• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radar maneuvering target tracking algorithm based on human cognition mechanism

    2019-08-13 02:22:00ShuliangWANGDapingBIHuailinRUANMingyangDU
    CHINESE JOURNAL OF AERONAUTICS 2019年7期

    Shuliang WANG,Daping BI,Huailin RUAN,Mingyang DU

    College of Electronic Engineering,National University of Defence Technology,Hefei 230037,China

    KEYWORDS Human visual attention;Memory;Radar Maneuvering Targets Tracking;Validation gate;Waveform selection

    Abstract Radar Maneuvering Targets Tracking(RMTT)in clutter is a quite challenging issue due to the errors in the models and the varying dynamics of the processes.Modern radar tracking system calls for the adaptive signal and data processing algorithm urgently to adapt the uncertainty of the environment.The mechanism of human cognition can help persons cope with the similar difficulties in visual tracking.Inspired by human cognition mechanism,a comprehensive method for RMTT is proposed.In the method,the model transition probability in Interacting Multiple Model(IMM)and the validation gate can be adjusted dynamically with target maneuver;the waveform in radar transmitter can vary with the perception of the environment.Experimental results in cluttered scenes show that the proposed algorithm is more accurate for perceiving the environment and targets,and the waveform selection algorithm is better than that with fixed waveform.

    1.Introduction

    There are mainly two challenging issues in the task of Radar Maneuvering Targets Tracking(RMTT).The first challenge is caused by the changing motion of targets.To reduce the motion uncertainty,there are two main directions for motion model1,2: (A) Single model. The Constant Velocity (CV)model,Constant Acceleration(CA)model,Singer model,Jerk model and Current Statistic(CS)model,can fall under the first category. (B) Multiple models. The Interacting Multiple Model(IMM)and Varied Structure Multiple Model(VSMM),can fall under the second category.

    The second challenging issue is caused by the measurementorigin uncertainty.The radar's measurements can consist of range,azimuth,elevation and other location features.The commonly used technique relies on the Mahalanobis distance metric,which is the square of the norm of the error with respect to its covariance.3According to the validation gate rule,the measurements whose distance is lower than a threshold are called candidate measurements.The typical methods include the Nearest Neighbor(NN)algorithm,the Probability Data Association(PDA)algorithm,the Joint Probability Data Association(JPDA)algorithm and so on.3,4The validation gate is an important factor affecting the radar's computing resources consumption and track loss.If the validation gate is too large,more measurements will fall into the gate to make the computing time larger.If the gate is too small,it may cause track loss when the maneuver of target happens.5

    The uncertainty of state estimation depends on the predicted uncertainty and the measurement uncertainty.The measurement error covariance can be quantified by the Cramer-Rao Lower Bound(CRLB),which is derived from the curvature of the waveform ambiguity function at the origin in the time delay-Doppler plane.6When the predicted error covariance ellipsoid(e.g.,the determinant of the error covariance matrix) and measurement error covariance ellipsoid are orthogonal,the uncertainty of state estimation will be the lowest.7Furthermore,inspired by human cognition mechanism,such as the Perception-Action Cycle(PAC),memory,attention and intelligence,Haykin et al.first explicitly proposed cognitive radar.8,9The intrinsic trait of cognitive radar is to adaptively change the transmitted waveform to improve the tracking performance.10-19The determinant of estimated error covariance matrix,called perceptual information entropy,is used to describe the radar's real-time perception for target's dynamics.19

    This paper presents a novel tracking framework for RMTT based on the mechanism of human cognition.This method attempts to contribute in the following three aspects:(A)Inspired by the three-stage memory mechanism of human brain,‘‘memory”is nested in IMM algorithm to overcome the tracking precision degradation problem when the model transition probability is set improperly.The model transition probability can be adaptively adjusted to weaken the bad competition of the mismatched model.(B)Inspired by the mechanism of human visual attention,an adaptive validation gate is designed.The center and volume of the validation gate are weighted by the models'interaction in IMM.The maneuvering model occupies the dominant position in the model interaction to make the maneuvering target fall into the gate.On the other hand, when the target is in weak maneuver, the nonmaneuvering model plays an important role which makes the validation gate smaller.The computing resources consumption and the tracking success rate are both improved.(C)Inspired by human PAC mechanism,radar waveform selection is also considered.Based on the criterion of minimum information entropy,19the transmitted waveform parameters can be adjusted dynamically to improve the tracking performance.

    The remainder of this paper is organized as follows.The mechanism of human cognition is given in Section 2.The tracking process,especially the adaptive filtering model,adaptive validation gate,and waveform selection are described in Section 3.Then,experimental results are given in Section 4.Finally,Section 5 concludes the paper.

