• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous anti-windup synthesis for linear systems subject to actuator saturation

    2015-01-17 12:29:16MaopengRanQingWangChaoyangDongandMaolinNi

    Maopeng Ran,Qing Wang,Chaoyang Dong,and Maolin Ni

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    3.Chinese Society of Astronautics,Beijing 100191,China

    Simultaneous anti-windup synthesis for linear systems subject to actuator saturation

    Maopeng Ran1,*,Qing Wang1,Chaoyang Dong2,and Maolin Ni3

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    3.Chinese Society of Astronautics,Beijing 100191,China

    A synthesis method for global stability and performance of input constrained linear systems,which uses a linear outputfeedback controller and a static anti-windup compensator is investigated.Different from the traditional two-step anti-windup design procedure,the proposed method synthesizes all controller parameters simultaneously.Suffcient conditions for global stability and minimizing the induced L2gain are formulated and solved as a linear matrix inequalities(LMIs)optimization problem,which also provides an opportunity to search for a better performance tradeoff between the linear controller and the anti-windup compensator. The well-posedness of the close-loop system is also guaranteed. Simulation results show the effectiveness of the proposed method.

    actuator saturation,anti-windup,simultaneous synthesis,L2synthesis,linear matrix inequalities(LMIs).

    1.Introduction

    Actuator saturation is a ubiquitous fact in any real control design problem.It can lead to deterioration in the performance of the system,and may also induce instability.The phenomenon caused by saturation is called anti-windup, and compensation for preventing this is referred to as antiwindup[1].Generally speaking,the anti-windup design follows a two-step procedure,i.e.,frst design a linear controller which does not take the saturation nonlinearity into account,and then add an anti-windup compensator to address any adverse effects that saturation creates[2,3]. The main superiority of this method is that there are no restrictions placed on the linear controller design,and while the actuator is not reaching saturation,the system closedloop response coincides with the linear unconstrained response.Under the two-step anti-windup procedure,various methods have been developed to design the anti-windup compensator[4–8].

    In nearly all two-step anti-windup design practices,the linear controller and the anti-windup compensator are designed separately.One disadvantage of the traditional twostep approach is that it is always suboptimal,as a result of the two-step design of the linear controller and the antiwindup compensator[9].A recent modifcation of the traditional two-step approach is to design the linear controller and the anti-windup compensator simultaneously.There are several instances which considered the simultaneous design.In[9],the simultaneous synthesis in the multiplier setting was addressed.A suffcient condition was established to make sure the closed-loop system guarantees a domain of attraction with a given ellipsoid.In[10],a systematic approach using deadzone loops was presented for the simultaneous construction of an output feedback controller and an anti-windup compensator,and an algorithm that minimizes the regional L2gain was developed.In[11], a linear output feedback controller and a static anti-windup compensator were simultaneously designed using multiobjective convex optimization.The synthesis method proposed in[11]was also extended to the delayed anti-windup scheme[12].In[13],the authors proposed a simultaneous synthesis method for a nonlinear controller,which contains a linear dynamic compensator,two static anti-windup loops,and an input saturating integrator system.All the simultaneous synthesis methods mentioned above relied on linear matrix inequalities(LMIs).

    Although the simultaneous synthesis has been studied by several groups of researchers,some problems remain open.Here,we are interested in searching for a better performance tradeoff between the linear controller and the anti-windup compensator to achieve a further improved performance of the closed-loop system.Our work is basedon extending the simultaneous anti-windup design method in[11]and the output-feedback control synthesis in[14]. We consider the linear systems subject to actuator saturation nonlinearities,and develop a simultaneous synthesis method to obtain a controller which achieves a desirable performance.In particular,the controller consists of a linear output feedback controller and a static anti-windup compensator.The performance index adopted in this paper is the induced L2gain.

    The rest of this paper is organized as follows.In Section 2,we provide a general description of the anti-windup design problem.In Section 3,we demonstrate the simultaneous design in details,and an LMI based optimization is established to search for the performance tradeoff between the linear controller and the anti-windup compensator.In Section 4,we illustrate the proposed method with a numerical example.Finally,we conclude the paper in Section 5.

    We use standard notation throughout the paper.For a non-Hermitian real matrix A,He(A)=A+AT.To reduce clutter,off-diagonal entries in symmetric matrices will be replaced by“?”.

