鄭棉海, 黃 娟, 陳 浩, 王 暉, 莫江明,*
1 中國(guó)科學(xué)院華南植物園, 中國(guó)科學(xué)院退化生態(tài)系統(tǒng)植被恢復(fù)與管理重點(diǎn)實(shí)驗(yàn)室, 廣州 510650 2 中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所, 國(guó)家林業(yè)局森林生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室, 北京 100091 3 中國(guó)科學(xué)院大學(xué), 北京 100039
氮、磷添加對(duì)不同林型土壤磷酸酶活性的影響
鄭棉海1,3, 黃 娟1, 陳 浩1,3, 王 暉2, 莫江明1,*
1 中國(guó)科學(xué)院華南植物園, 中國(guó)科學(xué)院退化生態(tài)系統(tǒng)植被恢復(fù)與管理重點(diǎn)實(shí)驗(yàn)室, 廣州 510650 2 中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所, 國(guó)家林業(yè)局森林生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室, 北京 100091 3 中國(guó)科學(xué)院大學(xué), 北京 100039
研究了鼎湖山3種森林類型(南亞熱帶季風(fēng)常綠闊葉林、馬尾松人工林和針葉闊葉混交林)的土壤酸性磷酸單酯酶活性(APA)對(duì)施肥的響應(yīng)情況。在3種林型中分別設(shè)置對(duì)照、加氮(150 kg N hm-2a-1)、加磷(150 kg P hm-2a-1)以及N和P同時(shí)添加(150 kg N hm-2a-1+150 kg P hm-2a-1)4種不同處理。結(jié)果表明,季風(fēng)林土壤APA((15.83±2.46) μmol g-1h-1)顯著高于混交林((10.71±0.78) μmol g-1h-1)和馬尾松林((9.12±0.38) μmol g-1h-1),且3種林型土壤APA與土壤有效磷含量均呈顯著負(fù)相關(guān)。施加N肥顯著提高了季風(fēng)林土壤APA,而對(duì)混交林和馬尾松林的作用不顯著。施加P肥顯著降低了混交林和馬尾松林土壤APA,但對(duì)季風(fēng)林的影響不明顯。N和P同時(shí)添加僅顯著降低了馬尾松林土壤APA,但在季風(fēng)林中存在交互作用。因此,N沉降會(huì)加劇亞熱帶成熟林土壤P的限制,可以考慮施加P肥作為森林管理的一種方式來(lái)緩解這種限制作用。
酸性磷酸酶活性; 氮沉降; 氮添加; 磷添加; 磷限制; 鼎湖山
磷(P)是自然界中的基本礦質(zhì)元素,它不僅參與生物細(xì)胞膜的合成、酶的活化以及信號(hào)的轉(zhuǎn)導(dǎo)[1],同時(shí)也是構(gòu)成絕大多數(shù)生物能源物質(zhì)(ATP)的重要成分[2]。然而,P的缺乏導(dǎo)致許多森林植物和土壤生物的生長(zhǎng)受到限制。尤其在熱帶森林中,長(zhǎng)期的風(fēng)化淋溶和生物吸收使土壤P的含量逐漸減少,所以熱帶成熟林生產(chǎn)力普遍受到P的限制[3-4]。土壤磷酸酶在土壤P的循環(huán)中起重要的作用,即它可以將土壤中的復(fù)雜有機(jī)P水解成可被生物直接吸收的無(wú)機(jī)P,從而緩解了土壤P的限制[5]。因此,土壤磷酸酶活性的高低直接反映了土壤P的基本狀況。
有研究認(rèn)為,人類活動(dòng)引起大氣氮(N)沉降的增加將會(huì)加劇土壤P的限制,進(jìn)而改變土壤磷酸酶的活性[6-8]。據(jù)統(tǒng)計(jì),目前全球多數(shù)地區(qū)的N沉降速率已經(jīng)超過(guò)10 kg N hm-2a-1[9],而我國(guó)N沉降以每年0.41 kg/hm2的速率增加,僅在2000年的記錄就達(dá)到了21.1 kg N hm-2a-1[10]。長(zhǎng)期N沉降對(duì)森林植物和土壤生物的生長(zhǎng)造成危害[11],尤其是N沉降引起的土壤P限制將會(huì)進(jìn)一步抑制森林生物的生長(zhǎng)。多數(shù)研究表明,長(zhǎng)期N沉降或施加N肥提高了溫帶森林土壤的磷酸酶活性[12-14],但目前關(guān)于N沉降影響熱帶或亞熱帶森林土壤磷酸酶活性的報(bào)道很少。前期,在亞熱帶森林(鼎湖山)的研究已經(jīng)發(fā)現(xiàn),長(zhǎng)期N沉降可能引起土壤P的限制并提高了土壤的磷酸酶活性[15],然而這種限制作用是否可以通過(guò)施加P肥得到緩解需要進(jìn)一步的研究。