    2.Mechanism of human cognition

    2.1.Perception-Action Cycle(PAC)

    The perception and action are the two important functions in the visual brain.9In the brain,the cortical sensory area is stimulated by cognitive tasks,and the information obtained is fed back to the cortical motion area.The cortical motion area adjusts the stimuli with the help of the existing knowledge and guidelines to better complete the cognitive task.The net result of these two functions,working together in a coordinated fashion,is the perception-action cycle.

    2.2.Human memory

    Memory is one of the key mechanisms of human perception,which can be divided into three levels,namely,sensory memory,short-term memory and long-term memory.As shown in Fig.1,20sensory memory refers to the retention of information input in a short time.Short-term memory refers to a memory system with a small amount of information stored in a short period of time.The information from the short-term memory is as the output and partly stored in the long-term memory. In the process, the useful information can be abstracted from the long-term memory to guide the information output.The long-term memory contains a large amount of information,such as the experience,knowledge and the rules,which can be maintained for a long time.

    2.3.Human visual attention

    Visual attention is another key mechanism of human perception that enables humans to effectively select the visual data with most potential interest.20,21The selective attention model that the information processing requires four stages:sensory memory,selective filter,detector and memory.The selective filter can identify the outside information based on the characteristics of the stimulus,while only allowing the information noticed into the detector,thus saving human resources.The attention is guided by two principles22: top-down and bottom-up factors. Top-down attention is driven by preknowledge,context,expectation,and current goals.On the other hand,bottom-up attention is derived solely from the perceptual data.

    3.Tracking process

    3.1.Target dynamic and measurement model

    3.1.1.Target dynamic model

    The target dynamics is modeled by a linear model1,15

    where j=1,2,···,r is the dynamic model at time k.We writefor the state of the track,which represent the range,velocity and acceleration in the Cartesian coordinates respectively.F1,F2,···,Frare the state transition matrices for the different maneuvers.U1,U2,···,Urare the acceleration input matrices.are mean acceleration matrices.Process noise is denoted by W1,W2,···,Wr.The covariance matrices of the process noise are Q1,Q2,···,Qr,which are zero-mean Gaussian white noise sequences.

    Fig.1 Information flow of human memory for information processing.20.

    We assume the changes in target trajectory can be modeled as a Markov chain with given transition probabilities as follows:15

    where M(k)is the model at timek.

    3.1.2.Target measurement model

    The measurement equation of the target is

    A Gaussian pulse base band signal envelope is as follows6:

    where,λ is the duration of the Gaussian envelope,b is the chirp rate.We use the vector θ= [λ,b ]as the waveform library parameter that will be used for waveform selection algorithm.The CRLB of measurement noise covariance(the measurement Y(k)=[rk,˙rk]T)can be achieved as

    where η is signal-to-noise ratio,c is speed of electromagnetic wave,fcis the carrier frequency.Furthermore,the measurement standard error covariance of bearing β is also considered,and its expression is14

    where Ψbwis the 3 dB beamwidth of the radar antenna;kmis the monopulse error slope.Then,the measurement error covariance Rθofcan be expressed as follows:

    3.2.Adaptive filtering model

    There are four main steps in IMM:Input interaction,Modelconditional filtering,Model probability updating,Estimation fusion.

    Step 1.Input interaction

    Calculate the mixed initial condition of various models Mj(k)in IMM tracking.

    Step 2.Model-conditional filtering

    The one-step predicted output of model j at time k areandAnd the corresponding filtering output areand

    Step 3.Model probability updating

    The likelihood function is

    where vj(k)is the filtering residual and Sj(k,θ)is the corresponding covariance.Update the model probability as

    Step 4.Estimation fusion

    Estimated state and covariance matrix can be obtained as

    From the above flow of IMM,the Markov model transition probability matrix πij(k)determines the degree of the input interaction.Generally,a fixed main diagonally dominant matrix is selected for IMM according to the prior information.However,the fixed transition probability matrix will bring unnecessary competition among models,and reduce the tracking accuracy.23Next,we propose a time-varying model Transition probability IMM(TIMM)with the following rule:(A)When the value λj(k)=μj(k)/μj(k-1)is bigger than 1,the contribution of the model j in IMM should be enhanced at the next time. (B) When the value λj(k)=μj(k)/μj(k-1) is smaller than 1, the contribution of model j should be weakened at the next time.The rule of modifying the model transition probability can be expressed as follows:

    Considering the sum of the probability that a model is transferred to all models at each time is 1,the updated model transition probability can be obtained by the following normalization:

    Fig.2 Time-varying model transition probability IMM based on human memory.

    The rule for time-varying πij(k)can be stored in the longterm memory to guide the adjustment of the filtering model structure.As shown in Fig.2,the sensory memory is used to calculate the current model probability,which is often reflected at the present time.The short-term memory is used to store the model probability at the last time.With the rule and knowledge from the long-term memory,the model transition probability is modified.Then,the model transition probability is stored in the short-term memory and also sent to the input interaction step of IMM.