    2.Problem statement and formulation

    Consider the following linear plant P:

    where xp∈ Rnp,?u ∈ Rnu,ω ∈ Rnω,y∈ Rnyand z∈Rnzare respectively the state vector,the control input vector,the exogenous input vector(possibly containing external disturbance,measurement noise and reference signals),the measurement output vector,and the controlled output vector.Ap,B1,B2,C1,D11,D12,C2and D21are matrices of suitable dimensions.Assume that an output-feedback controller K:

    has been designed.Here xk∈Rnkand u∈Rnuare respectively the controller state vector and the controller output vector,and Ak,Bk,Ck,and Dkare matrices of suitable dimensions.The unconstrained interconnection between the plant P and the output feedback controller K is

    When the saturation is encountered,the above equality will be replaced by

    where sat(·):Rnu→Rnuis the standard decentralized saturation nonlinearity function defned as

    where ulimis the amplitude limitation for each ui(i= 1,2,...,nu).

    In the anti-windup design,a compensation term using the difference between the plant input signal and the controller output signal q=u??u is added to the linear controller to minimize performance degradation caused by windup,that is

    The resulting overall nonlinear closed-loop system(1), (4),(7),(8)is illustrated in Fig.1,where P,C,and AW are the plant,the linear controller and the anti-windup compensator,respectively.

    Fig.1 Typical anti-windup scheme

    where

    The aim of anti-windup synthesis is to design the linear controller and the anti-windup compensator to make sure that the closed-loop system is stable(at least in some regions near the origin)and meets some performance requirements.In the traditional anti-windup,the linear controller and the anti-windup compensator are designed separately.The goal of this paper is to compute the entire controller parameters(i.e.,Λ1,Λ2,Ak,Bk,Ckand Dk) in the anti-windup closed-loop simultaneously.Besides, the synthesis results also provide an opportunity to search for the performance relationships between the linear controller and the anti-windup compensator.

    3.LMI-based anti-windup synthesis

    In this section,we focus on the simultaneous anti-windup design.For simplicity,we frst consider the single input systems.The synthesis results can be readily extended to the multiple input case which will be discussed later.

    3.1L2anti-windup design

    The induced L2gain from ω to z is defned as

    We construct a quadratic Lyapunov function V = xTPx with P >0.To guarantee asymptotic stability of the closed-loop system and the L2gain from ω to z less than γ[15],we require

    For subsequent use,we give partition P and its inverse Q=P?1as

    where P11and Q11are np×npand symmetric,and defne

    In Fig.1,the relationship between q and u satisfes q(q?u)≤0,thus with a positive scalar W,we have

    Invoking S-procedure,we get the following suffcient condition to ensure(11):

    Substitution for various parameters in(15)using(9), (15)can be written as the following equivalent LMI:

    where

    where

    We use the substitution(18),originally defned in[14], and the substitution(19),originally defned in[11],to calculate the linear controller and the anti-windup compensator,respectively.

    Thus,(17)can be expanded into

    where

    An upper bound on the L2gain can be obtained by minimizing γ subject to the LMI(20)and

    Here,one can compute all the controller parameters simultaneously.In this paper,we also expect the linear controller guarantees high-performance in the absence of saturation.Assume that|u(t)|<ulim,thus the anti-windup compensator will not be activated and the closed-loop system degrades to a linear system.The following LMI and the LMI(21)establish stability and an L2gain to be less than?γ in this case[14].

    We note that(19)and(20)guarantee the closed-loop system is stable with a performance level γ,no matter whether the saturation happens or not,while(21)and(22) ensure an L2gain of?γ if the controller output satisfes |u(t)|<ulim.We now combine(20)and(22)and arrive at the following theorem.

    Theorem 1The anti-windup closed-loop system depicted in Fig.1 is asymptotical stable and the L2gain from ω to z is less than γ,if there are matrices?Λ1,?Λ2,?A,?B, ?C,?D,P11and Q11such that the inequalities(20),(21) and(22)hold.The optimization problem is

    If these LMIs are feasible,then the controller matrices Ak, Bk,Ckand Dkcan be calculated from(18)while Λ1and Λ2satisfy(19).

