(wǎng)絡(luò)模型)[J].Journal of Nanjing University of Technology(Natural Sciences)(南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)),2013,35(5):57-62.

    [21]ZHAO ZQ(趙增強(qiáng)).Measures to improving the fruit-setting of walnut grown in Qin-ba Mountains(秦巴山區(qū)提高核桃坐果率的研究)[J].Shaanxi Forest Science and Technology(陜西林業(yè)科技),2009,4:38-39.

    [22]ZHANG HY(張懷玉),ZHANG J(章健). Reason analysis of low yielding of Shangluo walnut and measures to improve yield and efficiency(商洛核桃低產(chǎn)原因分析及增產(chǎn)增效措施)[J].Modern Horticulture(現(xiàn)代園藝),2012,7: 57-58.

    [23]YAO RJ(姚榮江),YANG JS(楊勁松), ZOU P(鄒平),et al.BP neural network model for spatial distribution of regional soil water and salinity(區(qū)域土壤水鹽空間分布信息的BP神經(jīng)網(wǎng)絡(luò)模型研究)[J].Acta Pedologica Sinica(土壤學(xué)報(bào)),2009,46(5):788-794.

    [24]LI X(李向),GUAN T(管濤),XU Q(徐清).The evaluation of soil heavy metal pollution based on the BP neural network:Taking soil environmental quality assessment in Baotou as an example (基于BP神經(jīng)網(wǎng)絡(luò)的土壤重金屬污染評價(jià)方法-以包頭土壤環(huán)境質(zhì)量評價(jià)為例)[J].Chinese Agricultural Science Bulletin(中國農(nóng)學(xué)通報(bào)),2012,28(2): 250-256.

    [25]LI WF(李文峰).Application of BP artificial neural network on prediction of soil water content(BP神經(jīng)網(wǎng)絡(luò)在許昌土壤墑情預(yù)測模型的應(yīng)用)[J].Chinese A-gricultural Science Bulletin(中國農(nóng)學(xué)通報(bào)),2013,29(32):238-241.

    [26]ZAI SM(宰松梅),GUO DD(郭冬冬), HAN QB(韓啟彪),et al.Soil moisture prediction based on artificial neural network model(基于人工神經(jīng)網(wǎng)絡(luò)理論的土壤水分預(yù)測研究)[J].Chinese Agricultural Science Bulletin(中國農(nóng)學(xué)通報(bào)), 2011,27(8):280-283.

    Responsible editor:Tingting XU

    Responsible proofreader:Xiaoyan WU

    雄先型核桃雄花疏除的二次回歸與BP神經(jīng)網(wǎng)絡(luò)模型研究

    王賢萍,曹貴壽,楊曉華,張倩茹,李凱,李鴻雁,段澤敏*
    (山西省農(nóng)業(yè)科學(xué)院果樹研究所/果樹種質(zhì)創(chuàng)制與利用山西省重點(diǎn)實(shí)驗(yàn)室,山西太原030031)

