• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applications of Functionalized Quantum Dots in Bioanalysis,Imaging and Targeting Delivery

    2015-01-22 07:13:32HEDongxiuWANGDanxiaQUANWenjieYUCuiyun
    關(guān)鍵詞:功能化生物醫(yī)學(xué)探針

    HE Dongxiu,WANG Danxia,QUAN Wenjie,YU Cuiyun

    (Institute of Pharmacy & Pharmacology,Department of Pharmacy,University of South China,Hengyang,421001,China)

    ·博士筆談·

    ApplicationsofFunctionalizedQuantumDotsinBioanalysis,ImagingandTargetingDelivery

    HE Dongxiu*,WANG Danxia,QUAN Wenjie,YU Cuiyun

    (Institute of Pharmacy & Pharmacology,Department of Pharmacy,University of South China,Hengyang,421001,China)

    Quantum dots (QDs),fluorescen nanomaterials,have exceptional optical properties.Functionalized QDs that include QDs and targeting moieties have been considered to have the potential as novel molecular probes and suited for a number of biomedical researches,which plays an important role in biomedicine.In recent years,the functionalized QDs have exhibited an important role in biomedical research and applications,especially in the field of bioanalysis,imaging and targeting delivery.

    Functionalized quantum dots; applications; bioanalysis; bioimaging; targeting delivery

    1 Introduction

    Nanoparticles that interface with biological systems have recently attracted great attention of biomedical researchers due to their widespread applications in biomedical applications[1-5].Functional nanoparticles,one of the cutting-edge materials of the twenty-first century,are considered to have the potential as novel molecular tools for biomedical research,which plays a critical role in biomedicine.One major merit of using functional nanoparticles is that one can control and tailor properties in a very predictable manner to meet the needs of specific biomedical application.

    Quantum dots (QDs) are semiconductor inorganic nanomaterials ranging from 1~10 nm.QDs have shown great potential interest to biomedical scientists because of their unique advantages over traditional fluorescent dyes,such as broad excitation spectra,robust,narrow-band emission,size-tunable absorption and photo-luminescence spectra,exceptional photo-stability,high quantum yield,and versatility in surface modification[3].Over the past decade,QDs have been used in many different aspects of biomedical field.First used for cellular imaging,QDs later became useful tools for bioanalysis[1],imaging and targeting delivery[4].Functionalized QDs,bioconjugated with types of targeting ligands or drug/gene through selective binding to the receptors over-expressed on the cell surface,have the potential to considerably improve analytic sensitivity.Additionally,functionalized QDs can provide the excellent efficiency of fluorescence imaging and target delivery[6-7].Here,this article provides a brief review on the recent developments of functionalized QDs in the biomedical applications,especially in the field of bioanalysis,bioimaging and targeting delivery.

    2 Bioanalytical applications

    Bioanalysis has recently used to define analytical techniques used in the quantification and characterization of biologicals.Analysis of drugs,forensic science,biomarkers,clinical chemistry and therapeutic drug monitoring have also belonged to the concept of bioanalysis[8].For successful analytic methods,there are two main aspects for obtaining satisfactory sensitivity and reproducibility.The first is to exploit highly efficient signal-transduction labels.The other is to adopt a simple,sensitive signal-transduction method.Functionalized QDs can produce a high analytical signal (luminescence,electrochemical or electrochemiluminescence).Additionally,functionalized QDs can offer high sensitivity and selectivity in bioassays[9].Herein,functionalized QDs have generated increasingly widespread applications in pharmaceutical analysis[10-21],biomarkers detection[22]and other important analyses including ATP[23]and toxins[24].

    2.1 Pharmaceutical analysis applications

    Quantification of pharmaceuticals plays an important role for the purposes of defining their pharmaceutics or minimizing drug safety risk.The fluorescent labeling is one of the most important methods of modern pharmaceutical analysis as a nonradioactive labeling technique.Now the new-type fluorescent quantum dots may have better application in the pharmaceutical analysis because functionalized QDs overcome the disadvantage of the traditional fluorescent dyes.

    Alibolandietal.[10]developed the electrogenerated chemiluminescent method for the sensitive and selective determination of chloramphenicol based on the functionalized QDs generating an efficient,stable signal during potential cycling or pulsing.Their results suggested that the presented method was also well qualified for the detection of chloramphenicol in milk with a limit of detection of 0.2 ppb.And,several researches recently also suggested that functionalized QDs can be used for the quantification of d-penicillamine in pharmaceutical formulations[11]and heparin[12]with satisfactory limit of detection and limit of quantification.

    Besides the detection of small molecule drugs,functionalized QDs have also been proved to have prospect for sensitive detection of biomacromolecular drugs,such as protein[13-15],enzyme[16-17],DNA[19],small interfering RNA(siRNA)[20]and carbohydrate[21].Montoro Bustos et al demonstrated for the first time that the streptavidin modified CdSe/ZnS QDs was applied to the sequential quantification of five proteins (transferrin,complement C3,apolipoprotein A1,transthyretin and apolipoprotein A4) at different concentration levels in human serum samples[13].Huangxian Ju team designed the facile electrochemiluminescent method for sensitive dynamic monitoring of carbohydrate expression on living cells by combining the specific recognition of lectin to carbohydrate groups with the functionalized CdSe QDs[21].

    2.2 Biomarkers detection applications

    The detection of biomarkers is important and useful for screening and early diagnosis of disease,disease stage forecasting,and clinical management[25].Especially,tumor markers assays play a critical role in the cancer diagnosis if a set of tumor markers can be quantified and statistically differentiated between carcinoma cells and normal cell.Functionalized QDs have recently attracted increasingly widespread applications in biomarkers detection[22,25-27 ].