鼎湖山處于南亞熱帶地區(qū),并且長(zhǎng)期受到大氣N沉降的影響。據(jù)估計(jì),2004—2005年該地區(qū)大氣中的無(wú)機(jī)氮和有機(jī)氮輸入分別達(dá)到32—34 kg N hm-2a-1和18 kg N hm-2a-1[16]。此外,鼎湖山土壤呈酸性,因此通過(guò)測(cè)定土壤酸性磷酸單酯酶活性(Acid Phosphomonoesterase Activity,APA)可以直接了解土壤P的狀況。本研究的目的是通過(guò)原位的N、P添加試驗(yàn),研究N沉降對(duì)亞熱帶森林土壤APA的影響,同時(shí)探索P素輸入是否可以緩解N沉降對(duì)森林土壤P的限制,進(jìn)而為N沉降不斷增加背景下的亞熱帶森林管理提供理論依據(jù)。
鼎湖山自然保護(hù)區(qū)位于廣東省中部(112°30′—112°33′E,23°09′—23°11′N),占地面積約1200 hm2。該地屬亞熱帶季風(fēng)濕潤(rùn)型氣候,年降水量為1927 mm,其中75% 分布在3月至8月,而12月至2月僅占6%;年平均氣溫為21 ℃,最冷月(1月)和最熱月(7月)氣溫分別為12.6 ℃和 28.0 ℃[17]。
該保護(hù)區(qū)主要包括3種典型的森林類型,即馬尾松人工林(PinusmassonianaForest,簡(jiǎn)稱馬尾松林(PF))、針葉闊葉混交林(Mixed Pine and Broadleaf Forest,簡(jiǎn)稱混交林(MF))和季風(fēng)常綠闊葉林(Monsoon Evergreen Broadleaf Forest,簡(jiǎn)稱季風(fēng)林(MEBF))。馬尾松林由人工種植于1930年,覆蓋面積占保護(hù)區(qū)面積約20%,其主要植被為馬尾松(Pinusmassoniana)[18]?;旖涣质怯扇斯しN植的馬尾松林被一些闊葉樹(shù)種入侵而形成的針葉、闊葉混交樹(shù)林,其占地面積約50%,主要植被為馬尾松、荷木(Schimasuperba)和中華錐(Castanopsischinensis)等[18]。季風(fēng)林占保護(hù)區(qū)面積20%,其主要樹(shù)種為中華錐、荷木、黃果厚殼桂(Cryptocaryaconcinna)和中華楠(Machiluschinensis)等[19]。馬尾松林和混交林分別在1930—1998年和1930—1956年受到人類活動(dòng)的干擾(如收割地表植被和凋落物等),而季風(fēng)林則受到長(zhǎng)期的保護(hù)[18,20]。3種森林類型的土壤基本概況見(jiàn)表1。
表1 2013年鼎湖山3種森林類型的土壤基本概況
2007年,在鼎湖山季風(fēng)林、混交林和馬尾松林分別建立了20個(gè)5 m×5 m的N、P添加樣方。每個(gè)樣方之間留有5m寬的緩沖帶,以防樣方之間的相互干擾。按照析因設(shè)計(jì)的原則,在3個(gè)林子中分別設(shè)置對(duì)照、加N(150 kg N hm-2a-1)、加P(150 kg P hm-2a-1)、N和P同時(shí)添加(150 kg N hm-2a-1+150 kg P hm-2a-1)4個(gè)處理,每個(gè)處理各5個(gè)重復(fù),且所有的樣方均隨機(jī)分布。本研究所用的樣方大小及施肥量均參考國(guó)際上同類研究的處理方法[21]。2007年1月至2013年7月(6a),每?jī)蓚€(gè)月對(duì)3個(gè)林子的林下層進(jìn)行一次施肥處理。方法是將每個(gè)樣方所施加的N(NH4NO3)、P(NaH2PO4)或者N+P(NH4NO3+NaH2PO4)溶解于5 L水中,用背式噴霧器人工來(lái)回進(jìn)行噴灑。對(duì)照樣方噴灑等量的水,以減少因外加的水對(duì)森林生物地球化學(xué)循環(huán)造成影響。