    雄先型核桃雄花疏除(去雄)是提高產(chǎn)量的重要管理措施,為提高核桃去雄的效率,建立二次回歸與BP神經(jīng)網(wǎng)絡(luò)模型。分別以乙烯利、赤霉素和甲哌鎓為自變量和核桃雄花脫落率為響應(yīng)指標(biāo),進(jìn)行田間建模試驗(yàn),建立了二次多項(xiàng)式回歸方程和BP神經(jīng)網(wǎng)絡(luò)模型,并于翌年進(jìn)行BP模型田間確認(rèn)試驗(yàn)。試驗(yàn)數(shù)據(jù)分為訓(xùn)練集、確認(rèn)集和試驗(yàn)集,中心組合(二次旋轉(zhuǎn)回歸試驗(yàn)設(shè)計(jì))田間建模試驗(yàn)得到的20組數(shù)據(jù)隨機(jī)劃為訓(xùn)練集(17)和確認(rèn)集(3)數(shù)據(jù),試驗(yàn)集為翌年田間確認(rèn)試驗(yàn)得到的數(shù)據(jù),BP神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)為3-5-1。①BP神經(jīng)網(wǎng)絡(luò)對確認(rèn)集樣本的預(yù)測值誤差分別為1.3550%、0.4291%、0.3538%;②BP神經(jīng)網(wǎng)絡(luò)的預(yù)測值與田間確認(rèn)試驗(yàn)結(jié)果相差為2.04%,回歸預(yù)測值與田間確認(rèn)試驗(yàn)結(jié)果相差為3.12%;③BP神經(jīng)網(wǎng)絡(luò)預(yù)測比回歸預(yù)測提高預(yù)測精度1.0%以上。將二次多項(xiàng)式逐步回歸分析和BP神經(jīng)網(wǎng)絡(luò)方法有效的結(jié)合使用,既可明確各因子的作用效應(yīng)亦可得到相對準(zhǔn)確的預(yù)測結(jié)果。

    核桃;雄花序;疏除;BP神經(jīng)網(wǎng)絡(luò);回歸;預(yù)測Most of the cultivated walnut species are proterandrous.The excessive staminate catkin thinning(emasculation)is a traditional technique to improve the fruit setting rate and yield.In general,at the germination period, 90%of staminate catkin is removed. Thus the fruit setting rate will be significantly improved,and the yield of walnut will be also increased by over 10%.However,the emasculation of walnut is currently carried out by hand.To improve the excessive staminate catkin thinning efficiency, alcohols were first adopted in 1996 by some Chinese scholars.Wang et al. ever applied the ethephon in the excessive staminate catkin thinning of walnut and established the corresponding mathematical model[3].In recent years,with the rapid development of artificial neural network theory,the BP(back propagation algorithem)neural network has been widely used in the prediction of crop pests and diseases[4-7],soil nutrients and moisture content[8-11]and grain yield[12-13]and optimization of extraction process of plant functional ingredients[14-20].However,the application of BP artificial neural network in the emasculation and standardized cultivation of walnut has not been reported.This study aimed to investigate the BP neural network model of excessive staminate catkin thinning of walnut based on the field test results of walnut emasculation so as to provide technical basis for improving the yield and efficiency of walnut.

    山西省科技廳科技攻關(guān)項(xiàng)目“核桃化學(xué)去雄技術(shù)”(002023)。

    王賢萍(1961-),女,山西祁縣人,研究員,從事農(nóng)產(chǎn)品安全與果品加工研究,E-mail:Wangxpzls@163.com。*通訊作者,研究員,從事果樹栽培生理與果品加工研究,E-mail:duanzmzls@163.com。

    2015-02-10

    修回日期 2015-05-25

    Supported by Key Science and Technology Program of Shanxi Province,China (002023).

