陳曉穎,葉華丹,洪青曉,周安楠,湯琳琳,段世偉
?
DNA甲基化修飾對(duì)血管疾病穩(wěn)態(tài)失衡的影響
陳曉穎,葉華丹,洪青曉,周安楠,湯琳琳,段世偉
寧波大學(xué)醫(yī)學(xué)院,浙江省病理生理學(xué)技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,寧波 315211
自穩(wěn)態(tài)平衡是機(jī)體生命活動(dòng)的重要基礎(chǔ),在維持機(jī)體的正常生理功能中發(fā)揮重要作用。血管疾病中的穩(wěn)態(tài)失衡受物理、化學(xué)、生物等內(nèi)外環(huán)境改變及致病因素的影響,其中氧穩(wěn)態(tài)、血流穩(wěn)態(tài)、糖脂代謝穩(wěn)態(tài)在內(nèi)環(huán)境的影響中較為突出,由此引起的一系列表觀遺傳修飾將導(dǎo)致血管結(jié)構(gòu)和功能的異常。表觀遺傳學(xué)中的DNA甲基化與血管疾病的發(fā)生發(fā)展密不可分。此外,5-羥甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)及N6-甲基腺嘌呤(N6-methyladenine, m6A)作為新的修飾堿基,將為表觀遺傳學(xué)研究提供新的思路。文章主要對(duì)DNA甲基化修飾變異在血管疾病穩(wěn)態(tài)失衡方面的研究進(jìn)展進(jìn)行了闡述。
DNA甲基化; 血管穩(wěn)態(tài); 5hmC; m6A
“穩(wěn)態(tài)”概念首先由法國(guó)生理學(xué)家克洛德·貝爾納(Claude Bernard)提出。1932年美國(guó)生理學(xué)家坎農(nóng)(Cannon W.)在《人體的智慧》一書中明確了內(nèi)穩(wěn)態(tài)理論,即人和動(dòng)植物基本生理功能及機(jī)體內(nèi)環(huán)境組成與特性相對(duì)動(dòng)態(tài)恒定的生理狀態(tài)。機(jī)體可以通過分子、細(xì)胞、器官和整體水平上復(fù)雜的協(xié)調(diào)和互作達(dá)到內(nèi)環(huán)境平衡。血管是一個(gè)由內(nèi)皮細(xì)胞、平滑肌細(xì)胞、成纖維細(xì)胞等構(gòu)成的整合性器官,其穩(wěn)態(tài)功能的平衡是機(jī)體生命活動(dòng)的重要基礎(chǔ)。各種物理、化學(xué)、生物等內(nèi)外環(huán)境改變及致病因素的作用,均能造成血管穩(wěn)態(tài)失衡,導(dǎo)致血管功能或結(jié)構(gòu)的改變與損傷,并且?guī)硪幌盗幸匝懿∽優(yōu)椴±砘A(chǔ)的相關(guān)疾病,如動(dòng)脈粥樣硬化、高血壓、腦卒中、眼病、腎臟疾病等。由于近年來高通量技術(shù)的快速發(fā)展,表觀遺傳修飾作為基因表達(dá)的重要機(jī)制逐漸被人們所認(rèn)識(shí)。DNA甲基化修飾導(dǎo)致血管相關(guān)基因轉(zhuǎn)錄失調(diào),在血管功能維持平衡的過程中扮演重要角色,此外,RNA甲基化的修飾作用也逐漸成為血管疾病機(jī)制研究的熱點(diǎn)。
血管微環(huán)境主要是指鄰近組織細(xì)胞及其分泌的各種生長(zhǎng)因子所組成的體內(nèi)環(huán)境。微環(huán)境的穩(wěn)定是保證細(xì)胞正常增殖、分化,代謝和功能活動(dòng)的重要條件。血管在維持穩(wěn)態(tài)平衡過程中,內(nèi)皮細(xì)胞、平滑肌細(xì)胞、成纖維細(xì)胞等受代謝紊亂、血管活性物質(zhì)(血管活性多肽、脂肪因子、脂質(zhì)代謝分子、活性氨基酸及衍生物、氣體信號(hào)等)、血流動(dòng)力學(xué)等影響相互作用形成特殊的環(huán)境。血管穩(wěn)態(tài)是指血管功能處于平衡狀態(tài),與血管內(nèi)皮和平滑肌細(xì)胞密切相關(guān)[1]。
血管內(nèi)皮的功能主要是屏障作用,其合成和釋放的多種內(nèi)皮衍生血管活性因子在血管的自穩(wěn)態(tài)調(diào)節(jié)中起著重要作用。血管內(nèi)皮細(xì)胞合成和釋放的內(nèi)皮源性舒張因子(前列環(huán)素、一氧化氮、內(nèi)皮源性超極化因子等)能夠維持血管的內(nèi)環(huán)境穩(wěn)定[2]。有研究表明,不同物質(zhì)對(duì)血管穩(wěn)態(tài)的影響不同,如前列環(huán)素能抑制血小板聚集和使血管擴(kuò)張[3];非對(duì)稱性二甲基精氨酸能抑制一氧化氮合酶的活性,減少一氧化氮的生成,并生成超氧化物,導(dǎo)致內(nèi)皮功能失調(diào)從而破壞血管穩(wěn)態(tài)[4];犬尿氨酸[5]以及S-亞硝基硫醇[6]代謝都有擴(kuò)張血管、降低血壓的作用;高鹽[7]可增加血管張力,從而使血管穩(wěn)態(tài)失衡。另外,氧化應(yīng)激[8]、腎素-血管緊張素系統(tǒng)[9]、氧化低密度脂蛋白[10]、同型半胱胺酸血癥[11]、內(nèi)質(zhì)網(wǎng)應(yīng)激[12]以及內(nèi)皮微顆粒[13]等因素能夠直接或間接影響血管內(nèi)皮和平滑肌的功能。
血管平滑肌細(xì)胞是構(gòu)成血管壁組織結(jié)構(gòu)及調(diào)節(jié)血管張力和血流量的主要細(xì)胞類型。與機(jī)體其它組織的成熟細(xì)胞相比,血管平滑肌細(xì)胞并非終末分化,其保留了一定的可塑性,可在不同的表型之間進(jìn)行轉(zhuǎn)換,分為收縮型和分泌型[14]。正常成人動(dòng)脈血管的平滑肌細(xì)胞以收縮型為主,而當(dāng)受到環(huán)境壓力的影響,一部分血管平滑肌細(xì)胞可轉(zhuǎn)化為分泌型,合成許多血管活性物質(zhì)、生長(zhǎng)因子及細(xì)胞外基質(zhì),刺激細(xì)胞的高度增殖和遷移,使得血管壁增厚并參與纖維斑塊的形成,最終導(dǎo)致血管穩(wěn)態(tài)失衡[14]。血小板衍生生長(zhǎng)因子(Platelet-derived growth factor, PDGF)[15]、成纖維細(xì)胞生長(zhǎng)因子(Fibroblast growth factor, FGF)[16]、賴氨酰氧化酶樣1 蛋白(Lysyl oxidase-like 1, LOXL1)[17]、內(nèi)皮素-1(Endothelin 1, ET-1)[18]、細(xì)胞因子干擾素γ(Interferon γ, IFN-γ)[14]等多種蛋白均與血管平滑肌細(xì)胞的穩(wěn)態(tài)密切相關(guān)。有新的研究發(fā)現(xiàn),血管平滑肌細(xì)胞通過線粒體自噬能夠調(diào)節(jié)細(xì)胞結(jié)構(gòu)和功能的變化,在動(dòng)脈粥樣硬化斑塊中,可觀察到典型的自噬現(xiàn)象[19]。