    3.3.Adaptive validation gate

    The center and size of the validation gate at timekare determined by the one step prediction center Y(k|k -1)and the innovation covariance matrix S(k).The candidate measurement falling into the gate can be expressed as

    where,γ is the threshold.The measurements play a role of‘‘bottom-up attention”.With IMM algorithm,the state of each model filter is interacted at time k-1.The predicted center and innovation covariance of each filter are obtained through one step prediction.In traditional IMM-PDA algorithm,as shown in Fig.3(a),each model uses validation gate formed by their own predicted center and innovation covariance matrix.This structure with different sub filter using different validation gate may lead to computation resources consumption large and track loss.Inspired by the mechanism of human visual attention,we propose an adaptive validation gate algorithm,24in which the sub filter uses the common gate.The structure of proposed adaptive validation gate IMM-PDA algorithm is shown in Fig.3(b).In the algorithm,the predicted center and innovation covariance are weighted according to the model predicted probability.The weighted center is

    Covariance matrix of comprehensive innovation is

    The center and innovation covariance play a role of‘‘upbottom attention”.The volume of the validation gate is

    where nYis the dimension of measurements and cnYdepends on

    Fig.3 Target state estimation process with fixed validation gate and adaptive validation gate.

    3.4.Waveform selection

    It can be imagined that the waveform library is a twodimensional grid,each grid of which represents an available waveform,and the location of the grid is uniquely determined.The Waveform Library(WL)of Eq.(4)can be expressed as

    where min and max represent the minimum and maximum values of the designed parameters;Δ is the step values of the parameters.

    From Fig.4,the information flow can be described as follows:

    (1)First,the information entropycomputed with waveform library parameter from Θ and PDA algorithm is given at time k.

    (2)Then,the information entropy with different waveforms are preserved in a short-term memory for the next time.It is called short-term memory because the previous value will be overwritten at the next time.

    (3)Finally,the waveform parameteris selected with the optimal criterionand sent to perceive the environment and targets at the next time.

    3.5.Tracking framework for RMTT and performance analysis

    From the above analysis of the tracking process,the whole tracking framework for RMTT based on human cognition mechanism can be given as Fig.5.To explain the complexity of the proposed algorithm,we define the following parameters:(A)Ns:the number of model set in IMM;(B)Nv:the candidate measurements falling into the gate;(C)Ng:the waveformparameter grid size.

    The IMM model contains possible model set of the target motion,which can be switched according to the target maneuver.However,there is a dilemma in the selection of model set.More models are needed to adapt the target's maneuver,but too many models may result in large computation and may even reduce the performance.23In this paper,we use CS model and CV model as the model set of IMM.In the algorithm,CS model can be used to track the high maneuvering target,and the CV model is used to overcome the lower precision of CS model for weak maneuvering target.

    From Eqs.(20)and(21),the validation gate can be dynamically adjusted according to model prediction probability.If the current target is highly maneuverable,the CS model occupies the dominant position in the model interaction to make the maneuvering target fall into the gate.On the other hand,when the target is in weak maneuver,the validation gate will be reduced to obtain high tracking precision and low computation time consumption.

    Fig.4 Information flow in waveform selection.

    Fig.5 RMTT algorithm based on human cognition mechanism.

    With the criterion of Eq.(23),the waveform selection is greedy.This strategy may lead to two aspects of the problem:(A)the computation time consumption is large;(B)the waveform may fall into local optimal area.A mixed strategy(called greedy strategy κ)is proposed.The greedy strategy κ is as follows:(A)The waveform parameteris selected randomly from the waveform library Θ with the probability of κ;(B)With the probability of 1-κ,the waveform parameteris selected based on the optimal criterion as Eq.(23).

    4.Presentation of results

    The radar is deployed in(0,0)m,and can provide range,range rate and the bearing measurements.An airplane,starting from(1.25×104,1.5×104)m at time t=0 s,flies for 18 s with the initial velocity(-100,-50)m/s.Then,it turns left with the turn rate ω=4.77(°)/s for 25 s.After the turn,the airplane continues with current velocity for 10 s.Then,the airplane performs right turn with the turn rate ω=4.77(°)/s for 26 s.Finally,the airplane continues with current velocity for 21 s.The sampling interval is Δt=1 s.

    In the experiment,PDA algorithm is used for single target tracking in clutter,and the Extended Kalman Filter(EKF)algorithm is used for non-linear tracking.The adaptive filtering model is IMM,with the model set CV and CS.The maximum acceleration amaxin CS model is set to be 50 m/s2,and the maneuvering frequency constant is set to be 1/60.The initial model probability of the two models is assumed to be 1/2 respectively.The fixed Markov model transition probability matrix is set to be

    Monte Carlo simulations are performed.To evaluate the tracking performance, we select the following criteria for tracking accuracy,efficiency and the track loss.Here,(A)range and velocity estimation Root Mean Square Error(RMSE),and the Average RMSE(ARMSE) are used to describe the accuracy;(B)the computation time is used to describe the efficiency.(C)a track is considered to be lost when the estimated target falls out of the ten-sigma region centered around the true position in the measurement space.14The Successful Tracking Rate(STR)is measured as the ratio of successful tracking number to the total Monte Carlo simulations.