    Liuetal.[22]reported on a disposable micro-device suitable for sandwich-type electrochemiluminescence (ECL) detection of prostate specific antigen (PSA).Taking advantage of dual-amplification effects of the Pt/Au and ZnO quantum dots dotted carbon nanotube (ZnO@CNT),this immunosensor could detect the PSA quantitatively,in the range of 0.001~500 ng/mL,with a low detection limit of 0.61 pg/mL.

    Functionalized QDs were synthesized by Tang and his colleagues through formation of PAMAM dendrimer with CdS,ZnS and PbS.These functionalized QDs were used for a novel multiplexed stripping voltammetric immunoassay for simultaneous detection of three biomarkers (CA 125,CA 15-3,and CA 19-9)[28].

    3 Biomedical imaging applications

    Noninvasive imaging and minimally invasive in vivo biomedical imaging techniques are especially valuable tools in the arsenal of clinical diagnosis.Many types of biomedical imaging(e.g.,magnetic resonance imaging,optical fluorescence) are available.Whichever is bioimaging technique,its continuous development relies mainly on the improvement of corresponding contrast agents.The photochemical stability and high fluorescence intensity of QDs make them become the ideal contrast agents in practical clinical diagnosis application.Recently,functionalized QDs,conjugated with various targeting moieties,have been wide used for biomedical fluorescence imaging[6,29-36].

    3.1 In vitro imaging application

    One of the most advancing applications of functionalized QDs is in vitro imaging of cancer.Many research groups applied functionalized QDs for in vitro fluorescence imaging of cancer cells derived from ovarian carcinoma[6],melanoma[30],hepatocellular carcinoma[31],breast cancer[32],pancreatic cancer[33],glioblastoma[34],ovarian epidermoid carcinoma[35]and lung adenocarcinoma[36].

    Zhangetal.[32]found that QDs conjugated with anti-type 1 insulin-like growth factor receptor (IGF1R) is a promising candidate for targeting and imaging in breast cancer cells.The key in this targeting was the detection of up-regulated IGF1R in MCF-7 breast cancer cells by QD-anti-IGFR1 conjugate.

    Yong and coworkers[33]selectively detected human pancreatic cancer cells using QDs conjugated with anti-Claudin-4 antibody and anti-prostate stem cell antigen (anti-PSCA).These conjugates were recognized by the membrane proteins Claudin-4 and PSCA which are over-expressed in both primary and metastatic pancreatic cancer cells.

    Kawashimaetal.[35]also explored intermolecular interactions involved in the lateral propagation of cell-signaling by EGFR single-molecules in human ovarian epidermoid carcinoma cells (A431) using nanocomposites loaded CdSe/ZnS QDs.Kawashima found that CHO and A431 cells were efficiently labeled by QD-EGF conjugates due to the specific binding of EGF to EGFR.

    3.2 In vivo imaging application

    3.2.1 Tumor imaging application The basic principles underlying in vitro targeting of cancer cells can be applied in vivo.However,in vivo applications of functionalized QDs are more complicated and challenging.One main challenge for in vivo imaging using the functionalized QDs is their biodistribution and pharmacokinetics.Chenetal[38].have monitored the dynamic distribution of CdHgTe/SiO2 nanocomposites in vivo by near infrared fluorescence imaging system.Another main challenge for in vivo targeting and imaging is the fluorescence emitting property of the functionalized QDs.Visible emitting QDs provide poor signal to background ratio in deep tissue and when imaging targets in small animals[29].While NIR QDs offer several advantages for the non-invasive visualization of living tissues because of its deeper photon penetration,low absorption and scattering.So,functionalized NIR QDs are considered to have the potential as novel probe for carcinoma imaging[39-42].

    Carcinoma cell labeling or tracking in living organisms was monitored efficiently and sensitively by functionalized QDs,which may provide tools to locate tumors and metastases or map tumor margins during surgery.

    It was demonstrated that functionalized QDs can represent excellent tool for new tumor vessel imaging[41-42]or multimodal molecular imaging of angiogenesis[43].

    3.2.2 Lymph node imaging Lymphatic metastasis is one of the main metastatic pathways of most cancers and determines the prognoses of those cancers to a large extent.The sentinel lymph node (SLN),which can reflect the status of group lymph nodes accurately,is defined as the first lymph node (LN) to receive the lymphatic drainage and metastasis of the primary tumor[44].Compared with the sentinel lymph node biopsy technique,lymph node mapping (LNM) should identify LNs more readily than SLNs.Several studies on the detection of SLN using functionalized QDs have been reported[37,44-45].The initial research of the SLN mapping in vivo using NIR emitting QDs have been reported by Kim and coworkers[44].

    Sietal[45].demonstrated that functionalized QDs are excellent tracers for intraoperative LNM.SLN detection using functionalized QDs only takes a few minutes after injection,which greatly simplifies surgical procedures.Wu Q and Chu MQ recently reported that the sensitivity in SLN mapping has greatly been enhanced by using self-illuminating QDs[46].

    3.3.3 Vasculature imaging Vasculature,consisting of blood vessels and lymphatic drainage systems,is vital to life and participates in many pathological processes,including metastasis and tumorigenesis.In vivo real-time visualization of the vasculature has great potential to improve our understanding of vasculature related physiological and pathological processes and to advance clinical diagnostics and therapy[47].NIR-emitting QDs can be finely tuned in size and shape to modulate pharmacokinetics and tissue distribution,and they could be useful in in vivo real-time visualization of tissue blood flow in the nude mouse[47]or in living pulmonary edema mouse[48].It has also been reported that lymphatic drainage from the eye present in mice by visualizing the trajectory of the CdSe/ZnS QDs coated with carboxylic acids once injected into the eyes of 17 live mice[49].