    *Corresponding author.E-mail:duanzmzls@163.com

    Received:February 10,2015 Accepted:May 25,2015

    猜你喜歡
    核桃田間學(xué)報(bào)
    春日田間
    田間地頭“惠”果農(nóng)
    小核桃變身“致富果”
    “碼”上辦理“田間一件事”
    田間地頭有了“新綠”
    金橋(2020年9期)2020-10-27 01:59:34
    致敬學(xué)報(bào)40年
    可賞可食可入藥的核桃
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    《深空探測學(xué)報(bào)》
    9热在线视频观看99| 丁香六月天网| 宅男免费午夜| 丝袜人妻中文字幕| 国产精品欧美亚洲77777| 超碰成人久久| 亚洲少妇的诱惑av| 色网站视频免费| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| e午夜精品久久久久久久| 高清不卡的av网站| 亚洲专区中文字幕在线 | av在线播放精品| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 精品卡一卡二卡四卡免费| 欧美日韩亚洲高清精品| 欧美人与善性xxx| 丝袜人妻中文字幕| 天美传媒精品一区二区| 在线亚洲精品国产二区图片欧美| 精品酒店卫生间| 亚洲天堂av无毛| 亚洲国产精品一区三区| 久久久精品区二区三区| 在线精品无人区一区二区三| 最黄视频免费看| 色视频在线一区二区三区| 青春草国产在线视频| 久久久精品免费免费高清| 国产福利在线免费观看视频| 国产精品欧美亚洲77777| 国产精品久久久久久精品电影小说| 一级爰片在线观看| 亚洲国产精品一区二区三区在线| 国产精品免费大片| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 日韩视频在线欧美| 欧美精品一区二区大全| 丰满乱子伦码专区| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 久久精品久久精品一区二区三区| 日韩制服丝袜自拍偷拍| 丝袜美腿诱惑在线| 亚洲国产欧美在线一区| 99九九在线精品视频| 激情视频va一区二区三区| www.精华液| 少妇被粗大猛烈的视频| 久久99一区二区三区| 国产成人精品在线电影| 老汉色av国产亚洲站长工具| 久久天堂一区二区三区四区| 欧美黑人精品巨大| 两个人免费观看高清视频| 欧美黄色片欧美黄色片| 午夜福利免费观看在线| 久久久久精品久久久久真实原创| 欧美乱码精品一区二区三区| 欧美在线黄色| 亚洲一码二码三码区别大吗| 免费久久久久久久精品成人欧美视频| 亚洲一区中文字幕在线| 亚洲精品国产av蜜桃| 黄色视频在线播放观看不卡| 国产日韩欧美亚洲二区| 国产午夜精品一二区理论片| 久久久久久免费高清国产稀缺| 999久久久国产精品视频| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 欧美另类一区| 人妻人人澡人人爽人人| 黄色 视频免费看| 少妇 在线观看| 免费少妇av软件| 19禁男女啪啪无遮挡网站| 久久精品亚洲av国产电影网| 男女高潮啪啪啪动态图| 曰老女人黄片| 欧美av亚洲av综合av国产av | 制服丝袜香蕉在线| 国产精品一国产av| 精品午夜福利在线看| 国产激情久久老熟女| 多毛熟女@视频| 精品福利永久在线观看| 亚洲av成人精品一二三区| 波多野结衣一区麻豆| 最黄视频免费看| 成人国产av品久久久| 一区二区av电影网| 777米奇影视久久| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 在线免费观看不下载黄p国产| 久久精品国产综合久久久| 国产成人a∨麻豆精品| 丁香六月欧美| 中文字幕av电影在线播放| 久久人妻熟女aⅴ| 国产av码专区亚洲av| 久久99一区二区三区| 亚洲精品日韩在线中文字幕| 少妇人妻 视频| 日本vs欧美在线观看视频| 最新在线观看一区二区三区 | a级片在线免费高清观看视频| 80岁老熟妇乱子伦牲交| 国产在线视频一区二区| 精品国产一区二区三区久久久樱花| 亚洲七黄色美女视频| 国产极品天堂在线| 亚洲美女视频黄频| 亚洲成人国产一区在线观看 | 国产av码专区亚洲av| 一区二区三区精品91| 亚洲国产av影院在线观看| 青春草亚洲视频在线观看| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 亚洲av成人精品一二三区| 一本大道久久a久久精品| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 久久久久人妻精品一区果冻| 国产精品久久久久久久久免| 赤兔流量卡办理| 男女午夜视频在线观看| 色播在线永久视频| 欧美人与性动交α欧美软件| 777久久人妻少妇嫩草av网站| 18禁动态无遮挡网站| 午夜免费观看性视频| 五月开心婷婷网| 1024视频免费在线观看| 精品国产一区二区久久| 中文精品一卡2卡3卡4更新| 日日爽夜夜爽网站| 黄色视频在线播放观看不卡| av线在线观看网站| 考比视频在线观看| 狠狠婷婷综合久久久久久88av| 熟女少妇亚洲综合色aaa.