    4.1.Adaptive filtering model and validation gate

    The measurement accuracy of range,range rate and bearing are set to be 50 m,5 m/s,and 0.1°respectively.Time-varying model TIMM algorithm is compared with the CS model and the traditional IMM algorithm.Fig.6 shows the comparison of range and velocity RMSE of the three algorithms.Fig.7 shows the model probability using IMM and TIMM algorithms.

    CS model algorithm has poor performance for tracking weak maneuvering targets.26As shown in Fig.6,the IMM algorithm is used to improve the tracking accuracy of the weak maneuvering target by introducing the competition of the CV model.However,it also brings about the problem of poor tracking accuracy for strong maneuvering targets.The TIMM algorithm is used to make the model transition probability changing with the current measurements.The model with larger probability is easier to transfer to itself,thus reducing the undesirable competition of the mismatch model.As shown in Fig.7,using the TIMM algorithm,the probability is well separated from each other.

    The target detection probability Pdis assumed to be 1.The validation gate is set to be ellipsoid,and its region is set to be four-sigma.The density of the clutters ρ is the false measurement number per unit volume.The adaptive filtering model is TIMM. The Adaptive validation gate TIMM-PDA(ATIMM-PDA)algorithm is compared with the traditional TIMM-PDA algorithm.Table 1 shows the STR in 100 Monte Carlo simulations.Fig.8 is the volume curve of validation gate changing with time using ATIMM-PDA algorithm.Fig.9 is the computation time histogram under different clutter density background(clutter density 1,2,3 are ρ=0.01,ρ=0.10 and ρ=0.50 respectively).

    Fig.6 Comparisons of range and velocity RMSE for tracks.

    Fig.7 Comparisons of model probability with IMM and TIMM algorithms.

    Table 1 Comparison of performance metric for TIMM-PDA and ATIMM-PDA.

    Fig.8 Validation gate volume using ATIMM-PDA algorithm.

    Fig.9 Histogram of computing time in different clutter density.

    From Table 1,it can be seen that when the clutter density is ρ=0.10,the STR of the TIMM-PDA algorithm is only 29%,and it has been seriously invalid.Based on ATIMM-PDA framework,the predicted center and the innovation covariance can be adjusted dynamically according to the maneuver of target(the interacting model is the compromise of CS model and CV model as shown in Fig.8).As shown in Fig.9,the traditional TIMM-PDA algorithm has a large amount of time consuming,because these two sub models use their own candidate measurements.The proposed ATIMM-PDA algorithm uses a common adaptive validation gate and the measurements in the gate.Therefore,compared to TIMM-PDA,ATIMM-PDA algorithm has lower computation time when maintaining a higher STR.

    4.2.Adaptive waveform selection

    The radar transmitted waveform is X band, whose carrier frequency is 10.4 GHz,and the transmitted signal is shown in Eq.(4).For simplicity,the chirp rate b is set to be 0 in the simulation. The waveform parameter library iss in Θ and the grid step-size Δλ=2×10-6s.The half power beam width of the antenna is set to be 3o.Under constant transmitted energy constraint,the SNR can be obtained from η=(r0/r)4.ris the range between the target and radar.In the simulation,r0is set to be 50 km.

    The Fixed Waveform(FW)algorithm is with four different waveforms,which are λ=4×10-6s in θ1,λ=10×10-6s in θ2,λ=12×10-6s in θ3and λ=20×10-6s in θ4respectively.The Waveform Selection(WS)algorithm selects the waveform parameter from the librarys in Θ.The greedy parameter is set to be κ=10%.Table 2 shows the STR in 100 Monte Carlo simulations.

    Table 2 Comparison of performance metric for FW and WS algorithms.

    Fig.10 Comparisons of range and velocity RMSE for tracks.

    Table 3 Comparisons of performance metrics for FW and WS algorithms.

    Then,assume the density of clutter is ρ=0.01,the tracking performance comparison for the WS algorithm with 10%-greedy and FW algorithm is shown in Fig.10.The FW algorithm chooses the waveform parameter θ1and θ2respectively.Table 3 shows the tracking ARMSE with different algorithms.The dynamic selection of pulse duration time in one Monte Carlo simulation for the proposed algorithm is given in Fig.11.The comparison of tracking uncertainty is shown in Fig.12.

    It can be seen from Table 2 that the WS algorithm significantly improves the tracking performance in STR metrics.Using the minimum information entropy criterion,the WS algorithm is greedy,it may fall into the local optimal region,and lead to more track losses.WS algorithm 10%-greedy has 10%random waveform,which can make WS algorithm jump out of the local area.Therefore,it has a higher STR than the WS algorithm.