    4 Targeting delivery applications

    Targeting delivery by nanoparticles or nanocapsules offers a promising approach to improving upon the efficacy of existing drugs and enabling the development of new therapies.QDs are newer luminescent nanoparticles with rich surface chemistry and unique optical properties that make them useful as visualization probes or carriers for traceable targeting delivery applications without the need for external dyes[50-51].

    4.1 Targeting drug delivery applications

    By directly noncovalent coupling or covalent coupling drug molecules to the QDs surface,drug-conjugated QDs can be delivered to specific sites and subsequently release drug molecules from the QDs surface in response to local biological conditions such as pH or the presence of enzymes.Several research groups have demonstrated the integration of therapeutic antibody[52]or drug molecules[53]with functionalized QDs for targeting drug delivery in vitro and in vivo.Xuetal.[52]demonstrated for the first time that the nanocomposite comprising of QDs and anti-GRP78 scFv could be efficiently internalized by cancer cells,thus upregulate phophosphate-AKT-ser473 and possess biological anti-tumor activity by inhibition of breast cancer growth in a xenograft model.Functionalized QDs,fibrinogen (fib) coated CdTe/ZnTe and paclitaxel (PTX),can target MCF-7 cells and effectively deliver PTX towards breast cancer cells via the α5β1-integrins[53].Chakravarthyetal.[54]found that doxorubicin (Dox) can be effectively released from the nanocomposites loaded CdSe/CdS/ZnS QDs and Dox and accumulated in the cell nucleus.They also demonstrated that the functionalized QDs can provide targeted macrophage-selective therapy for the treatment of pulmonary disease.Furthermore,Jeyadevia’s study revealed that using TGA-CdTe QDs as nanocarrier of quercetin could enhance the anti-arthritic effect of quercetin even at a lower concentration of the drug in rheumatic complications[55].

    4.2 Targeting gene delivery applications

    Gene therapy has emerged as a powerful strategy for disease treatment over the past several decades because of the genetic link associated with tumor development and progression.The delivery of nucleic acid therapeutics to down-regulate or replace mutated genes,and to silence unexpected gene expression,is becoming an attractive approach to suppressing tumor cell growth and invasion.There have been intensive efforts to develop safe and efficient gene delivery carriers to provide high transfection efficiency at the desired target.

    Besides the delivery of small molecule drugs,QDs have also been proved to have prospect for delivery of more intricate genes,such as small interfering RNA (siRNA).The short and double-stranded therapeutic siRNA works by silencing the expression of unwanted,disease-causing genes.Nevertheless,free forms of them owe high negative charge and are easy to degrade in body environment.Thus,in order to achieve optimal function in physiological conditions,they must be delivered via conbination with cationic nanocariers.Because of appropriately surface functionalized with cationic moieties,functionalized QDs are good choices of siRNA carriers as they not only render these genetic drugs with physiological stability and target specificity,but also the entire nanocomposites can be optically traced.Therefore,functionalized QDs were specifically designed to overcome barriers in siRNA delivery such as siRNA protection,cellular penetration,endosomal release,carrier unpacking,intracellular transport and gene silencing.Lietal.[56]confirmed that QDs could efficiently delivery siRNA into HeLa cells and silence a target gene,and the functionalized QDs could also be used as fluorescence probes,allowing real-time tracking and localization of QDs during delivery and transfection in vivo.More importantly,functionalized QDs have been demonstrated to deliver an active siRNA to knockdown EGFRvIII receptors in human glioma cells,and subsequently monitor the resulting down-regulated signaling pathway with high efficiency[57],suggesting that QDs could be designed to deliver gene to a specified target cell type.

    5 Summary

    Real-time bioanalysis and imaging,visual tracking and targeting delivery have been hot topics in life science fields.Current investigation of functionalized QDs in vitro and in vivo has offered less invasive imaging,visual tracking and drug delivery.However,up to date functionalized QDs clinical applications have been limited due to side-effects.Various non-toxic elements QDs such as silica,zinc,sulfur and copper have been explored with recent developments in the preparation and characterization techniques of QDs.The emergence of nanocomposites including QDs,targeting moieties,and other materials enabled to improve imaging and targeting delivery applications because of their better biocompatibility,lower toxicity and longer circulation time in vivo,which were better applied for biomedical applications.

    [1] Irina YG,Elena SS,Valentina VG,et al.Synthesis and bioanalytical applications of nanostructures multiloaded with quantum dots[J].Trends in Analytical Chemistry,2015,66:53-62.

    [2] Barbara B,Veggel FCJ,Boguslaw T.Applications of nanoparticles for MRI cancer diagnosis and Therapy[J].J Nanomater,2013,2013(12):12.

    [3] Alireza V,Haleh M,Mohammad S,et al.Quantum dots:synthesis,bioapplications and toxicity[J].Nanosale Res Left,2012,7(1):480-494.

    [4] LiuY,Miyoshi H,Nakamura M.Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles[J].Int J Cancer,2007,120(12):2527-2537.

    [5] Yuan L,Tang Q,Yang D,et al.Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery[J].J phys chem C,2011,155(115):9926-9932.

    [6] Ronak S,Oleh T,Olga G,et al.Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer[J].J control release,2011,153(1):16-22.