2013年7月,在季風(fēng)林、混交林和馬尾松林土壤分別進(jìn)行隨機(jī)布點(diǎn)采樣。在每個(gè)樣方中用內(nèi)徑為2.5 cm的土鉆隨機(jī)鉆取3鉆土,取土深度為0—10 cm(前期研究認(rèn)為鼎湖山森林10—20 cm土層APA對(duì)施肥的響應(yīng)規(guī)律與0—10 cm基本一致[22])。將每個(gè)樣方所鉆的土混合均勻并挑出細(xì)根和石粒等雜物,通過(guò)2mm的土篩后分成兩部分:一部分保存在4 ℃的冰箱,并于14d內(nèi)完成對(duì)土壤APA的分析[23];另一部分風(fēng)干后用于測(cè)定土壤的理化性質(zhì)。
土壤APA的測(cè)定參照Schneider 等的方法[24],并進(jìn)行適當(dāng)?shù)母倪M(jìn)。具體操作即稱取1 g鮮土樣品置于50 mL 錐形瓶中,加入4 mL 緩沖液(MUB)和1 mL 質(zhì)量濃度為100 mmol/L 的對(duì)硝基酚底物(p-NPP)。蓋上瓶蓋后充分搖勻,并在37 ℃下培養(yǎng)1 h。待培養(yǎng)結(jié)束后,立即加入1 mL CaCl2(0.5 mol/L)和 4 mL NaOH(0.5 mol/L)以終止反應(yīng)。反應(yīng)結(jié)束后,所有樣品均用90 mL蒸餾水進(jìn)行稀釋,并用濾膜(Whatman-42 filter)過(guò)濾去除雜質(zhì)。濾液在400 nm波長(zhǎng)下進(jìn)行比色以測(cè)定吸光值。磷酸酶活性的單位用μmol g-1h-1表示。
所有數(shù)據(jù)均用SPSS 21.0統(tǒng)計(jì)軟件進(jìn)行分析。采用單因素方差分析(one-way ANOVA)和最小顯著極差法(LSR)比較不同森林類型土壤理化指標(biāo)和APA的差異顯著性。用兩因素方差分析(two-way ANOVA)比較N、P及NP處理對(duì)土壤APA的影響。用Pearson相關(guān)系數(shù)評(píng)價(jià)土壤APA與土壤理化性質(zhì)之間的相關(guān)性。如無(wú)特別說(shuō)明,顯著性水平均設(shè)為P< 0.05。
3種森林類型(季風(fēng)林、混交林和馬尾松林)土壤APA分別為(15.83±2.46)、(10.71±0.78)、(9.12±0.38) μmol g-1h-1。不同森林類型土壤APA之間的差異達(dá)到顯著水平(P=0.021),季風(fēng)林土壤APA顯著高于混交林和馬尾松林,但混交林與馬尾松林土壤APA之間沒(méi)有顯著差異(表1)。
從表2得知,季風(fēng)林土壤APA與AP和pH之間均存在顯著相關(guān)性,相關(guān)系數(shù)R分別為-0.451和-0.459?;旖涣滞寥繟PA與AP、TP、AP/TP、TP/TN、AP/AN均有極顯著相關(guān)性(P< 0.005),相關(guān)系數(shù)分別達(dá)到-0.756、-0.614、-0.767、-0.701和-0.745。馬尾松林土壤APA與土壤理化性質(zhì)之間的相關(guān)性與混交林相似,即與AP、TP、AP/TP、TP/TN、AP/AN均存在顯著相關(guān)性,相關(guān)系數(shù)分別為:-0.524、-0.485、-0.537、-0.523和-0.523。
表2 不同森林類型土壤APA與土壤理化性質(zhì)的相關(guān)性(n=20)
從圖1可以看出,(1)N添加處理使季風(fēng)林土壤APA顯著提高了131.96% ;在混交林和馬尾松林中,施加N肥分別使土壤APA降低了10.55% 和17.76%,但差異均不顯著;(2)P添加處理分別使季風(fēng)林、混交林和馬尾松林土壤APA降低了32.41% 、56.12% 和41.67%,但只在混交林和馬尾松林中的作用達(dá)到顯著水平;(3)N和P同時(shí)添加使季風(fēng)林土壤APA輕微增加了1.64%,使混交林和馬尾松林土壤APA分別降低28.94% 和30.15%,其中對(duì)馬尾松林的作用達(dá)到顯著水平。兩因素方差分析表明,N和P同時(shí)添加在季風(fēng)林中存在交互作用(P=0.008),而在混交林和馬尾松林中的作用均不顯著。
鼎湖山森林土壤APA為9.23—15.83 μmol g-1h-1,在熱帶森林的研究范圍3.89—23.26 μmol g-1h-1內(nèi)[26-28]。3種不同林型的土壤APA與土壤AP之間均存在顯著負(fù)相關(guān)(表2),這與Allison等[29]的研究結(jié)果一致。原因可能是在土壤處于缺P的情況下,土壤微生物或植物根系可能通過(guò)生物固持和吸收等多種方式繼續(xù)消耗土壤AP[30],而土壤AP的缺乏也將促進(jìn)微生物或者植物釋放出更多的磷酸酶來(lái)獲取P[31-32]。這表明鼎湖山森林土壤AP的缺乏間接提高了土壤APA。