氧穩(wěn)態(tài)與血管穩(wěn)態(tài)密切相關(guān)[20]。機(jī)體內(nèi),許多情況可造成整體或局部氧穩(wěn)態(tài)失衡的環(huán)境,如心肌或腦組織缺血、腫瘤的快速生長(zhǎng)、高海拔作業(yè)等。低氧誘導(dǎo)因子-1(Hypoxia inducible factor-1, HIF-1)是氧穩(wěn)態(tài)的主要調(diào)節(jié)者,作為低氧誘導(dǎo)最重要的轉(zhuǎn)錄因子,其結(jié)合到特異性識(shí)別序列的啟動(dòng)子上,可激活轉(zhuǎn)錄[21]。HIF-1由α、β兩個(gè)亞基組成,HIF-1α的穩(wěn)定性受氧濃度的影響較大,該亞基的一個(gè)重要靶基因是血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,),隨著HIF-1α水平的升高,的表達(dá)上調(diào)[22],從而形成大血管胚胎干細(xì)胞衍生的腫瘤,并損害血管功能,在腫瘤塊內(nèi)形成缺氧微環(huán)境[23]。到目前為止,已經(jīng)發(fā)現(xiàn)超過60個(gè)基因的表達(dá)與HIF-1有關(guān),其中大部分可直接或間接參與血管穩(wěn)態(tài)失衡的過程[24]。有研究提示,血管內(nèi)皮細(xì)胞對(duì)缺氧的反應(yīng)中,ATP結(jié)合盒轉(zhuǎn)運(yùn)子A1(ATP-binding cassette transporter 1,)是最顯著上調(diào)的基因之一[25],HIF-1α可誘導(dǎo)該基因的表達(dá)[26],提示該基因參與心血管疾病的發(fā)生發(fā)展。
機(jī)體血液動(dòng)力學(xué)微環(huán)境是血管穩(wěn)態(tài)必不可少的重要調(diào)節(jié)因素,血壓增高、血管局部狹窄所產(chǎn)生的湍流和剪切應(yīng)力的變化通過影響血管平滑肌細(xì)胞的增殖和凋亡、內(nèi)皮細(xì)胞的形態(tài)和功能、白細(xì)胞的黏附作用以及調(diào)節(jié)細(xì)胞外基質(zhì)的合成、消除等方面,從而影響血管結(jié)構(gòu)和功能的變化[27]。剪切應(yīng)力還可以選擇性調(diào)節(jié)許多基因表達(dá),如血小板源性生長(zhǎng)因子B()、細(xì)胞間粘附分子1(Intercellular adhesion molecule 1,)、組織型纖溶酶原激活劑(Plasminogen activator, tissue,)、轉(zhuǎn)化生長(zhǎng)因子β1(Transforming growth factor, beta,)等[28],這些基因在維持血管壁功能中具有重要作用。此外,內(nèi)皮細(xì)胞上的機(jī)械感受器分子能將外界的機(jī)械刺激轉(zhuǎn)化為生化信號(hào),目前已經(jīng)發(fā)現(xiàn)的信號(hào)通路有Caveolae、受體酪氨酸激酶(Receptor of tyrosine kinase, RTK)、整合素家族分子(Integrins),G蛋白和離子通道[29]。
糖、脂代謝紊亂易使機(jī)體發(fā)生氧化應(yīng)激、炎癥反應(yīng)、血管舒縮功能異常及內(nèi)質(zhì)網(wǎng)應(yīng)激的改變,導(dǎo)致心血管疾病、糖尿病和肥胖等代謝疾病的產(chǎn)生。相關(guān)核轉(zhuǎn)錄因子(過氧化物酶體增殖物激活受體、肝X受體、膽汁酸受體、孕烷受體等)以內(nèi)源性小分子代謝產(chǎn)物為配體,調(diào)控糖、脂代謝相關(guān)關(guān)鍵基因的表達(dá)來影響基因轉(zhuǎn)錄激活或抑制。體內(nèi)和體外實(shí)驗(yàn)研究已表明,高血糖環(huán)境可誘導(dǎo)機(jī)體內(nèi)氧自由基的過量產(chǎn)生,使細(xì)胞內(nèi)抗氧化防御系統(tǒng)受損,對(duì)細(xì)胞產(chǎn)生多種毒性作用,導(dǎo)致細(xì)胞數(shù)量及其功能和活力的降低,使血管內(nèi)皮細(xì)胞功能受影響,提示高血糖環(huán)境對(duì)血管的穩(wěn)態(tài)維持有影響[30,31]。膽固醇在動(dòng)脈內(nèi)膜中大量沉積,形成粥樣物質(zhì),以及平滑肌細(xì)胞向內(nèi)膜的遷移、增殖、大量分泌膠原形成纖維化,也會(huì)導(dǎo)致血管硬化[32]。
血管的表觀遺傳修飾已成為血管穩(wěn)態(tài)研究的一個(gè)新熱點(diǎn),探索環(huán)境與遺傳因素的相互作用,特別是血管相關(guān)的DNA(表1)及RNA受環(huán)境影響的甲基化修飾,有助于人們更全面地了解疾病機(jī)制。血管穩(wěn)態(tài)失衡的原因非常復(fù)雜,目前已發(fā)現(xiàn)調(diào)節(jié)血管穩(wěn)態(tài)的重要基因有VEGF 家族[33]、磷脂酰肌醇 3-激酶(PI3K-AKT)信號(hào)通路的FoxO 家族[34]、凋亡抑制因子2(Baculoviral IAP repeat containing 2,)[35]、細(xì)胞色素 P450[22]、漿膜蛋白 4(Reticulon 4,)[36]、過氧化物酶 II[37]、Delta樣配體4(Delta- like 4,)[38]、組蛋白去乙?;?7(Histone dea-ce-ty-lase 7,)[39]、彈性蛋白微原纖維界面因子1(Elastin microfibril interfacer 1,)[40]、轉(zhuǎn)化生長(zhǎng)因子-β()[41]、骨形態(tài)發(fā)生蛋白家族(BCL2/adenovirus E1B 19 kd-interacting protein family)[42]、重組人相關(guān)RAS病毒癌基因同源物(Related RAS viral (r-ras) oncogene homolog,)[43]、一氧化氮合成酶(Nitric oxide synthase,)與NO代謝相關(guān)的精氨酸琥珀酸裂解酶(Argininosuccinate lyase,)[44]基因等。
DNA甲基化修飾是指在 DNA 甲基轉(zhuǎn)移酶(DNA methyltransferase, DNMTs)的催化下,以S-腺苷甲硫氨酸(SAM)為供體,將甲基(-CH3)轉(zhuǎn)移至胞嘧啶的第5位碳原子上,形成5-甲基胞嘧啶(5mC)的過程。DNA甲基化形式多發(fā)生在CpG雙核苷酸序列的胞嘧啶第五位碳上(C5)形成5mC,而啟動(dòng)子區(qū)域 CpG 島形成的5mC在胚胎發(fā)育、基因組印記、基因沉默及基因表達(dá)中起了重要作用[45]。在哺乳動(dòng)物中已經(jīng)發(fā)現(xiàn)DNMT1、DNMT3a和DNMT3b3種催化酶。目前認(rèn)為,DNMT1主要是維持DNA復(fù)制過程中甲基化的穩(wěn)定性,而DNMT3a和DNMT3b屬于從頭甲基轉(zhuǎn)移酶,有助于形成新的甲基化形成,并在胚胎發(fā)育的早期起作用[46]。目前有兩種為人熟知的機(jī)制:其一,由于甲基化的DNA不能被一些轉(zhuǎn)錄因子所識(shí)別,使得這些轉(zhuǎn)錄因子不能結(jié)合到該基因的啟動(dòng)子區(qū),從而抑制了轉(zhuǎn)錄;其二,DNA甲基結(jié)合蛋白識(shí)別甲基化的DNA,招募協(xié)同抑制因子使靶基因沉默。
表1 與血管穩(wěn)態(tài)相關(guān)的基因DNA甲基化研究