    [7] Ye F,Asa B,Heba A,et al.Biodegradable polymeric vesicles containing magnetic nanoparticles,quantum dots and anticancer drugs for drug delivery and imaging[J].Biomaterials,2014,35(12):3885-3894.

    [8] Howard hill.Development of bioanalysis:a short history[J].Bioanalysis,2009,1(1):3-7.

    [9] Cangel Pui-yee Chan.Ingenious nanoprobes in bioassays[J].Bioanalysis,2009,1(1):115-133.

    [10] Alibolandi M,Hadizadeh F,Vajhedin F,et al.Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet[J].Mater Sci Eng C,2015,48:611-619.

    [11] Samadhan PP,Anil H,Laxman S.Walekar,Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media:Application to pharmaceutical formulation[J].Sens Actuators B Chem,2015,209:911-918.

    [12] Peng X,Long Q,Li H,et al.“Turn on-off” fluorescent sensor for protamine and heparin based on label-free silicon quantum dots coupled with gold nanoparticles[J].Biosens Bioelectron,2015,213:131-138.

    [13] Montoro Bustos AR.,Garcia-Cortes M,González-Iglesias H,et al.Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots[J].Anal Chim Acta,2015,879(16 ):77-84.

    [14] Zhang B,Tang D,Goryacheva I Y,et al.Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres[J].Chem Eur J,2013,19:2496-2503.

    [15] Zhang Z,Li J,Wang X,et al.Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin[J].ACS Appl Mater Interfaces,2015,7 (17):9118-9127.

    [16] Prasad BB,Prasad A,Tiwari MP.Quantum dots-multiwalled carbon nanotubes nanoconjugate-modified pencil graphite electrode for ultratrace analysis of hemoglobin in dilute human blood samples[J].Talanta,2013,109:52-60.

    [17] Chen Y,Jiang B,Xiang Y,et al.Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels[J].Chem Commun,2011,47 (27):7758-7760.

    [18] Huang F,Wang F,Feng S,et al.Direct electrochemistry and electrochemical biosensing of glucose oxidase based on CdSe@CdS quantum dots and MWNT-modified electrode[J].J Solid State Electrochem,2013,17:1295-1301.

    [19] Divsar F,Ju H.Electrochemiluminescence detection of near single DNA molecules by using quantum dots-dendrimer nanocomposites for signal amplification[J].Chem Commun,2011,47 (35):9879-9881.

    [20] Zhu WY,Su XP,Gao XY,et al.A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes[J].Biosens Bioelectron,2014,53:414-419.

    [21] Han E,Ding L,Jin S,et al.Electrochemiluminescent biosensing of carbohydrate- functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate[J].Biosens Bioelectron,2011,26:2500-2505.

    [22] Liu F,Deng W,Zhang Y,et al.Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/Au alloy and a disposable device[J].Ana Chim Acta,2014,818:46-53.

    [23] Jie G,Yuan J,Zhang J.Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP[J].Biosens Bioelectron,2012,31:69 - 76.

    [24] Gan N,Zhou J,Xiong P,et al.An ultrasensitive electrochemiluminescent immunoassay for aflatoxin M1 in milk,based on extraction by magnetic graphene and detection by antibody-labeled CdTe quantum dots-carbon nanotubes nanocomposites[J].Toxins,2013,5:865-883.

    [25] Kwan HL,Justin F G,Jeaho P,et al.Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots[J].Nanomedicine:NBM,2012,8:1043-1051.

    [26] Peng C W,Tian Q,Yang G F,et al.Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer[J].Biomaterials,2012,33(23):5742-5752.

    [27] Jing X,Susan M,Sreenivas N,et al.Comparison of quantum dot technology with conventional immunohistochemistry in examining aldehyde dehydrogenase 1A1 as a potential biomarker for lymph node metastasis of head and neck cancer[J].Eur J cancer Care,2012,48:1682-1691.

    [28] Tang D,Hou L,Niessner R,et al.Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads[J].Biosens Bioelectron,2013,46:37- 43.

    [29] Pei D,Li Y,Huang Q,et al.Quantum dots encapsulated glycopolymer vesicles:Synthesis,lectin recognition and photoluminescent properties[J].Colloids Surf B Biointerfaces,2015,127:130-136.

    [30] Xiao Q,Qiu T,Huang S,et al.Preparation and biological effect of mucleotide-capped CdSe/ZnS quantum dots on Tetrahymena thermophila[J].Biol Trace Elem Res,2015,147(1-3):346-351.

    [31] Camblin M,Detampel P,Kettiger H,et al.Polymersomes containing quantum dots for cellular imaging[J].Int J Nanomedicine,2014,9:2287-2298.

    [32] Zhang H,Sachdev D,Wang C,et al.Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells[J].Breast Cancer Res Treat,2009,114(2):277-285.

    [33] Yong K T,Ding H,Roy I,et al.Imaging pancreatic cancer using bioconjugated InP quantum dots[J].ACS Nano,2009,3(3):502-510.

    [34] Anirban D,Eric HallChien MW.Noncovalent attachment of PbS quantum dots to single- and multiwalled carbon nanotubes[J].J nanotechno,2014,2014:1-7.

    [35] Kawashima N,Nakayama K,Itoh K,et al.Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots[J].Chemistry,2010,16(4):1186-1192.

    [36] Zhang CL,Ji XH,Zhang Y, et al.One-pot synthesized aptamer-functionalized cdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo[J].Anal Chem,2013,85(12):5843-5849.

    [37] Nakane Y,Tsukasaki Y,Sakata T,et al.Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000-1400 nm)[J].Chem Commun,2013,49(69):7584-7586.