    Fig.11 Dynamic selection of Pulse duration time.

    It can be seen from Fig.10 and Table 3 that the range RMSE of waveform 2 is worse than that of waveform 1.The velocity RMSE of waveform 2 is better than the velocity RMSE of waveform 1.Considering all the waveform in the waveform library,the computation time of WS algorithm is larger than the FW algorithm and the WS algorithm 10%-greedy.The range and velocity ARMSE of the WS algorithm is similar to the range and velocity ARMSE of the 10%-greedy algorithm,both of which are obviously better than the FW algorithm.It can be seen from Fig.11 that the WS with 10%-greedy algorithm can dynamically select waveform parameters to continuously balance the measurement error covariance of range and range rate(λ=2×10-6s is selected with the probability 60%approximately;λ=20×10-6s is selected with the probability 30%approximately;the last 10%is for the random selection).

    Fig.12 Tracking uncertainty of three algorithms.

    From the comparison of tracking uncertainty in Fig.12,we can find that the algorithm with waveform 1 is better than that with waveform 2,and the waveform selection algorithm is much better than that with fixed waveform.Meanwhile,the tracking stability of WS algorithm with 10%-greedy is superior and robust.

    5.Conclusions

    Intelligence is the main function of human cognition,and also an important direction for the development of next generation radar.In this paper,radar signal and data adaptive processing based on human cognitive mechanism is an important exploration of this trend.The main conclusions of this paper are as follows:

    (1)The time-varying model transition probability IMM is an adaptive filtering model for RMTT.The ratio of model probability with current time and the last time is used to adjust the transition probability.This mechanism makes the cooperation and competition among models more proper to improve the tracking performance.

    (2)Adaptive validation gate is very similar to the selective attention in human cognition,which can capture the target of attention with the least computing resources.When the target is maneuvering,the validation gate becomes larger and the target is dropped into the gate.Similarly,when the target maintains a constant velocity,the validation gate becomes smaller, which reduces the candidate measurements in the gate to improve tracking accuracy and efficiency.Clutter environment adaptability with adaptive validation gate is far better than that with fixed validation gate.

    (3)Waveform selection algorithm includes perception of environment and adapting actions to environment.This is very similar to the mechanism of human Perception of Action Cycle (PAC). In this algorithm, the information entropy of different waveforms is stored in short-term memory by online learning from the environment.Then,according to a certain criterion,the appropriate waveform can be extracted to change the measurement noise covariance to adapt to the changing environment.

    (4)The greedy strategy κ for waveform selection has two aspects of advantages:(A)The optimal selected waveform makes the tracking performance better than that with the fixed waveform. (B) The random selection makes sure that it can easily jump out of the local optimal region.The computational resources are also allocated properly.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.61671453)and the Anhui Province Natural Science Fund Project, China (No.1608085MF123).