注:(-)代表基因表達(dá)下調(diào),(+)代表基因表達(dá)上調(diào)。
通過全基因組鳥槍法測(cè)序,動(dòng)脈粥樣硬化發(fā)病相關(guān)的差異甲基化CpG證實(shí)了基因參與內(nèi)皮及平滑肌細(xì)胞的調(diào)控作用[47],這些發(fā)現(xiàn)為更好地了解血管失穩(wěn)態(tài)的分子機(jī)制提供了新的線索。研究表明,載脂蛋白E(Apolipoprotein E,)基因敲除小鼠在尚未出現(xiàn)動(dòng)脈粥樣硬化病變之前,在主動(dòng)脈和外周血單個(gè)核細(xì)胞中就已經(jīng)出現(xiàn)了DNA甲基化特征的改變,提示DNA甲基化譜的改變可作為血管功能失衡的早期標(biāo)志[48]。
DNA甲基化修飾與氧穩(wěn)態(tài)有關(guān)。研究發(fā)現(xiàn),缺氧敏感性的增強(qiáng)與氧化應(yīng)激的升高、基因編碼抗氧化酶的表達(dá)降低以及促氧化酶表達(dá)的增加有關(guān)[20],如靠近編碼抗氧化酶超氧化物歧化酶2(Superoxide dismutase 2, mitochondrial,)基因的轉(zhuǎn)錄起始位點(diǎn)的CpG位點(diǎn)甲基化程度增加,基因編碼SOD2的能力降低,從而影響低氧帶來的血管穩(wěn)態(tài)失衡[20]。低氧反應(yīng)中可發(fā)現(xiàn)臍動(dòng)脈內(nèi)一氧化氮合酶3()啟動(dòng)子區(qū)域甲基化程度增加,而臍靜脈內(nèi)甲基化程度降低,說明缺氧還可以造成胎兒宮內(nèi)生長(zhǎng)發(fā)育受限,而胎兒生長(zhǎng)遲緩與內(nèi)皮功能障礙、心血管風(fēng)險(xiǎn)有關(guān)[49]。另外,長(zhǎng)時(shí)間缺氧還會(huì)誘導(dǎo)心肌細(xì)胞發(fā)生纖維化,且相關(guān)基因的甲基化程度以及DNA甲基化轉(zhuǎn)移酶(DNMT)也增加。DNMT可成為治療心肌纖維化的靶點(diǎn),因?yàn)镈NMT抑制劑5-氮雜-2'-脫氧胞苷(5-Aza)會(huì)抑制TGF-β的促纖維化作用[50]。
DNA甲基化修飾與血流穩(wěn)態(tài)有關(guān)。血管內(nèi)皮位于血管壁和血液的界面,因直接與血流接觸而持續(xù)受到血流剪切力的影響。研究表明,血液動(dòng)力學(xué)的擾流與動(dòng)脈粥樣硬化的易感性相關(guān),內(nèi)皮Kruppel樣因子4(Endothelial Kruppel-Like Factor 4,KLF4)是一種重要的抗內(nèi)皮炎癥的轉(zhuǎn)錄因子,血流動(dòng)力學(xué)通過誘導(dǎo)內(nèi)皮基因啟動(dòng)子CpG甲基化,抑制的轉(zhuǎn)錄,從而促進(jìn)血栓生成及平滑肌細(xì)胞增殖[51]。動(dòng)物實(shí)驗(yàn)證實(shí),低剪切應(yīng)力可降低/NO的表達(dá),削弱血管內(nèi)皮對(duì)危險(xiǎn)因素的抵御作用,促進(jìn)血管平滑肌細(xì)胞的移行、分化和增殖從而促進(jìn)新生內(nèi)膜的形成。Dunn等[52]發(fā)現(xiàn),在內(nèi)皮細(xì)胞中DNMT1在振蕩剪切應(yīng)力作用下表達(dá)增多,同時(shí)頸動(dòng)脈血流紊亂可導(dǎo)致11個(gè)機(jī)械敏感基因(、、、、、、、、、和)高甲基化修飾。
DNA甲基化修飾與糖、脂代謝穩(wěn)態(tài)有關(guān)。Ling等[53]研究發(fā)現(xiàn),高血糖可誘導(dǎo)血管炎癥相關(guān)基因(、等)的表觀遺傳學(xué)修飾,核因子κB(NF-κB)是一種結(jié)合血管炎癥相關(guān)基因的轉(zhuǎn)錄因子,血糖控制不佳可增強(qiáng)單核細(xì)胞中NF-κB的活性從而使炎癥反應(yīng)增強(qiáng),炎細(xì)胞浸潤(rùn)血管壁可造成血管損傷,包括內(nèi)皮細(xì)胞及肌細(xì)胞壞死。對(duì)于糖尿病患者,其血液成分的改變將引起血管內(nèi)皮細(xì)胞功能異常,從而使血-視網(wǎng)膜屏障受損,最終導(dǎo)致眼部病變。高血脂對(duì)血管穩(wěn)態(tài)的影響有著重要意義,一定濃度的游離膽固醇能引起內(nèi)皮細(xì)胞內(nèi)來源于NADPH氧化酶的血管活性氧(ROS)升高,激活NF-κB,進(jìn)而導(dǎo)致內(nèi)皮細(xì)胞損傷[54],NADPH氧化酶是血管細(xì)胞產(chǎn)生活性氧的主要酶,其相關(guān)亞單位的表達(dá)與血管穩(wěn)態(tài)密切相關(guān)。脂質(zhì)代謝相關(guān)的研究發(fā)現(xiàn)[11],同型半胱氨酸(Hcy)誘導(dǎo)的脂代謝基因的高甲基化和乙酰輔酶A乙酰轉(zhuǎn)移酶1(Acetyl-CoA acetyltransferase 1,)的低甲基化修飾,促使膽固醇逆向轉(zhuǎn)運(yùn)受阻,并在巨噬細(xì)胞中積累形成泡沫細(xì)胞,從而導(dǎo)致動(dòng)脈粥樣硬化的形成。低密度脂蛋白(LDL)容易誘導(dǎo)血管內(nèi)皮功能障礙,通過下調(diào)內(nèi)皮Kruppel樣因子2()的啟動(dòng)子區(qū)域活動(dòng),導(dǎo)致內(nèi)皮穩(wěn)態(tài)失衡[55]。
近幾年,除了對(duì)DNA甲基化的研究,DNA羥甲基化逐步開始有一些初步研究。DNA 羥基化主要是由于DNA被10-11 易位家族蛋白(Ten-eleven translocation,TET)進(jìn)一步氧化形成了5-羥甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)。TET 酶在羥甲基化過程中為關(guān)鍵酶,TET家族蛋白包括TET1、TET2、TET3,這些都包含α-酮戊二酸和二價(jià)鐵依賴性雙加氧酶,在基因調(diào)控及基因表達(dá)過程中起了一定作用[56]。TET1負(fù)責(zé)在印跡調(diào)控區(qū)域積累 5hmC,而TET2則主要是將多功能性基因羥化[57]。
羥甲基化(5hmC)是甲基(5mC)羥基化的一種形式,5hmC是甲基化外的另一種重要的胞嘧啶修飾[58]。羥甲基化與甲基化相比有不同的功能,CpG島甲基化與基因表達(dá)較低有關(guān),而基因內(nèi)部羥基化則與基因表達(dá)較高有關(guān)[59]。5mC通常會(huì)抑制基因的表達(dá),而5hmC 則與基因表達(dá)的激活有關(guān)[60]。5hmC已被認(rèn)為是去甲基化修飾的關(guān)鍵中間環(huán)節(jié),或是作為染色質(zhì)因子的一個(gè)信號(hào)[58],其在胸腺嘧啶DNA糖基化酶(TDG)和去甲基酶的共同作用下,可通過堿基切除繼而逆轉(zhuǎn)DNA甲基化修飾[61]。其中重要的TET家族蛋白可以介導(dǎo)氧化作用,因?yàn)門ET蛋白在二價(jià)鐵離子與2-酮戊二酸依賴性氧化酶的共同作用下可以將5mC氧化[62]。