    [38] Chen HY,Cui SS,Tu ZZ,et al.In vivo monitoring of organ-selective Distribution of CdHgTe/SiO2Nanoparticles in mouse model[J].J Fluoresc,2012,22(2):699-706.

    [39] Fatehi D,Baral T N,Abulrob A.In vivo imaging of brain cancer using epidermal growth factor single domain antibody bioconjugated to near-infrared quantum dots[J].J Nanosci Nanotechno,2014,14(7):5355-5362.

    [40] Fang M,Peng C W,Yuan J P,et al.Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma[J].Future Oncol,2013,9(7):1029-1037.

    [41] Smith B R,Cheng Z,De A,et al.Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature[J].Nano lett,2008,8(9):2599-2606.

    [42] Hu R,Yong KT,Roy I,et al.Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging[J].Nanotechnology,2010,21(14):145105-145114.

    [43] Mulder WJ,Strijkers GJ,Nicolay K,et al.Quantum dots for multimodal molecular imaging of angiogenesis[J].Angiogenesis,2010,13( 2):131-134.

    [44] Kim S,Lim YT,Soltesz EG,et al.Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J].Nat Biotechnol,2004,22:93-97.

    [45] Si C,Zhang Y,Lv X,et al.In vivo lymph node mapping by Cadmium Tellurium quantum dots in rats[J].J Surg Res,2014,192(2):305-311.

    [46] Wu Q,Chu M.Self-illuminating quantum dots for highly sensitive in vivo real-time luminescent mapping of sentinel lymph nodes[J].Int Nanomed,2012,7:3433-3443.

    [47] Li C,Zhang Y,Wang M,et al.In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window[J].Biomaterials,2014,35(1):393-400.

    [48] Saitoh Y,Terada N,Saitoh S,et al.Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”[J].Histochem Cell Biol,2012,137(2):137-151.

    [49] Tam A L,Gupta N,Zhang Z,et al.Quantum dots trace lymphatic drainage from the mouse eye[J].Nanotechnology,2011,22(42):425101-425106.

    [50] Harush-Frenkel O,Altschuler Y,Benita S.Nanoparticle-cell interactions:drug delivery implications[J].Crit Rev Ther Drug Carrier Syst,2008,25:485-544.

    [51] Wen C J,Sung CT,Aljuffali IA,et al.Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery:a comparison of cationic,PEGylated and deformable liposomes[J].Nanotechnology,2013,24(32):325101.

    [52] Xu W,Liu L,Brown N J,et al.Quantum Dot-Conjugated Anti-GRP78 scFv Inhibits Cancer Growth in Mice[J].Molecules,2012,17(1):796-808.

    [53] Rejinold N S,Baby T,Nair S V,et al.Paclitaxel Loaded Fibrinogen Coated CdTe/ZnTe Core Shell Nanoparticles for Targeted Imaging and Drug Delivery to Breast Cancer Cells[J].J Biomed Nanotechnol,2013,9(10):1657-1671.

    [54] Chakravarthy KV,Davidson BA,Helinsk JD,et al.Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation[J].Nanomedicine,2011,7(1):88-96.

    [55] Jeyadevi R,Sivasudha T,Rameshkumar A,et al.Enhancement of anti arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats[J].Colloids Surf B Biointerfaces,2013,112:255-263.

    [56] Li J M,Zhao M X,Su H,et al.Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging[J].Biomaterials,2011,32(31):7978-7987.

    [57] Jung J J,Solanki A,Memoli KA,et al.Selective inhibition of human brain tumor cell proliferation via multifunctional quantum dot-based siRNA delivery[J].Angew Chem Int Ed Engl,2010,49(1):103-107.

    功能化量子點(diǎn)在生物分析,生物成像和靶向運(yùn)輸中的應(yīng)用

    賀冬秀,王丹霞,全文捷,喻翠云

    (南華大學(xué)藥物藥理研究所藥學(xué)系,湖南 衡陽 421001)

    賀冬秀,博士,副教授,碩士生導(dǎo)師。主要研究方向?yàn)樯锓治觥⒎肿佑跋衽c分子探針。主持完成和在研湖南省自然科學(xué)基金項(xiàng)目、湖南省中醫(yī)藥管理局重點(diǎn)課題等課題。在《中國(guó)科學(xué)》、《J Pharm Biomed Anal》等期刊發(fā)表科研論文20余篇。

    量子點(diǎn)是一類具有優(yōu)良光學(xué)特性的熒光納米材料。量子點(diǎn)與靶向配體結(jié)合形成功能化量子點(diǎn)。功能化量子點(diǎn)被認(rèn)為是潛在的、新穎的分子探針,適合于一系列生物醫(yī)學(xué)研究。近年來,功能化量子點(diǎn)在生物醫(yī)學(xué)的應(yīng)用和研究領(lǐng)域,特別是在生物分析,生物成像和靶向運(yùn)輸?shù)确矫姘l(fā)揮著重要作用。

    功能化量子點(diǎn); 應(yīng)用; 生物分析; 生物成像; 靶向運(yùn)輸

    10.15972/j.cnki.43-1509/r.2015.05.001

    date:2015-08-30;

    date2015-9-11

    SupportedFundingNational Natural Science Foundation of China (81471777,81102409) and Natural Science Foundation of Hunan province (13JJ6096).

    *Correspondingauthor1025165380@qq.com.