圖1 氮、磷添加對(duì)不同森林類型土壤酸性磷酸酶活性的影響Fig.1 Effect of N and P addition on soil APA in different forest typesMEBF:季風(fēng)林 monsoon evergreen broadleaf forest; MF:混交林 mixed pine and broadleaf forest; PF:馬尾松林 Pinus massoniana forest; APA:酸性磷酸酶活性acid phosphatase activity; C:對(duì)照 control; N:施加N肥 N addition; P:施加P肥 P addition; NP:同時(shí)施加N肥和P肥combined N and P addition; 同一林型中不同字母表示差異達(dá)到顯著水平(P < 0.05); Different letters indicated significant differences (P < 0.05) among treatments in the same forest type; ** 表示交互作用達(dá)到極顯著水平(P < 0.01); Significant level of interactive effect (P < 0.01); ns 表示不存在交互作用(P > 0.05); no significant level of interactive effect (P > 0.05)
本研究發(fā)現(xiàn)季風(fēng)林土壤APA和AP均顯著高于混交林和馬尾松林(表1),該結(jié)果并不支持多數(shù)研究得出的結(jié)論,即土壤AP的缺乏可能會(huì)激發(fā)植物或者微生物分泌磷酸酶來(lái)獲取P[30-33]。先前的研究認(rèn)為季風(fēng)林較高的生物多樣性是導(dǎo)致土壤有較高APA的主要原因[15]。此外, 養(yǎng)分失衡和較高的年凋落物量也是導(dǎo)致季風(fēng)林土壤有較高APA的可能原因。鼎湖山森林位于高N沉降的南亞熱帶地區(qū),長(zhǎng)期N素輸入已使季風(fēng)林土壤達(dá)到N飽和[16],進(jìn)而增加了植物對(duì)P元素的需求[34]。本研究發(fā)現(xiàn),季風(fēng)林土壤TP/TN顯著低于混交林和馬尾松林(表1),這暗示了季風(fēng)林土壤P已處于相對(duì)缺乏的狀態(tài)。另外,相比混交林和馬尾松林,季風(fēng)林具有較高的年凋落物量[35]。大量的凋落物輸入提供給土壤豐富的有機(jī)質(zhì)和分解底物,進(jìn)而增加了微生物對(duì)土壤胞外酶的分泌[36]。
此外,混交林和馬尾松林土壤APA還與土壤TP、AP/TP、TP/TN、AP/AN均呈顯著負(fù)相關(guān)(表2)。這表明混交林和馬尾松林土壤APA對(duì)土壤P含量變化的響應(yīng)可能比季風(fēng)林敏感。
在溫帶森林,Keeler等[14]通過(guò)長(zhǎng)期的N肥添加試驗(yàn),發(fā)現(xiàn)施加N肥(100 kg N hm-2a-1)提高了松林、楓葉林和楊樹(shù)林等林地的土壤APA,平均增量為13%;Saiya-Cork等[13]也發(fā)現(xiàn),長(zhǎng)期N肥添加(30 kg N hm-2a-1)使溫帶闊葉林土壤APA增加了約17%。本研究同樣發(fā)現(xiàn),N添加顯著提高了南亞熱帶季風(fēng)林土壤APA,且增量高達(dá)131.96%。其原因可能是磷酸酶蛋白由C、N等基本元素構(gòu)成,施加N肥在一定程度上促進(jìn)了磷酸酶的合成[7];或者是因?yàn)殚L(zhǎng)期施加N肥提高了土壤微生物對(duì)其他養(yǎng)分的需求(尤其是P元素),所以微生物通過(guò)分泌更多的磷酸酶來(lái)獲取有效P[33]。但本研究季風(fēng)林樣地的土壤APA對(duì)施加N肥的響應(yīng)(=131.96%)遠(yuǎn)比其他多數(shù)研究樣地(=17%—26%)[6,13-14,33]強(qiáng)烈,這可能與本樣地施加了較高的N肥量(150 kg N hm-2a-1)有關(guān)。該結(jié)果表明,長(zhǎng)期高N沉降可能會(huì)加劇季風(fēng)林土壤P的限制[34]。