Song等[63]發(fā)現(xiàn)基因中5hmC 富集程度與低氧環(huán)境下的血管生成密切相關(guān),TET蛋白催化5mC變成5hmC的過程需要氧分子[64]。敲除TET2可增加5mC水平,同時(shí)降低染色質(zhì)與平滑肌細(xì)胞收縮相關(guān)基因(、、等)啟動(dòng)子區(qū)的結(jié) 合[14]。人體正常組織中5hmC分布存在差異性,腦組織中含量最高,心臟、乳腺含量最低[65],5hmC通過改變DNA甲基化狀態(tài)來阻止抑制基因和凋亡基因失活,5hmC水平的降低使得基因缺乏保護(hù)導(dǎo)致腫瘤發(fā)生,這同樣對(duì)心腦血管疾病有著提示作用。
RNA甲基化也開始成為表觀遺傳修飾研究的一個(gè)新方向,其表現(xiàn)形式為N6-甲基腺嘌呤(N6-me-thyla-denosine, m6A)。1955 年研究細(xì)菌 DNA 時(shí)發(fā)現(xiàn) m6A,因檢測(cè)技術(shù)有限,m6A的機(jī)制不是很清楚。但隨著檢測(cè)技術(shù)的發(fā)展,目前發(fā)現(xiàn)m6A是發(fā)生在堿基第6位N原子上的甲基化,主要是通過 m6A甲基轉(zhuǎn)移酶的作用使 S-腺苷甲硫氨酸(SAM)的甲基轉(zhuǎn)移到腺嘌呤的第6位N原子,是真核生物中最常見的一種 RNA 轉(zhuǎn)錄后修飾。研究發(fā)現(xiàn)高達(dá)20%的人類mRNA常規(guī)發(fā)生了甲基化,超過5000種不同的mRNA分子包含m6A,意味著這種修飾有可能廣泛地影響了基因的表達(dá)模式[66]。m6A修飾主要發(fā)生在外顯子區(qū)域和 3'-UTR 區(qū)域[67],不僅影響mRNA加工或運(yùn)輸?shù)男?,同時(shí)在基因的調(diào)節(jié)和表達(dá)方面起了一定的作用[67]。
最新研究發(fā)現(xiàn),脂肪量和肥胖相關(guān)因子基因(Fat mass and obesity associated,)[68]、烷烴羥化酶同源5基因(AlkB family member 5, RNA demethylase,)[69]與m6A密切相關(guān),這兩個(gè)基因敲除會(huì)使mRNA的m6A水平增加。是肥胖癥相關(guān)的重要基因,脂肪組織的生長(zhǎng)離不開營(yíng)養(yǎng)物質(zhì)與氧的供應(yīng),而這需要通過增加脂肪組織中血管的數(shù)量及容量來實(shí)現(xiàn),因此,脂肪生成通常受血管穩(wěn)態(tài)的影響。肥胖風(fēng)險(xiǎn)基因編碼一種能夠逆轉(zhuǎn)這種修飾的酶,可將mRNA中的m6A殘基轉(zhuǎn)換為普通的腺苷。攜帶突變的人會(huì)擁有過度活性的FTO酶,導(dǎo)致m6A低水平,并引起食物攝入和代謝異常導(dǎo)致肥胖[66]??梢酝ㄟ^它的6-羥甲基衍生物轉(zhuǎn)化為腺嘌呤,在體外可以使m6A去甲基化[70]。m6A甲基化沉默顯著地影響基因表達(dá)和選擇性的剪接模式,影響對(duì)P53信號(hào)傳導(dǎo)途徑和細(xì)胞凋亡的調(diào)節(jié)[71]。
DNA甲基化修飾變異與冠心病之間密切相關(guān)。DNA異常甲基化受到高膽固醇、缺氧、吸煙等血管危險(xiǎn)因素的影響,通過誘導(dǎo)血管穩(wěn)態(tài)失衡,促進(jìn)心血管疾病的發(fā)生發(fā)展。研究證實(shí),營(yíng)養(yǎng)和環(huán)境暴露通過形成高血壓危險(xiǎn)因素在孕期[72]或饑餓[73]期間影響基因表達(dá)的甲基化修飾。動(dòng)脈粥樣硬化(Atherosclerosis, AS)是冠心病的始動(dòng)病因,大量研究表明,DNA的異常甲基化與AS的發(fā)生密切相關(guān)。已知雌激素通過與特異性受體結(jié)合有保護(hù)心血管的作用,AS患者中血管平滑肌上雌激素受體α(Estrogen receptor,)基因的啟動(dòng)子CpG島存在異常高甲基化,導(dǎo)致基因沉默,高血漿Hcy可導(dǎo)致甲基化程度增高,參與AS的病變和發(fā)展[74]。Zhu等[75]發(fā)現(xiàn)單羧酸轉(zhuǎn)運(yùn)蛋白3(Monocarboxylate transporters 3,)基因第二外顯子區(qū)CpG島的甲基化效應(yīng)抑制了基因的轉(zhuǎn)錄,使血管平滑肌細(xì)胞增殖及纖維沉積,從而加重動(dòng)脈粥樣硬化程度;Friso等[76]發(fā)現(xiàn)冠心病患者的外周血單核細(xì)胞中凝固因子VII(Coagulation factor VII,)啟動(dòng)子區(qū)甲基化水平降低,可作為預(yù)測(cè)特定表型冠心病的標(biāo)志物。此外,細(xì)胞外超氧化物歧化酶(Extracellular superoxide dismutase,)基因的高甲基化狀態(tài)促進(jìn)氧化應(yīng)激,增加心血管患病風(fēng)險(xiǎn)[77]。誘導(dǎo)型一氧化碳合酶()基因啟動(dòng)子區(qū)域的高甲基化CpG可促進(jìn)動(dòng)脈粥樣硬化的進(jìn)展[78]。冠心病患者中還表現(xiàn)出免疫相關(guān)的叉狀頭轉(zhuǎn)錄因子(Forkhead box P3,)基因表達(dá)下調(diào)[79],骨形態(tài)發(fā)生蛋白3()基因的上調(diào)和谷胱甘肽S 轉(zhuǎn)移酶(Glutathione S-transferase pi 1,)的下調(diào)[42]。
目前還發(fā)現(xiàn),XV型膠原α1(Collagen type XV alpha 1,)基因的低甲基化發(fā)生在血管平滑肌細(xì)胞的增殖過程,通過增強(qiáng)基因的表達(dá)影響平滑肌細(xì)胞的表型,并促進(jìn)動(dòng)脈粥樣硬化形成[80];成纖維細(xì)胞生長(zhǎng)因子2()基因的甲基化在同型半胱氨酸誘導(dǎo)下,表達(dá)降低[81];15-脂氧合酶(Arachidonate 15-lipoxygenase,)基因啟動(dòng)子高甲基化的細(xì)胞模型表達(dá)有助于平滑肌細(xì)胞遷移,通過炎癥反應(yīng)破壞血管穩(wěn)態(tài)[82];組織因子途徑抑制物2(Tissue factor pathway inhibitor 2,)基因表達(dá)與平滑肌細(xì)胞、內(nèi)皮細(xì)胞和巨噬細(xì)胞,其甲基化模式的改變也將影響血管穩(wěn)態(tài)[83]。冠心病的發(fā)病機(jī)制十分復(fù)雜,目前DNA甲基化修飾在該領(lǐng)域的研究仍處于探索階段。