    91午夜精品亚洲一区二区三区| 男女无遮挡免费网站观看| 麻豆国产97在线/欧美| 又粗又硬又长又爽又黄的视频| 成人黄色视频免费在线看| 国产精品一区二区三区四区免费观看| 韩国高清视频一区二区三区| 免费观看的影片在线观看| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 高清午夜精品一区二区三区| 成人午夜精彩视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久精品电影小说 | 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 涩涩av久久男人的天堂| 亚洲av成人精品一区久久| 亚洲av中文字字幕乱码综合| 国产毛片在线视频| 久久精品国产亚洲av天美| 日本一本二区三区精品| 国产一区有黄有色的免费视频| 成年免费大片在线观看| 女人被狂操c到高潮| 尤物成人国产欧美一区二区三区| 黄色欧美视频在线观看| 美女被艹到高潮喷水动态| 久久久精品免费免费高清| 伦精品一区二区三区| 白带黄色成豆腐渣| 国产精品麻豆人妻色哟哟久久| av黄色大香蕉| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情五月婷婷啪啪| 国产爱豆传媒在线观看| 黄片wwwwww| 国产精品人妻久久久影院| 青青草视频在线视频观看| 精品久久久久久久末码| 黄色视频在线播放观看不卡| 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 水蜜桃什么品种好| 婷婷色av中文字幕| 亚洲在线观看片| 日韩一区二区视频免费看| videos熟女内射| 国产高清三级在线| 秋霞伦理黄片| 国产精品.久久久| 亚洲精品aⅴ在线观看| 国产成人精品久久久久久| 亚洲天堂av无毛| 日韩强制内射视频| 能在线免费看毛片的网站| 少妇熟女欧美另类| 欧美成人午夜免费资源| 亚洲av在线观看美女高潮| videos熟女内射| 国产成人a区在线观看| 精品久久久噜噜| 夜夜爽夜夜爽视频| 人妻一区二区av| 国产高清不卡午夜福利| 国产男女超爽视频在线观看| 成年版毛片免费区| 免费观看在线日韩| 高清午夜精品一区二区三区| 内地一区二区视频在线| 美女被艹到高潮喷水动态| 日韩欧美一区视频在线观看 | 又大又黄又爽视频免费| 国产真实伦视频高清在线观看| 精品国产乱码久久久久久小说| 久久久久久久久大av| 亚洲av福利一区| 欧美性感艳星| 一二三四中文在线观看免费高清| 男女边吃奶边做爰视频| 激情五月婷婷亚洲| 亚洲高清免费不卡视频| 乱系列少妇在线播放| 极品少妇高潮喷水抽搐| 精品一区在线观看国产| 久久影院123| 久久6这里有精品| 韩国av在线不卡| 国产成人a区在线观看| 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| 日韩欧美精品v在线| 少妇的逼好多水| av国产精品久久久久影院| 亚洲精品日本国产第一区| 亚洲欧美日韩另类电影网站 | 亚洲美女视频黄频| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 亚洲国产精品成人综合色| 男人和女人高潮做爰伦理| 欧美极品一区二区三区四区| 免费黄频网站在线观看国产| 一级爰片在线观看| 伦精品一区二区三区| 亚洲av二区三区四区| 亚洲欧美日韩东京热| 你懂的网址亚洲精品在线观看| 国产成年人精品一区二区| 网址你懂的国产日韩在线| 特级一级黄色大片| 久久久久国产网址| 嘟嘟电影网在线观看| 午夜亚洲福利在线播放| 欧美xxxx黑人xx丫x性爽| 免费观看的影片在线观看| 最后的刺客免费高清国语| 18禁裸乳无遮挡免费网站照片| 国产成人aa在线观看| 在线亚洲精品国产二区图片欧美 | 欧美日本视频| 久久久久久九九精品二区国产| 亚洲av.av天堂| 天美传媒精品一区二区| 国产精品99久久99久久久不卡 | 亚洲婷婷狠狠爱综合网| 国产男女超爽视频在线观看| 黄色一级大片看看| 日韩人妻高清精品专区| 日韩av不卡免费在线播放| tube8黄色片| 欧美一级a爱片免费观看看| 人人妻人人爽人人添夜夜欢视频 | tube8黄色片| 欧美潮喷喷水| 大香蕉久久网| 婷婷色麻豆天堂久久| 国产精品无大码| 1000部很黄的大片| 极品教师在线视频| 男女那种视频在线观看| 高清视频免费观看一区二区| 国产午夜精品一二区理论片| 欧美成人精品欧美一级黄| 在线播放无遮挡| 国产免费福利视频在线观看| 亚洲精品视频女| 夫妻午夜视频| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 国产亚洲av片在线观看秒播厂| 中文在线观看免费www的网站| 亚洲av二区三区四区| 欧美bdsm另类| 噜噜噜噜噜久久久久久91| 日本一二三区视频观看| 欧美高清性xxxxhd video| 欧美97在线视频| 欧美高清成人免费视频www| 色网站视频免费| 又大又黄又爽视频免费| 天美传媒精品一区二区| av女优亚洲男人天堂| 亚洲精品第二区| 美女内射精品一级片tv| 建设人人有责人人尽责人人享有的 | 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 18禁裸乳无遮挡免费网站照片| 女的被弄到高潮叫床怎么办| 亚洲国产欧美在线一区| 久久久国产一区二区| av国产久精品久网站免费入址| 国产精品国产三级国产专区5o| 欧美高清性xxxxhd video| 老师上课跳d突然被开到最大视频| 人人妻人人看人人澡| 亚洲色图av天堂| av播播在线观看一区| 久久精品综合一区二区三区| 久久国内精品自在自线图片| 久久国内精品自在自线图片| 国产精品一区二区性色av| 亚洲欧美成人综合另类久久久| 两个人的视频大全免费| 在线看a的网站| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 亚洲国产成人一精品久久久| 男女那种视频在线观看| 三级国产精品欧美在线观看| 2018国产大陆天天弄谢| 狂野欧美激情性bbbbbb| 午夜免费鲁丝| 一级毛片电影观看| 日本黄色片子视频| 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 精品久久久久久久久av| 禁无遮挡网站| 久久ye,这里只有精品| 少妇人妻精品综合一区二区| 欧美潮喷喷水| 永久免费av网站大全| 久久久久久久久大av| av卡一久久| 国产91av在线免费观看| 女人久久www免费人成看片| 日韩av在线免费看完整版不卡| 亚洲综合色惰| 久久久久九九精品影院| 涩涩av久久男人的天堂| 色网站视频免费| 