然而,施加N肥沒(méi)有顯著提高混交林和馬尾松林的土壤APA,這與Cusack等[37]和Weand等[38]的研究結(jié)果相似。有研究認(rèn)為當(dāng)土壤達(dá)到N飽和時(shí),植物和微生物才開(kāi)始分泌磷酸酶獲取P素,所以土壤N的飽和度也會(huì)影響土壤APA[38]。Huang等[22]通過(guò)對(duì)鼎湖山森林進(jìn)行長(zhǎng)期的N沉降試驗(yàn)研究,認(rèn)為由于混交林和馬尾松林土壤長(zhǎng)期處于N限制的狀態(tài),所以長(zhǎng)期施加N肥(7a)沒(méi)有使土壤從N限制向P限制轉(zhuǎn)變。因此,本研究施加N肥沒(méi)有引起混交林和馬尾松林土壤APA的變化,很可能是因?yàn)檫@兩個(gè)林分土壤仍處于N限制狀態(tài)[39],以至于無(wú)法刺激植物和土壤微生物分泌更多的磷酸酶。
Wang等[40]通過(guò)短期(< 1a)單次P肥添加試驗(yàn),發(fā)現(xiàn)施加P肥抑制了桉林土壤APA,其中高P處理(150 kg N hm-2)比低P處理(75 kg N hm-2)更加明顯。Olander和Vitousek[27]通過(guò)對(duì)夏威夷群島不同時(shí)間序列的土壤進(jìn)行長(zhǎng)期施肥研究(4—11a),結(jié)果表明施加P肥(100 kg N hm-2a-1)均顯著降低了各年齡段的土壤APA。本研究也發(fā)現(xiàn)P肥添加顯著降低了混交林和馬尾松林土壤APA。這可能是因?yàn)槭┘覲肥直接抑制了土壤微生物或植物根系對(duì)磷酸酶的分泌[41],或者通過(guò)降低土壤微生物對(duì)P的需求,從而使微生物減少了用于合成磷酸酶的能量投入[27]。此外,長(zhǎng)期施加P肥還可能導(dǎo)致土壤可利用性C和N的供應(yīng)量不足,進(jìn)而減少了用于合成磷酸酶蛋白的原材料[42]。
但是,本研究發(fā)現(xiàn)施加P肥沒(méi)有顯著降低季風(fēng)林土壤APA,這與許多研究的結(jié)論[7, 27, 42]不一致。已有多數(shù)研究認(rèn)為長(zhǎng)期外源P素的輸入會(huì)降低微生物對(duì)P的需求,進(jìn)而減少了微生物對(duì)磷酸酶的分泌并抑制土壤APA[27, 38]。然而在鼎湖山季風(fēng)林樣地中,長(zhǎng)期施加P肥同時(shí)也顯著提高了季風(fēng)林土壤的微生物總量[35]。土壤微生物量的增加在一定程度上提高了微生物對(duì)P的總需求[43]。因此,施加P肥沒(méi)有顯著抑制季風(fēng)林土壤APA,可能與季風(fēng)林土壤微生物對(duì)P的總需求增加有關(guān)。
N和P同時(shí)添加均降低了混交林和馬尾松林土壤APA,其中在馬尾松林中的抑制作用達(dá)到顯著水平(圖1),這與Olander和Vitousek[27]的研究結(jié)果一致。產(chǎn)生該現(xiàn)象的原因可能是本試驗(yàn)的NP處理無(wú)法滿足這兩種林型的植物和土壤微生物對(duì)N素的需求。本研究所采用的N、P施肥比例為1∶1,遠(yuǎn)低于植物(28∶1)[44]和土壤微生物(7∶1)[43]的平均需求水平。因此,長(zhǎng)期的NP處理可能導(dǎo)致植物或微生物的生長(zhǎng)受到N的限制,從而降低了它們對(duì)土壤P的需求并抑制了磷酸酶的分泌。
然而,NP處理卻輕微提高了季風(fēng)林土壤APA,但不顯著。這可能是因?yàn)榧撅L(fēng)林土壤長(zhǎng)期處于N飽和狀態(tài)[16],本研究進(jìn)行為期6a的NP處理還不足以使該樣地植物或土壤微生物出現(xiàn)N限制的情況。隨著施肥時(shí)間的延長(zhǎng),NP處理是否將會(huì)抑制季風(fēng)林土壤APA還有待于進(jìn)一步研究。
此外,本研究還發(fā)現(xiàn)N和P同時(shí)添加對(duì)季風(fēng)林土壤APA的影響存在交互作用(P=0.008)。這表明長(zhǎng)期N沉降引起亞熱帶成熟林土壤P的限制可以通過(guò)施加P肥得到緩解。該結(jié)論為管理森林生態(tài)系統(tǒng)并維持其可持續(xù)發(fā)展提供了理論支持。
(1)3種林型土壤APA與土壤AP之間均存在顯著負(fù)相關(guān),表明鼎湖山森林土壤AP的缺乏間接提高了土壤APA。