高血壓的發(fā)病機(jī)制和病變過程相對(duì)復(fù)雜,異常DNA甲基化修飾可參與某些高血壓候選基因的表達(dá),最終導(dǎo)致血壓的發(fā)生與發(fā)展。越來越多的證據(jù)表明,代謝酶基因(Hydroxysteroid (11-beta) dehydrogenase 2)和(Endothelin converting enzyme 1)及受體基因(Angiotensin II receptor, type 1b,)等通過甲基化調(diào)控參與了原發(fā)性高血壓的發(fā)生發(fā)展。高甲基化的和基因啟動(dòng)子區(qū)低甲基化或去甲基化均會(huì)導(dǎo)致高血壓的發(fā)生[84]。血漿Hcy水平增高會(huì)引起平滑肌細(xì)胞DNA去甲基化,進(jìn)而誘發(fā)、內(nèi)皮素轉(zhuǎn)換酶()等基因的去甲基化,通過腎素-血管緊張素-醛固酮等系統(tǒng)影響血壓的變化[85]。在自發(fā)性高血壓大鼠(SHR)實(shí)驗(yàn)中還發(fā)現(xiàn)了編碼Na+-K+-2Cl-協(xié)同轉(zhuǎn)運(yùn)蛋白1的基因,其啟動(dòng)子區(qū)域的甲基化水平降低,導(dǎo)致表達(dá)下調(diào),改變膜離子的通透性[86],說明甲基化可參與全身血壓的調(diào)節(jié)。在中國(guó)人群中,過氧化物酶體增殖物活化受體γ(Peroxisome proliferator-activated receptor gamma,PPARγ)基因多態(tài)性與原發(fā)性高血壓病相關(guān)[87],PPARγ在心血管平滑肌細(xì)胞、內(nèi)皮細(xì)胞、視網(wǎng)膜等組織細(xì)胞中呈低水平表達(dá)。啟動(dòng)子區(qū)的甲基化程度在不同細(xì)胞模型中的差異較大。在來源于人脂肪組織的間充質(zhì)干細(xì)胞中,呈現(xiàn)低甲基化狀態(tài)(甲基化程度8%~23%),在脂肪生成過程中盡管個(gè)別CpG位點(diǎn)發(fā)生了去甲基化,仍保持著穩(wěn)定的低甲基化狀態(tài);來源于人骨髓和肌肉組織的間充質(zhì)干細(xì)胞也同樣保持著低甲基化狀態(tài)[88,89]。Riviere等[90]研究了體細(xì)胞血管緊張素轉(zhuǎn)換酶(Angiotensin I converting enzyme,)基因啟動(dòng)子區(qū)甲基化的調(diào)控作用,sACE可將血管緊張素I催化為更具血管收縮性的血管緊張素II,通過高甲基化修飾與抑制基因轉(zhuǎn)錄,影響高血壓的發(fā)病過程。Senanayake等[91]研究發(fā)現(xiàn),經(jīng)治療后的高血壓大鼠,其全基因組 DNA 甲基化由低水平升到正常水平,提示全基因組DNA甲基化水平與高血壓的發(fā)病機(jī)制密切相關(guān)。
另外,鹽敏感性對(duì)血壓存在遺傳易感性,其候選基因包括Na+-K+-ATP酶(鈉泵)基因、a-adducin基因、胰島素受體β亞單位基因、激肽釋放酶—激肽系統(tǒng)(KKS)通路的部分基因、可溶性鳥苷酸環(huán)化酶()基因等。近80%的CpG島對(duì)暴露于高鹽飲食有差異性甲基化反應(yīng),通過對(duì)Dahl鹽敏感大鼠腎外髓5hmC和5mC進(jìn)行單核苷酸分辨率,發(fā)現(xiàn)高水平的5mC具有較低的mRNA富集,與此相反,高水平的5hmC具有高表達(dá)性[92]。
腦卒中是發(fā)病率、死亡率、致殘較高的疾病之一。近年來,缺血性腦卒中發(fā)病中的表觀遺傳機(jī)制成為研究的新方向,其中DNA甲基化與腦卒中的研究較多。研究表明,缺血性腦卒中患者基因啟動(dòng)子區(qū)甲基化程度明顯升高,并且甲基化程度與頸動(dòng)脈硬化程度、外周血HCY濃度相關(guān)[93]。腦缺血再灌注損傷的機(jī)制包括自由基機(jī)制、細(xì)胞內(nèi)鈣離子超載機(jī)制、興奮性氨基酸機(jī)制、一氧化氮和炎癥反應(yīng)機(jī)制等。腦梗死的危險(xiǎn)因素主要有年齡、高血壓、糖尿病、高同型半胱氨酸(Hey)血癥、血脂紊亂、吸煙、缺乏運(yùn)動(dòng)、肥胖等,這些均可增加ROS的產(chǎn)生,導(dǎo)致生物可用的一氧化氮(Nitric oxide,NO)減少,最終使血管內(nèi)皮失去正常功能。Kelly等[94]發(fā)現(xiàn),當(dāng)機(jī)體缺乏對(duì)于DNA甲基化異常重要的亞甲基四氫葉酸還原酶(MTHFR)時(shí),腦梗死的發(fā)病率呈明顯升高趨勢(shì)。血小板反應(yīng)蛋白-1(Thrombospondin 1,TSP-1)是一種有效的血管生成抑制因子,參與了血小板聚集、血管形成和腫瘤形成,研究發(fā)現(xiàn)甲基化水平增高,其編碼的mRNA表達(dá)下降,導(dǎo)致腦缺血后血管生成[95]。
血管疾病的表觀遺傳修飾還表現(xiàn)于腎、肺、視網(wǎng)膜等組織中。鼠腎組織內(nèi)CpG二核苷酸C堿基處的DNA甲基化模式發(fā)生改變,并伴隨DNA甲基化酶、RNA 聚合酶的活性下降,但在1型糖尿病患者中,糖尿病腎病相關(guān)基因(Unc-13 homolog B)則出現(xiàn)了DNA高甲基化[96],可見 DNA 甲基化在糖尿病血管病變中的作用方式相當(dāng)復(fù)雜。在小鼠模型中發(fā)現(xiàn),腎臟中DNA 5hmC及基因的表達(dá)會(huì)影響缺血再灌注損傷,(Chemokine (C-X-C motif) ligand 10)和(Interferon gamma receptor 2 (interferon gamma transducer 1))基因啟動(dòng)子區(qū)域5hmC富集減少,這可能有助于在腎臟缺血再灌注損傷過程中基因轉(zhuǎn)錄的調(diào)控[97]。
慢性阻塞性肺疾病(COPD)患者肺組織(B-cell CLL/lymphoma 2)基因啟動(dòng)子區(qū)發(fā)生異常甲基化,位于-127 bp的CpG中的C位點(diǎn)為異常甲基化好發(fā)部位,吸煙可能通過誘發(fā)基因啟動(dòng)區(qū)異常甲基化,從而影響B(tài)CL-2蛋白表達(dá),進(jìn)而參與COPD患者肺血管內(nèi)皮細(xì)胞凋亡[98]。
視網(wǎng)膜新生血管的形成是一個(gè)復(fù)雜且有多種因子參與的過程[99]。增殖型糖尿病性視網(wǎng)膜病變、早產(chǎn)兒視網(wǎng)膜病變和視網(wǎng)膜中央靜脈阻塞等病變均存在視網(wǎng)膜組織的缺血、缺氧,繼而釋放過量的血管內(nèi)皮生長(zhǎng)因子(VEGF),導(dǎo)致視網(wǎng)膜新生血管失穩(wěn)態(tài)。研究表明,β3-腎上腺素受體(Adrenoceptor beta 3, ADRB3)在視網(wǎng)膜血管內(nèi)皮細(xì)胞表達(dá),氧化應(yīng)激和細(xì)胞凋亡與其啟動(dòng)子甲基化的程度成反比,表明甲基化的損失可能是由于氧化應(yīng)激誘導(dǎo)的DNA損傷[100]。