| 麻豆精品久久久久久蜜桃| 亚洲成av片中文字幕在线观看| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 国产在线免费精品| 多毛熟女@视频| 老司机靠b影院| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 国产成人欧美| 满18在线观看网站| 最近中文字幕高清免费大全6| 十八禁高潮呻吟视频| 永久免费av网站大全| 91老司机精品| 国产免费又黄又爽又色| 别揉我奶头~嗯~啊~动态视频 | 高清av免费在线| 啦啦啦啦在线视频资源| 国产伦人伦偷精品视频| 黄色怎么调成土黄色| 日本91视频免费播放| a级毛片在线看网站| 久久久久久久精品精品| 国产免费又黄又爽又色| 人人妻人人澡人人看| 成年人午夜在线观看视频| 深夜精品福利| 亚洲av福利一区| 秋霞在线观看毛片| 免费女性裸体啪啪无遮挡网站| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 又大又爽又粗| 高清欧美精品videossex| 黄片小视频在线播放| 日韩不卡一区二区三区视频在线| 免费黄色在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 综合色丁香网| 日韩精品免费视频一区二区三区| 亚洲美女视频黄频| 天堂俺去俺来也www色官网| 国产男女超爽视频在线观看| 9色porny在线观看| 日本欧美视频一区| 哪个播放器可以免费观看大片| 美国免费a级毛片| 蜜桃在线观看..| 日韩制服骚丝袜av| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 咕卡用的链子| 男女床上黄色一级片免费看| 久久久国产一区二区| 美女视频免费永久观看网站| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 日韩一区二区视频免费看| 日韩伦理黄色片| a 毛片基地| 国产一区二区激情短视频 | 桃花免费在线播放| 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看 | 中文字幕最新亚洲高清| 一个人免费看片子| 国产精品一国产av| 最近2019中文字幕mv第一页| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 精品人妻一区二区三区麻豆| 国产 一区精品| 国产精品熟女久久久久浪| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 亚洲欧美色中文字幕在线| 中文欧美无线码| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 国产视频首页在线观看| 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 性色av一级| 最近最新中文字幕大全免费视频 | www.自偷自拍.com| 国产精品国产三级专区第一集| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 国产亚洲最大av| 午夜福利视频在线观看免费| 如日韩欧美国产精品一区二区三区| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区国产| 亚洲精品美女久久久久99蜜臀 | 国产精品99久久99久久久不卡 | 国产老妇伦熟女老妇高清| 五月开心婷婷网| av天堂久久9| 国产一区有黄有色的免费视频| 99精品久久久久人妻精品| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 超色免费av| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| 久久久精品免费免费高清| 亚洲免费av在线视频| 国产精品久久久久久久久免| 亚洲精品,欧美精品| 女性被躁到高潮视频| 国产精品.久久久| 国产人伦9x9x在线观看| 国产日韩欧美亚洲二区| 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲熟妇少妇任你| 伦理电影大哥的女人| 多毛熟女@视频| tube8黄色片| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 亚洲av电影在线进入| 亚洲伊人久久精品综合| 亚洲 欧美一区二区三区| 丰满饥渴人妻一区二区三| 国产成人精品在线电影| 午夜福利视频精品| 国产一区二区激情短视频 | 2018国产大陆天天弄谢| 午夜影院在线不卡| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 91国产中文字幕| 国产精品99久久99久久久不卡 | 日韩中文字幕欧美一区二区 | 欧美另类一区| 日韩一区二区视频免费看| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 