(2)施加N肥顯著提高了季風(fēng)林土壤APA,但對(duì)混交林和馬尾松林的作用不顯著,說(shuō)明長(zhǎng)期N沉降更容易加劇季風(fēng)林土壤P的限制。
(3)施加P肥顯著抑制了混交林和馬尾松林土壤APA,但對(duì)季風(fēng)林的影響不明顯,說(shuō)明施加P肥更容易降低這兩個(gè)林型土壤生物對(duì)P的需求。
(4)N和P同時(shí)添加對(duì)季風(fēng)林土壤APA的影響存在交互作用,這表明N沉降引起南亞熱帶成熟林土壤P的限制可以通過(guò)施加P肥得到緩解。
[1] Vance C P, Graham P H, Allan D L. Biological nitrogen fixation:Phosphorus-A critical future need? // Pedrosa F O, Hungria M, Yates G, Newton W E. Nitrogen Fixation:From Molecules to Crop Productivity. Netherlands:Springer, 2002:509-514.
[2] Alberty R A. Thermodynamics of the mechanism of the nitrogenase reaction. Biophysical Chemistry, 2005, 114(2/3):115-120.
[3] Vitousek P M, Porder S, Houlton B Z, Chadwick O A. Terrestrial phosphorus limitation:mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1):5-15.
[4] Turner B L, Engelbrecht B M J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 2011, 103(1/3):297-315.
[5] Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil // Phosphorus in Action. Berlin Heidelberg:Springer, 2011, 26:215-243.
[6] Stursova M, Crenshaw C L, Sinsabaugh R L. Microbial responses to long-term N deposition in a semiarid grassland. Microbial Ecology, 2006, 51(1):90-98.
[7] Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 2012, 193(3):696-704.
[8] Braun S, Thomas V F D, Quiring R, Flückiger W. Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 2010, 158(6):2043-2052.
[9] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science, 2008, 320(5878):889-892.
[10] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438):459-463.
[11] Liu X J, Duan L, Mo J M, Du E Z, Shen J L, Lu X K, Zhang Y, Zhou X B, He C N, Zhang F S. Nitrogen deposition and its ecological impact in China:an overview. Environmental Pollution, 2011, 159(10):2251-2264.
[12] Enowashu E, Poll C, Lamersdorf N, Kandeler E. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Applied Soil Ecology, 2009, 43(1):11-21.
[13] Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9):1309-1315.