    Q599DocumentCodeA

    (此文編輯:秦旭平)

    猜你喜歡
    功能化生物醫(yī)學(xué)探針
    芻議“生物醫(yī)學(xué)作為文化”的研究進(jìn)路——兼論《作為文化的生物醫(yī)學(xué)》
    靈長(zhǎng)類生物醫(yī)學(xué)前沿探索中的倫理思考
    國(guó)外生物醫(yī)學(xué)文獻(xiàn)獲取的技術(shù)工具:述評(píng)與啟示
    多通道Taqman-探針熒光定量PCR鑒定MRSA方法的建立
    LED光源在生物醫(yī)學(xué)中的應(yīng)用分析
    石墨烯及其功能化復(fù)合材料制備研究
    BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
    透射電子顯微鏡中的掃描探針裝置
    功能化三聯(lián)吡啶衍生物的合成及其對(duì)Fe2+識(shí)別研究
    石墨烯的制備、功能化及在化學(xué)中的應(yīng)用
    河南科技(2014年11期)2014-02-27 14:09:49
    国产成人freesex在线 | 成年版毛片免费区| 国产精品福利在线免费观看| 国产成人福利小说| 男人的好看免费观看在线视频| 中文字幕免费在线视频6| 麻豆一二三区av精品| 久久精品91蜜桃| 五月伊人婷婷丁香| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 国产成人一区二区在线| 男人舔奶头视频| 亚洲av成人av| 最近在线观看免费完整版| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添av毛片| av在线观看视频网站免费| 国产精品三级大全| 国产中年淑女户外野战色| 成人欧美大片| 亚洲激情五月婷婷啪啪| 最近视频中文字幕2019在线8| 精品人妻熟女av久视频| 久久久欧美国产精品| 国产高清视频在线播放一区| 亚洲无线在线观看| 成年免费大片在线观看| 天天一区二区日本电影三级| 亚洲欧美精品自产自拍| 2021天堂中文幕一二区在线观| 国产高潮美女av| 色哟哟哟哟哟哟| 国产av在哪里看| 色噜噜av男人的天堂激情| 丰满人妻一区二区三区视频av| 十八禁网站免费在线| 久久久久久伊人网av| 波多野结衣高清作品| 亚洲av免费在线观看| 九九热线精品视视频播放| 黄色视频,在线免费观看| av在线天堂中文字幕| 一本久久中文字幕| 91精品国产九色| 观看免费一级毛片| 免费看光身美女| 亚洲精品在线观看二区| 有码 亚洲区| 国产男人的电影天堂91| 成人漫画全彩无遮挡| 亚洲四区av| 中文字幕免费在线视频6| 日韩欧美在线乱码| 久久久久国产网址| 国产精品99久久久久久久久| 精品国内亚洲2022精品成人| 人妻丰满熟妇av一区二区三区| 亚洲,欧美,日韩| 老熟妇乱子伦视频在线观看| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 国产免费男女视频| 天堂av国产一区二区熟女人妻| 中文字幕久久专区| 可以在线观看毛片的网站| 啦啦啦观看免费观看视频高清| 亚洲中文日韩欧美视频| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 精品久久久久久久久久久久久| 亚洲专区国产一区二区| 国产精品人妻久久久影院| 男人的好看免费观看在线视频| 又黄又爽又刺激的免费视频.| 亚洲人成网站在线播放欧美日韩| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 91在线观看av| 精品久久久久久久久亚洲| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播| 夜夜看夜夜爽夜夜摸| 美女黄网站色视频| 简卡轻食公司| 日韩,欧美,国产一区二区三区 | av天堂中文字幕网| 国产成人91sexporn| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频 | 99在线人妻在线中文字幕| 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看 | 国产在视频线在精品| 亚洲国产高清在线一区二区三| 亚州av有码| 人妻少妇偷人精品九色| 日韩国内少妇激情av| 久久精品久久久久久噜噜老黄 | av在线播放精品| 一卡2卡三卡四卡精品乱码亚洲| 看十八女毛片水多多多| АⅤ资源中文在线天堂| 久久99热6这里只有精品| 欧美人与善性xxx| www日本黄色视频网| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区人妻视频| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 永久网站在线| 亚洲av一区综合| 精品日产1卡2卡| 成人亚洲欧美一区二区av| 黑人高潮一二区| 最近在线观看免费完整版| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验 | 一夜夜www| 亚洲美女搞黄在线观看 | 精品无人区乱码1区二区| 亚洲无线观看免费| 高清日韩中文字幕在线| 麻豆国产av国片精品| 看黄色毛片网站| 无遮挡黄片免费观看| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 12—13女人毛片做爰片一| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 久久久久国产网址| 有码 亚洲区| 成人二区视频| 寂寞人妻少妇视频99o| 狂野欧美激情性xxxx在线观看| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 99国产极品粉嫩在线观看| 岛国在线免费视频观看| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 精品久久久噜噜| 亚洲精品在线观看二区| 美女cb高潮喷水在线观看| 99久久精品一区二区三区| 国产一区二区三区av在线 | 一本一本综合久久| 免费看日本二区| 久久久久精品国产欧美久久久| 白带黄色成豆腐渣| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 久久久久九九精品影院| 晚上一个人看的免费电影| 在线国产一区二区在线| 欧美最新免费一区二区三区| 国产高清视频在线播放一区| 免费电影在线观看免费观看| 一夜夜www| 最近在线观看免费完整版| 久久久久久久久久久丰满| 在线播放无遮挡| 精品一区二区三区视频在线观看免费| av国产免费在线观看| 亚洲精品国产成人久久av| 亚洲精品影视一区二区三区av| 