哪个播放器可以免费观看大片| 免费黄色在线免费观看| 成人黄色视频免费在线看| 欧美日韩精品网址| 国产福利在线免费观看视频| 国产精品嫩草影院av在线观看| 90打野战视频偷拍视频| 高清av免费在线| 韩国高清视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 久久精品久久久久久噜噜老黄| 老司机深夜福利视频在线观看 | 一本大道久久a久久精品| 国产午夜精品一二区理论片| 欧美日韩福利视频一区二区| av电影中文网址| 80岁老熟妇乱子伦牲交| 婷婷色综合大香蕉| av不卡在线播放| 久久天堂一区二区三区四区| bbb黄色大片| av女优亚洲男人天堂| 久久女婷五月综合色啪小说| av卡一久久| 黄色一级大片看看| 亚洲色图综合在线观看| 大香蕉久久网| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 成年女人毛片免费观看观看9 | 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 国产精品国产av在线观看| 午夜久久久在线观看| 日本欧美视频一区| 国产男女内射视频| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 丝袜喷水一区| 狂野欧美激情性xxxx| av在线app专区| 日本wwww免费看| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 97在线人人人人妻| 国产成人欧美在线观看 | 国产成人精品久久久久久| 一本久久精品| 精品免费久久久久久久清纯 | 巨乳人妻的诱惑在线观看| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲| 色吧在线观看| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| av卡一久久| videos熟女内射| 天天添夜夜摸| 国产亚洲最大av| 人人妻,人人澡人人爽秒播 | 热99久久久久精品小说推荐| 免费观看人在逋| 综合色丁香网| 成年动漫av网址| 操美女的视频在线观看| 97人妻天天添夜夜摸| av有码第一页| 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 日韩一本色道免费dvd| 一级a爱视频在线免费观看| a级毛片在线看网站| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 婷婷色av中文字幕| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网 | 欧美精品一区二区免费开放| 欧美亚洲日本最大视频资源| 成人国产麻豆网| 免费黄网站久久成人精品| 欧美日韩福利视频一区二区| 99久久人妻综合| 日本vs欧美在线观看视频| 国产日韩欧美亚洲二区| 亚洲综合色网址| 午夜福利乱码中文字幕| 亚洲国产精品一区三区| 久久鲁丝午夜福利片| 国产1区2区3区精品| 国产一区二区激情短视频 | 亚洲精品久久午夜乱码| 国产免费现黄频在线看| av国产精品久久久久影院| 免费在线观看完整版高清| 久久久久久久久免费视频了| 精品酒店卫生间| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 一本久久精品| 男的添女的下面高潮视频| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 久久久久国产精品人妻一区二区| 欧美激情高清一区二区三区 | 久久久国产一区二区| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 中国国产av一级| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 一区二区三区激情视频| 最近最新中文字幕大全免费视频 | 超碰成人久久| 性高湖久久久久久久久免费观看| 精品第一国产精品| 国产精品香港三级国产av潘金莲 | 一级毛片电影观看| 丝袜喷水一区| 国产国语露脸激情在线看| 国产精品一二三区在线看| 欧美在线一区亚洲| 99九九在线精品视频| 亚洲在久久综合| 欧美精品av麻豆av| 精品视频人人做人人爽| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 国产精品嫩草影院av在线观看| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| av线在线观看网站| 巨乳人妻的诱惑在线观看| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 97在线人人人人妻| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 国产福利在线免费观看视频| 美女福利国产在线| 国产又色又爽无遮挡免| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 日韩av不卡免费在线播放| av不卡在线播放| 亚洲成人av在线免费| 我要看黄色一级片免费的| 伊人亚洲综合成人网| 性色av一级| 亚洲欧美成人综合另类久久久| 欧美av亚洲av综合av国产av | 国产探花极品一区二区| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠久久av| 丰满饥渴人妻一区二区三| 又大又黄又爽视频免费| 国产又爽黄色视频| 两个人看的免费小视频| 人人妻人人澡人人爽人人夜夜| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠久久av| 亚洲精品中文字幕在线视频| 七月丁香在线播放| 人妻 亚洲 视频| 久久人人爽av亚洲精品天堂| 人人妻人人澡人人爽人人夜夜| 免费日韩欧美在线观看| 超色免费av| www.