[14] Keeler B L, Hobbie S E, Kellogg L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites:implications for litter and soil organic matter decomposition. Ecosystems, 2009, 12(1):1-15.
[15] 李銀, 曾曙才, 黃文娟. 模擬氮沉降對(duì)鼎湖山森林土壤酸性磷酸單酯酶活性和有效磷含量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2011, 22(3):631-636.
[16] Fang Y T, Gundersen P, Mo J, Zhu W X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences, 2008, 5:339-352.
[17] 莫江明, 薛花, 方運(yùn)霆. 鼎湖山主要森林植物凋落物分解及其對(duì)N沉降的響應(yīng). 生態(tài)學(xué)報(bào), 2004, 24(7):1413-1420.
[18] Mo J M, Brown S, Peng S L, Kong G H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management, 2003, 175(1/3):573-583.
[19] Lu X K, Mo J M, Gilliam F S, Zhou G Y, Fang Y T. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 2010, 16(10):2688-2700.
[20] 方運(yùn)霆, 莫江明, Brown S, 周國(guó)逸, 張倩媚, 李德軍. 鼎湖山自然保護(hù)區(qū)土壤有機(jī)碳貯量和分配特征. 生態(tài)學(xué)報(bào), 2004, 24(1):135-142.
[21] Cleveland C C, Townsend A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences, 2006, 103(27):10316-10321.
[22] Huang W J, Zhang D Q, Li Y L, Lu X K, Zhang W, Huang J, Otieno D, Xu Z H, Liu J X, Liu S Z, Chu G W. Responses of soil acid phosphomonoesterase activity to simulated nitrogen deposition in three forests of subtropical China. Pedosphere, 2012, 22(5):698-706.
[23] Verchot L V, Borelli T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 2005, 37(4):625-633.
[24] Schneider K, Turrión M B, Gallardo J F. Modified method for measuring acid phosphatase activities in forest soils with high organic matter content. Communications in Soil Science and Plant Analysis, 2000, 31(19-20):3077-3088.
[25] 劉光崧. 中國(guó)生態(tài)系統(tǒng)研究網(wǎng)絡(luò)觀測(cè)與分析標(biāo)準(zhǔn)方法:土壤理化分析與剖面描述. 北京:中國(guó)標(biāo)準(zhǔn)出版社, 1996:24-41.
[26] Cleveland C C, Townsend A R, Schmidt S K, Constance B C. Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. Ecological Applications, 2003, 13(2):314-326.
[27] Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activityby N and P availability. Biogeochemistry, 2000, 49(2):175-191.
[28] Turner B L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology, 2010, 76(19):6485-6493.
[29] Allison V J, Condron L M, Peltzer D A, Richardson S J, Turner B L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 2007, 39(7):1770-1781.
[30] Schneider K, Turrion M B, Grierson P F, Gallardo J F. Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the Sierra de Gata, western central Spain. Biology and Fertility of Soils, 2001, 34(3):151-155.
[31] Chen H J. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamialanceolata) plantation. Forest Ecology and Management, 2003, 178(3):301-310.
[32] Allison S D, Gartner T B, Holland K, Weintraub M, Sinsabaugh R L. Soil Enzymes:Linking Proteomics And Ecological Process. Manual of Environmental Microbiology, 2007:704-711.
[33] Chung H, Zak D R, Reich P B, Ellsworth D S. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5):980-989.
[34] Huang W J, Liu J X, Wang Y P, Zhou G P, Han T F, Li Y. Increasing phosphorus limitation along three successional forests in southern China. Plant and Soil, 2013, 364(1/2):181-191.
[35] Liu L, Gundersen P, Zhang T, Mo J M. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry, 2012, 44(1):31-38.
[36] Kang H, Kang S, Lee D. Variations of soil enzyme activities in a temperate forest soil. Ecological Research, 2009, 24(5):1137-1143.
[37] Cusack D F, Silver W L, Torn M S, Burton S D, Firestone M K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology, 2011, 92(3):621-632.
[38] Weand M P, Arthur M A, Lovett G M, Sikora F, Weathers K C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 2010, 97(2/3):159-181.
[39] Mo J M, Brown S, Xue J H, Fang Y T, Li Z A. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil, 2006, 282(1/2):135-151.
[40] Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a youngEucalyptusdunniiplantation:Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 2008, 40(3):484-490.