老司机影院成人| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区免费观看 | 亚洲第一区二区三区不卡| 听说在线观看完整版免费高清| 久久精品国产自在天天线| 99riav亚洲国产免费| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄 | 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 一级av片app| 老熟妇乱子伦视频在线观看| 一级黄色大片毛片| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 国产精品不卡视频一区二区| 身体一侧抽搐| 男女做爰动态图高潮gif福利片| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 中文字幕久久专区| 成人特级黄色片久久久久久久| 在线观看一区二区三区| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说 | 男人狂女人下面高潮的视频| 成人永久免费在线观看视频| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看 | 男人和女人高潮做爰伦理| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 国产麻豆成人av免费视频| .国产精品久久| 97在线视频观看| 国产久久久一区二区三区| 波多野结衣高清无吗| 成人无遮挡网站| 免费av观看视频| 久久久久久久久大av| 韩国av在线不卡| 一级黄色大片毛片| 免费看美女性在线毛片视频| 国产高清三级在线| 久久久成人免费电影| 精品无人区乱码1区二区| 九九在线视频观看精品| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 日韩欧美三级三区| 内地一区二区视频在线| 搡老岳熟女国产| 人妻少妇偷人精品九色| 永久网站在线| 国产成人影院久久av| 欧美日韩国产亚洲二区| 亚洲精品国产成人久久av| 最近最新中文字幕大全电影3| 亚洲精品一卡2卡三卡4卡5卡| 在线a可以看的网站| 欧美区成人在线视频| 99热只有精品国产| 久久九九热精品免费| 亚洲人成网站高清观看| 九九在线视频观看精品| 变态另类丝袜制服| 亚洲成人久久爱视频| av在线亚洲专区| 欧美又色又爽又黄视频| 我要搜黄色片| 成人亚洲精品av一区二区| 少妇熟女aⅴ在线视频| 深夜a级毛片| 亚洲七黄色美女视频| 99久国产av精品| 少妇高潮的动态图| 日本色播在线视频| 日本a在线网址| 91精品国产九色| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区 | 最近的中文字幕免费完整| 全区人妻精品视频| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 久久精品国产自在天天线| 久久精品夜色国产| 国产一级毛片七仙女欲春2| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区 | 国产欧美日韩精品亚洲av| 欧美高清性xxxxhd video| 婷婷精品国产亚洲av在线| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 免费大片18禁| 亚洲成av人片在线播放无| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 最近在线观看免费完整版| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 日韩欧美在线乱码| a级毛片a级免费在线| 真实男女啪啪啪动态图| 精品乱码久久久久久99久播| 真实男女啪啪啪动态图| 日韩欧美三级三区| 丝袜喷水一区| 亚洲av美国av| 国产高清三级在线| 日韩三级伦理在线观看| 老女人水多毛片| 国产高清激情床上av| 男人狂女人下面高潮的视频| 亚洲国产精品sss在线观看| 日本一二三区视频观看| 色尼玛亚洲综合影院| a级毛色黄片| 精品少妇黑人巨大在线播放 | 一卡2卡三卡四卡精品乱码亚洲| 欧美区成人在线视频| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 欧美高清性xxxxhd video| 三级经典国产精品| 日韩制服骚丝袜av| 99久国产av精品国产电影| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 日韩成人伦理影院| АⅤ资源中文在线天堂| 国产精品无大码| 最近的中文字幕免费完整| 我的老师免费观看完整版| 国产精华一区二区三区| 欧美日韩综合久久久久久| 男女视频在线观看网站免费| 成年版毛片免费区| 美女内射精品一级片tv| 女同久久另类99精品国产91| 春色校园在线视频观看| 国产成人精品久久久久久| 一本久久中文字幕| 国产成人精品久久久久久| 亚洲精品国产av成人精品 | 久久久久九九精品影院| 免费观看在线日韩| 给我免费播放毛片高清在线观看| 三级国产精品欧美在线观看| 最近在线观看免费完整版| 国产极品精品免费视频能看的| 日韩欧美精品免费久久| 婷婷精品国产亚洲av| 亚洲欧美日韩卡通动漫| 国产精品1区2区在线观看.| 久久韩国三级中文字幕| h日本视频在线播放| 色播亚洲综合网| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频 | 黄片wwwwww| 中出人妻视频一区二区| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 国产91av在线免费观看| 久久久成人免费电影| 久久久久久久久久久丰满| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 久久精品国产清高在天天线| 男女那种视频在线观看| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| 激情 狠狠 欧美| 久久亚洲国产成人精品v| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 激情 狠狠 欧美| 尾随美女入室| 91在线精品国自产拍蜜月| 日韩精品中文字幕看吧| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 别揉我奶头~嗯~啊~动态视频| 国产爱豆传媒在线观看| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 性欧美人与动物交配| 久久国产乱子免费精品| 高清毛片免费看| 免费av毛片视频| 