以血管功能及結(jié)構(gòu)異常為病理基礎(chǔ)的血管疾病是當(dāng)前威脅人類健康的重要疾病,尋找其分子機(jī)制的靶向治療已成為學(xué)科研究的重點(diǎn)。已知低氧可誘導(dǎo)細(xì)胞內(nèi)DNA出現(xiàn)差異性甲基化修飾,血流動(dòng)力學(xué)可以選擇性調(diào)節(jié)多種基因表達(dá),表觀遺傳修飾與糖脂代謝有著密切的關(guān)聯(lián)。然而,現(xiàn)今對(duì)DNA和RNA的甲基化,特別是5hmC和m6A的研究尚不夠深入。由于血管功能調(diào)控的分子機(jī)制復(fù)雜,影響因素眾多,人們對(duì)其調(diào)控網(wǎng)絡(luò)的認(rèn)識(shí)還遠(yuǎn)遠(yuǎn)不夠。因此,相應(yīng)的檢測(cè)技術(shù)有待提高。通過多種組織的血管內(nèi)皮及平滑肌細(xì)胞,開展DNA及RNA表觀修飾/表達(dá)的影響實(shí)驗(yàn),利用甲基化芯片、5hmC DNA免疫共沉淀和m6A RNA免疫共沉淀的高通量測(cè)序平臺(tái),研究DNA去甲基化對(duì)基因表達(dá)的影響以及基因表達(dá)與各類表觀遺傳修飾(組蛋白修飾、非編碼RNA調(diào)控)之間的關(guān)系,建立起與血管穩(wěn)態(tài)相關(guān)細(xì)胞系中 DNA/RNA 甲基化的功能數(shù)據(jù)網(wǎng)絡(luò),以便在疾病風(fēng)險(xiǎn)的預(yù)測(cè)能力上進(jìn)行系統(tǒng)評(píng)估。
另外,DNA和RNA甲基化作為血管疾病新的診療工具,利用其修飾上的可逆特性,有助于人們尋找有效的干預(yù)靶點(diǎn)。目前,已證實(shí)了DNA甲基化轉(zhuǎn)移酶抑制劑5-氮雜胞苷(5-azacytidine)和地西他濱(Decitabine)在臨床試驗(yàn)中的有效性,期間還發(fā)現(xiàn)一些治療藥物具有一定的去甲基化作用,但由于這類藥物的作用機(jī)制尚不明確,在很大程度上限制了臨床應(yīng)用。雖然目前有很多問題亟待解決,但表觀遺傳學(xué)修飾,特別是5hmC和m6A,將有望成為新的用于血管相關(guān)疾病的早期診斷表觀遺傳標(biāo)志。
[1] Rader DJ, Parmacek MS. Secreted miRNAs suppress atherogenesis., 2012, 14(3): 233–235.
[2] Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H. Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice., 2008, 205(9): 2053–2063.
[3] Capra V, B?ck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation., 2014, 12(2): 126–137.
[4] Tsang H, Leiper J, Lao KH, Dowsett L, Delahaye MW, Barnes G, Wharton J, Howard L, Iannone L, Lang NN, Wilkins MR, Wojciak-Stothard B. Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function., 2013, 3(3): 675–691.
[5] Wang YT, Liu HZ, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF, Hunt NH, Stocker R. Kynurenine is an endothelium-derived relaxing factor produced during inflammation., 2010, 16(3): 279–285.
[6] Maron BA, Tang SS, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system., 2013, 18(3): 270–287.
[7] Marvar PJ, Gordon FJ, Harrison DG. Blood pressure control: salt gets under your skin., 2009, 15(5): 487–488.
[8] Li SY, Sun Y, Qi XD, Shi Y, Gao H, Wu Q, Liu XC, Yu HT, Zhang CJ. Protective effect and mechanism of glutaredoxin 1 on coronary arteries endothelial cells damage induced by high glucose., 2014, 24(6): 3897–3903.
[9] Millis RM. Epigenetics and hypertension., 2011, 13(1): 21–28.
[10] Liu J, Yao ST, Zhai L, Feng YL, Song GH, Yu Y, Zhu P, Qin SC. Ox-LDL down-regulates expression of pigment epithelium-derived factor in human umbilical vein endothelial cells., 2014, 66(4): 489–495.
[11] Liang Y, Yang XL, Ma LN, Cai X, Wang L, Yang C, Li GZ, Zhang MH, Sun WW, Jiang YD. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells., 2013, 45(3): 220–228.
[12] Leonard A, Paton AW, El-Quadi M, Paton JC, Fazal F. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation., 2014, 9(10): e110949.
[13] Hu SS, Zhang HG, Zhang QJ, Xiu RJ. CD51+endothelial microparticles as a biomarker of endothelial dysfunction in obese patients with hypertension., 2014, doi:10.1007/s12020-014-0423-7.
[14] Liu RJ, Jin Y, Tang WH, Qin LF, Zhang XB, Tellides G, Hwa J, Yu J, Martin KA. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity., 2013, 128(18): 2047–2057.
[15] Ning YY, Huang HD, Dong YC, Sun QY, Zhang W, Xu WJ, Li Q. 5-Aza-2’-deoxycytidine inhibited PDGF-induced rat airway smooth muscle cell phenotypic switching., 2013, 87(5): 871–881.
[16] 韓薩茹拉, 高愛琴, 李金泉, 張燕軍, 梅步俊. 成纖維細(xì)胞生長(zhǎng)因子(FGF)研究進(jìn)展. 安徽農(nóng)業(yè)科學(xué), 2009, 37(7): 3008–3010.
[17] Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li TS. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein., 2004, 36(2): 178–182.