[41] Speir T W, Cowling J C. Phosphatase activities of pasture plants and soils:relationship with plant productivity and soil P fertility indices. Biology and Fertility of Soils, 1991, 12(3):189-194.
[42] Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 2005, 37(5):937-944.
[43] Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass?. Biogeochemistry, 2007, 85(3):235-252.
[44] McGroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios. Ecology, 2004, 85(9):2390-2401.
Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types
ZHENG Mianhai1,3, HUANG Juan1, CHEN Hao1,3, WANG Hui2, MO Jiangming1,*
1KeyLaboratoryofVegetationRestorationandManagementofDegradedEcosystems,SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou510650,China2KeyLaboratoryofForestEcologyandEnvironment,China′sStateForestryAdministration,InstituteofForestEcology,EnvironmentandProtection,ChineseAcademyofForestry,Beijing100091,China3UniversityofChineseAcademyofSciences,Beijing100039,China
Phosphorus (P) as a basic mineral nutrient is considered to constrain primary productivity in many tropical and subtropical forests. Soil phosphatase plays a very important role in P cycling in forest ecosystems because it catalyzes the hydrolysis of soil organic P compounds (e.g., nucleic acids and phospholipids) into forms that are available to plants and soil microbes. Soil phosphatase activity is widely considered an effective indicator of the P demand of plants and microbes due to its ability to mediate plant and microbial nutrient acquisition from organic P compounds. In recent decades, increasing nitrogen (N) deposition due to human activity has been demonstrated to cause soil P deficiency and increase soil acid phosphomonoesterase activity (APA) in several tropical or subtropical forests. However, little is known about the effects of N deposition on soil APA in other forest types (e.g., broadleaf forest and coniferous forest) or whether P addition may relieve soil P limitation in these forests. The present study investigated the responses of soil APA to N and P additions in a monsoon evergreen broadleaf forest (MEBF), aPinusmassonianaforest (PF), and a mixed broadleaf and pine forest (MF) in Dinghushan Mountain, Guangdong Province of southern China via a six-year fertilization experiment. The experiment used full factorial design, including four treatments:control (no fertilization), N addition (150 kg N hm-2a-1), P addition (150 kg P hm-2a-1), and combined N and P addition (150 kg N hm-2a-1plus 150 kg P hm-2a-1). Each 5 m × 5 m plot was established with a surrounding buffer strip (5 m wide). For each N and P application, NH4NO3and NaH2PO4solutions were applied below the canopy with a backpack sprayer, every other month from January 2007 to July 2013. In July 2013, soil samples were collected for analysis. Results showed that soil APA was significantly higher in MEBF ((15.83±2.46) μmol g-1h-1) than that in MF ((10.71±0.78) μmol g-1h-1) or PF ((9.12±0.38) μmol g-1h-1) soils, and a significant negative correlation existed between soil APA and soil available P contents in all forest types. N addition significantly increased soil APA in MEBF, while no statistical difference was found in MF or PF. P addition significantly decreased soil APA in MF and PF, but had no significant effect in MEBF. Combined N and P addition notably depressed soil APA in PF, but had no significant influence in MEBF and MF. Importantly, interactions between N and P additions were observed in MEBF. Based on our results, N deposition is expected to aggravate soil P deficiency in mature subtropical forest, while the N-induced P-limited state of these forests might be effectively relieved by P addition. In conclusion, the addition of P fertilizer may serve as an effective method for the sustainable future development of tropical and subtropical forests.
acid phosphatase activity; nitrogen deposition; nitrogen addition; phosphorus addition; phosphorus limitation; Dinghushan Mountain
國(guó)家自然科學(xué)基金(41203089, 41273143); 廣東省自然科學(xué)基金博士啟動(dòng)項(xiàng)目(S2012040007989)
2014-05-12; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2014-12-18
10.5846/stxb201405120970
*通訊作者Corresponding author.E-mail: mojm@scib.ac.cn
鄭棉海, 黃娟, 陳浩, 王暉, 莫江明.氮、磷添加對(duì)不同林型土壤磷酸酶活性的影響.生態(tài)學(xué)報(bào),2015,35(20):6703-6710.
Zheng M H, Huang J, Chen H, Wang H, Mo J M.Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types.Acta Ecologica Sinica,2015,35(20):6703-6710.