七月丁香在线播放| 欧美日韩国产mv在线观看视频 | 丰满少妇做爰视频| 在现免费观看毛片| 老师上课跳d突然被开到最大视频| 人体艺术视频欧美日本| 爱豆传媒免费全集在线观看| 18禁在线播放成人免费| a级毛色黄片| 18+在线观看网站| 日日啪夜夜撸| 色吧在线观看| 国内精品美女久久久久久| 看非洲黑人一级黄片| 亚洲内射少妇av| 美女内射精品一级片tv| 国产91av在线免费观看| 亚洲成色77777| 中文字幕av成人在线电影| 永久网站在线| 一边亲一边摸免费视频| 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 国产一区二区三区av在线| 久久综合国产亚洲精品| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 日韩电影二区| 91精品一卡2卡3卡4卡| 最近最新中文字幕大全电影3| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 精品一区二区三区视频在线| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| av又黄又爽大尺度在线免费看| 国语对白做爰xxxⅹ性视频网站| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲国产日韩一区二区| 97人妻精品一区二区三区麻豆| 可以在线观看毛片的网站| 亚洲欧美一区二区三区国产| 久久人人爽人人片av| 另类亚洲欧美激情| 午夜精品国产一区二区电影 | 亚洲天堂国产精品一区在线| 女人久久www免费人成看片| 亚洲成色77777| 纵有疾风起免费观看全集完整版| 激情 狠狠 欧美| 热re99久久精品国产66热6| 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 免费大片18禁| 亚洲图色成人| av在线蜜桃| 听说在线观看完整版免费高清| 伊人久久国产一区二区| 国产永久视频网站| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频| 日日啪夜夜撸| 欧美一区二区亚洲| 新久久久久国产一级毛片| 亚洲欧美一区二区三区黑人 | 美女xxoo啪啪120秒动态图| 六月丁香七月| 国产一区二区亚洲精品在线观看| 日本欧美国产在线视频| 观看免费一级毛片| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 一个人看的www免费观看视频| 爱豆传媒免费全集在线观看| 97精品久久久久久久久久精品| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 久久久久九九精品影院| 国产欧美日韩精品一区二区| 国产精品福利在线免费观看| 精品久久久久久久末码| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 男男h啪啪无遮挡| 精品一区二区三卡| 91aial.com中文字幕在线观看| 精品久久久久久久末码| 日韩欧美一区视频在线观看 | 又爽又黄a免费视频| 在线观看av片永久免费下载| 国产av国产精品国产| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 欧美一区二区亚洲| 欧美高清性xxxxhd video| 插逼视频在线观看| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 亚洲人与动物交配视频| 热99国产精品久久久久久7| 最近最新中文字幕大全电影3| av在线蜜桃| 一级毛片久久久久久久久女| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花 | 亚洲自偷自拍三级| 日韩免费高清中文字幕av| 日本一本二区三区精品| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 国产成人免费无遮挡视频| 国产乱人偷精品视频| 永久免费av网站大全| 色播亚洲综合网| 欧美潮喷喷水| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 日韩一区二区视频免费看| 免费看a级黄色片| 午夜福利视频精品| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂| kizo精华| 少妇人妻久久综合中文| 精品人妻熟女av久视频| 国产毛片a区久久久久| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 99精国产麻豆久久婷婷| 国产精品爽爽va在线观看网站| 久久精品国产a三级三级三级| 22中文网久久字幕| 69av精品久久久久久| 男女无遮挡免费网站观看| 精品久久久久久久久亚洲| 色婷婷久久久亚洲欧美| 国产探花极品一区二区| 五月玫瑰六月丁香| 一级av片app| 国内精品美女久久久久久| 亚洲,一卡二卡三卡| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 性色av一级| 婷婷色综合www| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 色综合色国产| 亚洲精品国产成人久久av| 日本一本二区三区精品| 精品人妻偷拍中文字幕| av国产精品久久久久影院| 成人午夜精彩视频在线观看| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| av.在线天堂| av在线播放精品| 男女那种视频在线观看| 国产一区二区三区av在线| 亚洲国产最新在线播放| 欧美高清成人免费视频www| 最新中文字幕久久久久| 国产淫片久久久久久久久| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 国产大屁股一区二区在线视频| 天堂中文最新版在线下载 | 国产精品人妻久久久影院| 亚洲自偷自拍三级| 各种免费的搞黄视频| 性色avwww在线观看| 欧美激情国产日韩精品一区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久成人免费电影| 99热6这里只有精品| 日本免费在线观看一区| 亚洲,一卡二卡三卡| 麻豆成人av视频| 九色成人免费人妻av| 久久久久久久久久久丰满| 日日啪夜夜撸| 91在线精品国自产拍蜜月| av专区在线播放| 老女人水多毛片| 1000部很黄的大片| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 