[18] Chester AH, Yacoub MH. The role of endothelin-1 in pulmonary arterial hypertension., 2014, 2014(2): 62–78.
[19] Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis., 2010, 107(7): 839–850.
[20] Nanduri J, Makarenko V, Reddy VD, Yuan GX, Pawar A, Wang N, Khan SA, Zhang X, Kinsman B, Peng YJ, Kumar GK, Fox AP, Godley LA, Semenza GL, Prabhakar NR. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis., 2012, 109(7): 2515–2520.
[21] Semenza GL. Hypoxia-inducible factors in physiology and medicine., 2012, 148(3): 399–408.
[22] Jacob A, Potin S, Saubaméa B, Crete D, Scherrmann JM, Curis E, Peyssonnaux C, Declèves X. Hypoxia interferes with aryl hydrocarbon receptor pathway in hCMEC/D3 human cerebral microvascular endothelial cells., 2014, doi: 10.1111/jnc.12972.
[23] Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E, Keshet E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis., 1998, 394(6692): 485–490.
[24] 盛娓娓, 黃晶. 缺氧誘導(dǎo)血管新生機(jī)制的研究進(jìn)展. 心血管病學(xué)進(jìn)展, 2008, 29(5): 760–763.
[25] Van Eck M. ATP-binding cassette transporter A1: key player in cardiovascular and metabolic disease at local and systemic level., 2014, 25(4): 297–303.
[26] Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JGN, Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1., 2005, 105(2): 659–669.
[27] Conway DE, Schwartz MA. Flow-dependent cellular mechanotransduction in atherosclerosis., 2013, 126(Pt 22): 5101–5109.
[28] Ishibazawa A, Nagaoka T, Yokota H, Ono S, Yoshida A. Low shear stress up-regulation of proinflammatory gene expression in human retinal microvascular endothelial cells., 2013, 116: 308–311.
[29] 楊瓊, 武春艷, 江璐, 劉錄山. 剪切應(yīng)力-內(nèi)皮細(xì)胞-Caveolin-1信號(hào)通路在動(dòng)脈粥樣硬化中的作用. 中國(guó)動(dòng)脈硬化雜志, 2009, 17(3): 237–240.
[30] Kowluru RA, Kennedy A. Therapeutic potential of anti-oxidants and diabetic retinopathy., 2001, 10(9): 1665–1676.
[31] Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death., 2005, 7(11–12): 1581–1587.
[32] Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis., 2014, 129(15): 1551–1559.
[33] Heloter? H, Alitalo K. The VEGF family, the inside story., 2007, 130(4): 591–592.
[34] Paik JH, Kollipara R, Chu G, Ji HK, Xiao YH, Ding ZH, Miao LL, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis., 2007, 128(2): 309–323.
[35] Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DYR. Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis., 2007, 39(11): 1397–1402.
[36] Chen YQ, Zhao SP, Xiang R. RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis., 2010, 111(4): 797–800.
[37] Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee SH, Koh YJ, Koh GY, Choi C, Yu DY, Kim J, Kang SW. Peroxiredoxin Ⅱ is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells., 2011, 44(4): 545–558.
[38] Yan MH, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD. Chronic DLL4 blockade induces vascular neoplasms., 2010, 463(7282): E6–E7.
[39] Chang SR, Young BD, Li SJ, Qi XX, Richardson JA, Olson EN. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10., 2006, 126(2): 321–334.
[40] Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilin1 links TGF-β maturation to blood pressure homeostasis., 2006, 124(5): 929–942.
[41] Raman M, Cobb MH. TGF-β regulation by Emilin1: new links in the etiology of hypertension., 2006, 124(5): 893–895.
[42] Lakshmi SVV, Naushad SM, Reddy CA, Saumya K, Rao DS, Kotamraju S, Kutala VK. Oxidative stress in coronary artery disease: epigenetic perspective., 2013, 374(1–2): 203–211.
[43] Komatsu M, Ruoslahti E. R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis., 2005, 11(12): 1346–1350.
[44] Berthe MC, Bernard M, Rasmusen C, Darquy S, Cynober L, Couderc R. Arginine or citrulline associated with a statin stimulates nitric oxide production in bovine aortic endothelial cells., 2011, 670(2–3): 566–570.
[45] Bird A. DNA methylation patterns and epigenetic memory., 2002, 16(1): 6–21.
[46] Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review)., 2012, 5(4): 883–889.
[47] Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gon?alves I, Moran S, Esteller M. A DNA methylation map of human atherosclerosis., 2014, 7(5): 692–700.
[48] Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E., 2004, 279(28): 29147–29154.
[49] Krause BJ, Costello PM, Mu?oz-Urrutia E, Lillycrop KA, Hanson MA, Casanello P. Role of DNA methyltransferase 1 on the altered eNOS expression in human umbilical endothelium from intrauterine growth restricted fetuses., 2013, 8(9): 944–952.
[50] Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, Sharaf O, Baugh JA. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype., 2014, 23(8): 2176–2188.
[51] Jiang YZ, Jiménez JM, Ou K, McCormick ME, Zhang LD, Davies PF. Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoterand., 2014, 115(1): 32–43.
[52] Dunn J, Qiu HW, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan CY, Fan YH, Jordan IK, Jo H. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis., 2014, 124(7): 3187–3199.
[53] Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes., 2009, 58(12): 2718–2725.
[54] 權(quán)媛, 錢民章. 膽固醇通過NADPH氧化酶誘導(dǎo)ROS升高, NF-κB活化進(jìn)而導(dǎo)致內(nèi)皮細(xì)胞損傷. 中國(guó)病理生理雜志, 2010, 26(8): 1521–1526.
[55] Kumar A, Kumar S, Vikram A, Hoffman TA, Naqvi A, Lewarchik CM, Kim Y-R, Irani K. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol., 2013, 33(8): 1936–1942.
[56] Kinney SRM, Pradhan S. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer., 2013, 754: 57–79.
[57] Piccolo FM, Bagci H, Brown KE, Landeira D, Soza-Ried J, Feytout A, Mooijman D, Hajkova P, Leitch HG, Tada T, Kriaucionis S, Dawlaty MM, Jaenisch R, Merkenschlager M, Fisher AG. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion., 2013, 49(6): 1023–1033.
[58] Guibert S, Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development., 2013, 104: 47–83.
[59] Kato T, Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders., 2014, 80: 133–139.
[60] Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome., 2012, 13(1): 7–13.
[61] Dalton SR, Bellacosa A. DNA demethylation by TDG., 2012, 4(4): 459–467.
[62] Ponnaluri VKC, Maciejewski JP, Mukherji M. A mechanistic overview of TET-mediated 5-methylcytosine oxidation., 2013, 436(2): 115–120.
[63] Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine., 2011, 29(1): 68–72.
[64] Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification., 2010, 466(7310): 1129–1133.
[65] Li WW, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues., 2011, 2011:Article ID 870726.
[66] Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons., 2012, 149(7): 1635–1646.
[67] Niu YM, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function., 2013, 11(1): 8–17.
[68] Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO., 2011, 7(12): 885–887.
[69] Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, V?gb? CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility., 2013, 49(1): 18–29.
[70] Li DY, Delaney JC, Page CM, Yang XD, Chen AS, Wong C, Drennan CL, Essigmann JM. Exocyclic carbons adjacent to the N6of adenine are targets for oxidation by theadaptive response protein AlkB., 2012, 134(21): 8896–8901.
[71] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq., 2012, 485(7397): 201–206.