国产在视频线在精品| 丰满人妻一区二区三区视频av| 国产精品一区二区免费欧美| 亚洲国产欧美人成| 亚洲性久久影院| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看 | 免费一级毛片在线播放高清视频| 我要看日韩黄色一级片| 亚洲国产精品合色在线| 最后的刺客免费高清国语| 日本-黄色视频高清免费观看| 久久午夜亚洲精品久久| 天天躁夜夜躁狠狠久久av| aaaaa片日本免费| 亚洲真实伦在线观看| 国产亚洲欧美98| 97人妻精品一区二区三区麻豆| 一卡2卡三卡四卡精品乱码亚洲| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华液的使用体验 | 如何舔出高潮| 久久这里只有精品中国| 成人美女网站在线观看视频| 国产一区二区亚洲精品在线观看| 伦精品一区二区三区| av在线播放精品| 波野结衣二区三区在线| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 国产真实乱freesex| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久亚洲| 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 啦啦啦观看免费观看视频高清| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 一级毛片我不卡| 免费在线观看影片大全网站| 麻豆乱淫一区二区| 日韩精品有码人妻一区| 久久久a久久爽久久v久久| 床上黄色一级片| 日韩欧美在线乱码| 69av精品久久久久久| .国产精品久久| 日本欧美国产在线视频| 亚洲精品在线观看二区| 国产91av在线免费观看| 精品午夜福利在线看| 少妇的逼水好多| 69人妻影院| 精品福利观看| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 亚洲国产精品国产精品| 色哟哟·www| 国产在线男女| 日日摸夜夜添夜夜爱| 国产高清不卡午夜福利| 久99久视频精品免费| 亚洲乱码一区二区免费版| 99热这里只有精品一区| 亚洲自偷自拍三级| 色5月婷婷丁香| 国产精品久久久久久av不卡| 99久久久亚洲精品蜜臀av| a级毛色黄片| 搡女人真爽免费视频火全软件 | 99热网站在线观看| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 高清午夜精品一区二区三区 | 国产激情偷乱视频一区二区| 91在线精品国自产拍蜜月| 高清午夜精品一区二区三区 | 在线播放无遮挡| 久久韩国三级中文字幕| 国产高潮美女av| 女人被狂操c到高潮| 一进一出好大好爽视频| 午夜免费男女啪啪视频观看 | 国产免费一级a男人的天堂| 日本黄色片子视频| 久久99热这里只有精品18| 一级毛片aaaaaa免费看小| 我要搜黄色片| 日本黄色视频三级网站网址| 秋霞在线观看毛片| 九九久久精品国产亚洲av麻豆| 天堂网av新在线| 我要看日韩黄色一级片| 日本成人三级电影网站| 中文字幕精品亚洲无线码一区| 色噜噜av男人的天堂激情| 精品久久久噜噜| 国产精品女同一区二区软件| 在线天堂最新版资源| 精品无人区乱码1区二区| 国内揄拍国产精品人妻在线| 可以在线观看毛片的网站| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 麻豆av噜噜一区二区三区| 国产精品无大码| 国产v大片淫在线免费观看| 成人三级黄色视频| 麻豆精品久久久久久蜜桃| 男女啪啪激烈高潮av片| 国产人妻一区二区三区在| 国产毛片a区久久久久| 最近视频中文字幕2019在线8| 亚洲国产日韩欧美精品在线观看| 激情 狠狠 欧美| 中文资源天堂在线| 一级毛片久久久久久久久女| 日韩,欧美,国产一区二区三区 | 国产精品99久久久久久久久| 国产精品女同一区二区软件| 国产成人一区二区在线| 午夜亚洲福利在线播放| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 国产亚洲91精品色在线| 国产探花在线观看一区二区| 国产成人福利小说| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 免费av观看视频| 国产精品女同一区二区软件| 国产精品亚洲一级av第二区| 99热6这里只有精品| 丰满的人妻完整版| 人人妻人人看人人澡| videossex国产| 亚洲精品亚洲一区二区| 精品久久久久久久久久久久久| 舔av片在线| 国产亚洲精品久久久久久毛片| 国产中年淑女户外野战色| 热99在线观看视频| 免费一级毛片在线播放高清视频| 夜夜爽天天搞| 国产乱人视频| 久久久久精品国产欧美久久久| 中文字幕熟女人妻在线| 高清午夜精品一区二区三区 | 伦精品一区二区三区| 免费观看的影片在线观看| 自拍偷自拍亚洲精品老妇| 国产高清三级在线| 69人妻影院| 久久久久久九九精品二区国产| 高清毛片免费看| 欧美精品国产亚洲| 日韩精品中文字幕看吧| 狂野欧美白嫩少妇大欣赏| 色综合亚洲欧美另类图片| 亚洲成av人片在线播放无| 最近手机中文字幕大全| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 69人妻影院| 国内少妇人妻偷人精品xxx网站| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 精品一区二区三区视频在线观看免费| 精品午夜福利视频在线观看一区| 国国产精品蜜臀av免费| 波野结衣二区三区在线| 成年免费大片在线观看| 亚洲av成人av| 一个人看的www免费观看视频| 免费在线观看成人毛片| 深夜精品福利| 国产精品乱码一区二三区的特点| 麻豆国产av国片精品| 亚洲欧美成人综合另类久久久 | 成人美女网站在线观看视频| 欧美zozozo另类| 波多野结衣高清无吗| 国产高清三级在线| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜爱| 久久久午夜欧美精品| av在线老鸭窝| 最近中文字幕高清免费大全6| 日本免费一区二区三区高清不卡| 午夜精品国产一区二区电影 | 中国美女看黄片| 国产一区二区三区av在线 | 欧美+亚洲+日韩+国产| 老女人水多毛片| 成人午夜高清在线视频| 欧美+亚洲+日韩+国产| 男女那种视频在线观看| 丝袜美腿在线中文| 日本五十路高清| 免费观看精品视频网站| 久久午夜福利片| 成人三级黄色视频| 真人做人爱边吃奶动态| 男人的好看免费观看在线视频| www日本黄色视频网| 欧美高清成人免费视频www| 男人和女人高潮做爰伦理| 久久这里只有精品中国| 伦精品一区二区三区| 熟女人妻精品中文字幕| 在线免费观看的www视频| 亚洲av五月六月丁香网|