久久人人爽av亚洲精品天堂 | 国产中年淑女户外野战色| 久久久精品免费免费高清| 夜夜爽夜夜爽视频| 中文字幕av成人在线电影| 啦啦啦中文免费视频观看日本| 精品人妻一区二区三区麻豆| av在线观看视频网站免费| 精品久久久久久电影网| 亚洲av一区综合| 久久精品国产a三级三级三级| 国产精品成人在线| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产av玫瑰| 大片免费播放器 马上看| 免费av观看视频| 一级片'在线观看视频| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 最近最新中文字幕免费大全7| 久久久久国产精品人妻一区二区| 又爽又黄无遮挡网站| 精品酒店卫生间| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 三级国产精品片| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 精品亚洲乱码少妇综合久久| 街头女战士在线观看网站| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 高清av免费在线| 国产在线一区二区三区精| 日本色播在线视频| 亚洲精品第二区| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 国产老妇女一区| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 国产精品精品国产色婷婷| 国产精品国产av在线观看| 午夜激情久久久久久久| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 国产高清三级在线| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 国产午夜精品一二区理论片| 精品少妇久久久久久888优播| 久久女婷五月综合色啪小说 | 亚洲天堂国产精品一区在线| 欧美少妇被猛烈插入视频| 不卡视频在线观看欧美| 春色校园在线视频观看| 亚洲精品视频女| 国产欧美日韩一区二区三区在线 | 午夜视频国产福利| 欧美zozozo另类| 肉色欧美久久久久久久蜜桃 | 26uuu在线亚洲综合色| 日本一本二区三区精品| 一级二级三级毛片免费看| 亚洲经典国产精华液单| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 又爽又黄a免费视频| 夫妻午夜视频| 色综合色国产| 简卡轻食公司| 美女主播在线视频| av在线老鸭窝| 97在线视频观看| www.av在线官网国产| 禁无遮挡网站| 91aial.com中文字幕在线观看| 中文字幕亚洲精品专区| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 亚洲综合精品二区| 自拍偷自拍亚洲精品老妇| 别揉我奶头 嗯啊视频| 国产亚洲午夜精品一区二区久久 | 美女cb高潮喷水在线观看| 亚洲精品日韩在线中文字幕| 直男gayav资源| 美女国产视频在线观看| 国产大屁股一区二区在线视频| 爱豆传媒免费全集在线观看| 久久99热这里只有精品18| 美女高潮的动态| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| 亚洲自拍偷在线| 51国产日韩欧美| 神马国产精品三级电影在线观看| 少妇 在线观看| 国产精品偷伦视频观看了| 国产精品国产三级国产专区5o| av网站免费在线观看视频| 毛片女人毛片| 熟女电影av网| 18禁在线无遮挡免费观看视频| 国产一区二区三区综合在线观看 | 岛国毛片在线播放| 日本爱情动作片www.在线观看| 亚洲性久久影院| 色视频在线一区二区三区| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 联通29元200g的流量卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲在线观看片| 菩萨蛮人人尽说江南好唐韦庄| 国产一级毛片在线| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 人妻夜夜爽99麻豆av| 蜜桃亚洲精品一区二区三区| 在线观看av片永久免费下载| 午夜老司机福利剧场| av.在线天堂| 丝袜脚勾引网站| 亚洲电影在线观看av| 久久久色成人| 1000部很黄的大片| 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 少妇人妻久久综合中文| 精品久久久噜噜| 国产国拍精品亚洲av在线观看| a级一级毛片免费在线观看| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 深爱激情五月婷婷| 亚洲国产最新在线播放| 国产成人一区二区在线| 一级毛片久久久久久久久女| 国产毛片在线视频| 91在线精品国自产拍蜜月| 国产精品.久久久| 亚洲精品影视一区二区三区av| 三级经典国产精品| 日韩免费高清中文字幕av| 日韩欧美 国产精品| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 丝袜脚勾引网站| 日韩av不卡免费在线播放| 久久久久网色| 国产免费福利视频在线观看| 国产片特级美女逼逼视频| 久久热精品热| 美女高潮的动态| 黄片wwwwww| 亚洲av在线观看美女高潮| 国产成人免费观看mmmm| 成年女人在线观看亚洲视频 | 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 亚洲精品自拍成人| 韩国av在线不卡| 日本免费在线观看一区| 久久人人爽人人片av| 成人国产麻豆网| 国产探花在线观看一区二区| 18禁在线播放成人免费| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 日日啪夜夜撸| 亚洲精品国产av蜜桃| 中文字幕亚洲精品专区| 国产一区亚洲一区在线观看| 国产在线男女| 天美传媒精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 一个人观看的视频www高清免费观看| 日本黄大片高清| 女人被狂操c到高潮| 高清日韩中文字幕在线| 中文字幕久久专区| 一级毛片久久久久久久久女| 亚洲成色77777| 国产人妻一区二区三区在| av在线观看视频网站免费| 久久精品国产a三级三级三级| 男女边吃奶边做爰视频| 国产毛片在线视频| 亚洲综合精品二区| 国产黄频视频在线观看|