[72] Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T, Mancini FP. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms?, 2012, 125(19): 2363–2373.
[73] Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview., 2005, 20(3): 345–352.
[74] Huang YS, Zhi YF, Wang SR. Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine., 2009, 16(4): 259–265.
[75] Zhu SK, Goldschmidt-Clermont PJ, Dong CM. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis., 2005, 112(9): 1353–1361.
[76] Friso S, Lotto V, Choi SW, Girelli D, Pinotti M, Guarini P, Udali S, Pattini P, Pizzolo F, Martinelli N, Corrocher R, Bernardi F, Olivieri O. Promoter methylation in coagulation F7 gene influences plasma FⅦ concentrations and relates to coronary artery disease., 2012, 49(3): 192–199.
[77] Zelko IN, Mueller MR, Folz RJ. CpG methylation attenuates Sp1 and Sp3 binding to the human extracellular superoxide dismutase promoter and regulates its cell-specific expression., 2010, 48(7): 895–904.
[78] Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells., 2005, 175(6): 3846–3861.
[79] Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, Wu YJ, Sun K, Yuan ZY, Hui RT. Methylation ofin regulatory T cells is related to the severity of coronary artery disease., 2013, 228(2): 346–352.
[80] Connelly JJ, Cherepanova OA, Doss JF, Karaoli T, Lillard TS, Markunas CA, Nelson S, Wang T, Ellis PD, Langford CF, Haynes C, Seo DM, Goldschmidt-Clermont PJ, Shah SH, Kraus WE, Hauser ER, Gregory SG. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis., 2013, 22(25): 5107–5120.
[81] Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY, Lu SC. Malondialdehyde mediates oxidized LDL- induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation., 2014, 21: 11.
[82] Liu C, Xu DW, Sj?berg J, Forsell P, Bj?rkholm M, Claesson HE. Transcriptional regulation of 15-lipoxy-genase expression by promoter methylation., 2004, 297(1): 61–67.
[83] Zawadzki C, Chatelain N, Delestre M, Susen S, Quesnel B, Juthier F, Jeanpierre E, Azzaoui R, Corseaux D, Breyne J, Torpier G, Staels B, Van Belle E, Jude B. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques., 2009, 204(2): e4–e14.
[84] Nuyt AM, Szyf M. Developmental programming through epigenetic changes., 2007, 100(4): 452–455.
[85] 姜怡鄧, 張建中, 黃英, 蘇娟, 張敬各, 王麗珍, 韓曉群, 王樹人. 高半胱氨酸在平滑肌細(xì)胞中介導(dǎo)DNA甲基化及機(jī)制的研究. 生物化學(xué)與生物物理進(jìn)展, 2007, 34(5): 479–489.
[86] Lee HA, Baek I, Seok YM, Yang EY, Cho HM, Lee DY, Hong SH, Kim IK. Promoter hypomethylation upregulates Na+-K+-2Cl-cotransporter 1 in spontaneously hypertensive rats., 2010, 396(2): 252–257.
[87] 張揚(yáng), 鄒曉譯, 劉雙江, 孫強(qiáng), 丁麗君, 郝佳, 趙君. PPARγ C161→T、α-內(nèi)收蛋白Gly460Trp基因多態(tài)性與原發(fā)性高血壓的關(guān)系. 疑難病雜志, 2014, 13(6): 563–566.
[88] Noer A, Boquest AC, Collas P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence., 2007, 8: 18.
[89] Noer A, S?rensen AL, Boquest AC, Collas P. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue., 2006, 17(8): 3543–3556.
[90] Rivière G, Lienhard D, Andrieu T, Vieau D, Frey BM, Frey FJ. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation., 2011, 6(4): 478–489.
[91] Senanayake GVK, Banigesh A, Wu LY, Lee P, Juurlink BHJ. The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats., 2012, 25(2): 229–235.
[92] Liu Y, Liu PY, Yang C, Cowley AW, Liang MY. Base-resolution maps of 5-methylcytosine and 5-hydro-xymethylcytosine in Dahl S rats: effect of salt and genomic sequence., 2014, 63(4): 827–838.
[93] 魏艷. P53基因啟動(dòng)子區(qū)甲基化狀態(tài)與缺血性腦卒中的相關(guān)性研究[學(xué)位論文]. 濟(jì)南: 山東大學(xué), 2012.
[94] Kelly PJ, Rosand J, Kistler JP, Shih VE, Silveira S, Plomaritoglou A, Furie KL. Homocysteine, MTHFR 677C→T polymorphism, and risk of ischemic stroke: results of a meta-analysis., 2002, 59(4): 529–536.
[95] Hu CJ, Chen SD, Yang DI, Lin TN, Chen CM, Huang THM, Hsu CY. Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells., 2006, 26(12): 1519–1526.
[96] Trégouet DA, Groop PH, McGinn S, Forsblom C, Hadjadj S, Marre M, Parving HH, Tarnow L, Telgmann R, Godefroy T, Nicaud V, Rousseau R, Parkkonen M, Hoverf?lt A, Gut I, Heath S, Matsuda F, Cox R, Kazeem G, Farrall M, Gauguier D, Brand-Herrmann SM, Cambien F, Lathrop M, Vionnet N, EURAGEDIC Consortium. G/T substitution in intron 1 of thegene is associated with increased risk of nephropathy in patients with type 1 diabetes., 2008, 57(10): 2843–2850.
[97] Huang N, Tan L, Xue ZG, Cang J, Wang H. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion., 2012, 422(4): 697–702.
[98] Zeng HH, Kong XL, Peng H, Chen Y, Cai S, Luo H, Chen P. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease., 2012, 16(6): 711–727.
[99] Gariano RF, Gardner TW. Retinal angiogenesis in development and disease., 2005, 438(7070): 960–966.
[100] Safi SZ, Qvist R, Yan GOS, Ismail ISB. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells., 2014, 7: 29.
(責(zé)任編委: 朱衛(wèi)國(guó))
The effects of DNA methylation on the homeostasis in vascular diseases
Xiaoying Chen, Huadan Ye, Qingxiao Hong, Annan Zhou, Linlin Tang, Shiwei Duan
Homeostasis is fundamental to maintain normal physiological functions in our body. Internal and external physical, chemical and biologial changes can cause dysregulation of vascular homeostasis, which is closely associated with the homeostasis of oxygen supply, blood transportation and lipid metabolism. Subsequent epigenetic modifications are able to lead to abnormal structures and function of vessels. DNA methylation has been shown to play a vital role in the development of vascular diseases. In addition, 5-hydroxymethylcytosine (5hmC) and N6-methyladenine (m6A), as new epigenetic modifications, provide additional clues for vascular diseases. In this review, we summarize the effects of DNA methylation on the homeostasis dysregulation in the vascular diseases.
DNA methylation; vascular homeostasis; 5hmC; m6A
2014-09-29;
2014-12-18
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31100919),浙江省自然科學(xué)基金杰出青年項(xiàng)目(編號(hào):LR13H020003)和浙江省自然科學(xué)基金學(xué)術(shù)交流項(xiàng)目(編號(hào):LS14H26001)資助
陳曉穎,碩士研究生,專業(yè)方向:遺傳學(xué)。E-mail: cxywzmc@163.com
段世偉,博士,研究員,研究方向:遺傳學(xué)。E-mail:duanshiwei@nbu.edu.cn
10.16288/j.yczz.14-327
2015-1-15 10:05:59
http://www.cnki.net/kcms/detail/11.1913.R.20150115.1005.001.html