自偷自拍.com| 免费久久久久久久精品成人欧美视频| 在线精品无人区一区二区三| 午夜福利影视在线免费观看| 视频在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 国产免费福利视频在线观看| 亚洲三区欧美一区| 日本wwww免费看| 日韩精品免费视频一区二区三区| 日本av手机在线免费观看| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 久久精品久久久久久噜噜老黄| 天天影视国产精品| 久久人人爽av亚洲精品天堂| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| 无遮挡黄片免费观看| 丰满乱子伦码专区| 国产免费现黄频在线看| 国产精品99久久99久久久不卡 | 日本欧美视频一区| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线| 日韩一区二区三区影片| 99久久精品国产亚洲精品| av视频免费观看在线观看| 一二三四中文在线观看免费高清| 亚洲一码二码三码区别大吗| 丝袜在线中文字幕| 又粗又硬又长又爽又黄的视频| 人妻一区二区av| 欧美乱码精品一区二区三区| 日韩大码丰满熟妇| 97在线人人人人妻| 中国国产av一级| 最近中文字幕2019免费版| 国产黄色视频一区二区在线观看| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看| 中文字幕高清在线视频| 伊人亚洲综合成人网| 亚洲精品国产av蜜桃| 亚洲精品国产一区二区精华液| 成年人免费黄色播放视频| 高清欧美精品videossex| 成人手机av| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av激情在线播放| 中文字幕人妻丝袜制服| 免费看av在线观看网站| 狂野欧美激情性xxxx| 欧美人与善性xxx| 老司机深夜福利视频在线观看 | 麻豆av在线久日| 自线自在国产av| 丰满乱子伦码专区| 成人亚洲欧美一区二区av| 亚洲欧美激情在线| 国产成人91sexporn| 欧美变态另类bdsm刘玥| 9191精品国产免费久久| 亚洲精品久久久久久婷婷小说| 十八禁高潮呻吟视频| 久久影院123| 大陆偷拍与自拍| 国产精品一二三区在线看| 亚洲成国产人片在线观看| 国产精品二区激情视频| 老司机亚洲免费影院| 成人黄色视频免费在线看| 亚洲国产看品久久| 午夜福利视频精品| 亚洲av国产av综合av卡| 日本91视频免费播放| 色视频在线一区二区三区| 叶爱在线成人免费视频播放| 啦啦啦啦在线视频资源| 色综合欧美亚洲国产小说| 国产成人精品福利久久| 水蜜桃什么品种好| 免费不卡黄色视频| 欧美人与善性xxx| 久久久久网色| 国产国语露脸激情在线看| 久久毛片免费看一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久精品亚洲av国产电影网| 国产又爽黄色视频| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| 日本91视频免费播放| 精品少妇久久久久久888优播| 天天操日日干夜夜撸| 亚洲精品国产av蜜桃| 国产亚洲最大av| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品区二区三区| 一区二区av电影网| 搡老岳熟女国产| 免费av中文字幕在线| 国产探花极品一区二区| 欧美精品亚洲一区二区| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区 | 国产 一区精品| 日韩一区二区视频免费看| 亚洲欧美一区二区三区久久| 日本av免费视频播放| 久久狼人影院| 精品国产国语对白av| 日本av免费视频播放| 亚洲 欧美一区二区三区| 日韩一本色道免费dvd| 日本91视频免费播放| 国产av国产精品国产| 丝袜人妻中文字幕| 日本欧美视频一区| 午夜日韩欧美国产| 亚洲精品,欧美精品| 男人添女人高潮全过程视频| 嫩草影院入口| 91aial.com中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 欧美乱码精品一区二区三区| av免费观看日本| 午夜免费男女啪啪视频观看| 不卡av一区二区三区| 国产极品粉嫩免费观看在线| 1024香蕉在线观看| 国产精品熟女久久久久浪| 日韩制服骚丝袜av|