    The optimization problem(23)is a standard LMI eigenvalues optimization[15].In the optimization(23),the positive scalars c and?c are weight factors which are specifed by the designer to balance the level of performance of the linear controller and the anti-windup compensator. It is straightforward to see that a larger?c will result in a smaller?γ,therefore,one can expect to obtain a more aggressive linear controller.We note that only γ is the L2performance guarantee of the closed-loop system.The gain?γ can be described as the measure of the aggressiveness and effectiveness of the linear controller.

    We now consider the feasibility conditions of optimization(23).LMI(22)is the same as(1:4,1:4)block of(20) with γ=?γ,thus if(20)and(21)are feasible,then the optimization(23)will at least have one set of decision variables.We note that the optimization

    is similar to the synthesis result obtained in[11].It was shown in[11]that a necessary and suffcient condition for the existence of a solution to the simultaneous synthesis is that all the eigenvalues of Aphave negative real parts. Thus,we can conclude that if Apis Hurwitz,then the optimization(23)is guaranteed to have a solution.Otherwise, the two-step anti-windup synthesis is not always feasible even the plant is open-loop stable[16].

    For the extensions of the synthesis results proposed in this paper,we have the following remark.

    Remark 1The synthesis results are readily extended to multiple input systems.For the multiple input systems, the only difference is that W and M in all the equations are diagonal positive defnite matrices.In this paper,we focus on the L2anti-windup synthesis.Various other performance indices,such as the peak-to-peak gain and the energy-to-peak gain,have been adopted in the anti-windup design.In[14],the authors presented an extensive catalog of linear performance indices,all of which can be extended to the simultaneous anti-windup design using the similar derivation steps from which we get Theorem 1.

    3.2Well-posedness of the closed-loop system

    In this subsection,we consider the well-posedness of the closed-loop system.The closed-loop system(9)is said to be well-posed if,for each pair of(x,ω),there is a unique u satisfying the algebraic equation[9].We show that the well-posedness of the closed-loop system is guaranteed by Theorem 1.

    Theorem 2The closed-loop system(9)is well-posed under the LMI-based optimization problem(23).

    ProofFor the proof of Theorem 2,we need the following lemma.

    Lemma 1[17,18]Given a square matrix D,if?2I+ D+DT<0,then I?DΔ is nonsingular for all Δ such that z?→Δz belongs to sector[0,I].

    For the closed-loop system(8),we have

    Defne

    whereΔ∈[0,I]is the deadzone nonlinearity.Substituting (26)in(25)and moving u term to the left side result in

    Thus the well-posedness of the closed-loop system is equivalently to the nonsingularity of matrix I+DuηΛΔ. Using Lemma 1,we get the following suffcient condition:

    which can be rewritten as

    Note that the left-hand side of the above inequality is the same as the(4,4)block of(17).Thus,we can conclude that the LMI-based optimization problem(23)guarantees the well-posedness of the closed-loop system. ?

    4.Simulation results

    We consider the spring-gantry system taken from[19].As depicted in Fig.2,the input of the system is the voltage applied to a DC motor that drives the cart,the output is the pendulum angle and cart position,and the external disturbance signal is the disturbance forces applied to the pendulum.The state xp,control input?u and external disturbance ω are defned as

    where p is the position of the cart,m;˙p is the speed of the cart,m/s;θ is the angular position of the pendulum, rad;˙θ is the angular rate of the pendulum,rad/s.And?u is the volts of the DC motor,V(limited to[–5,5]);ω is the impulse on the pendulum,N·s.

    Fig.2 The damped spring-gantry system

    The system matrices can be obtained from[19].

    It was shown in[19]that static anti-windup is not feasible for a specifed linear controller for this example,and a dynamic anti-windup compensator which guarantees an induced L2gain performance of 181.82 was designed by the two-step design procedure.Using Theorem 1,we frst evaluate the performance tradeoff between the linear controller and the anti-windup compensator.Fig.3 shows the values of γ and?γ versus?c with c=1.As we expect,by using a larger?c,one can obtain a smaller?γ and a larger over-all L2gain γ.

    Fig.3 γ and?γ versus?c with c=1.

    By choosing c=1 and?c=5,we get γ=365.452 2 and?γ=92.735 4.The resulting linear controller and antiwindup compensator are given in(30).Simulation results for a small tap(a constant force of 4 N with duration0.01s) and a larger tap(a constant force of 8 N with duration 0.01 s)are depicted in Fig.4 and Fig.5,respectively. For comparison,we evaluate the resulting linear controller and anti-windup compensator on the ideal system(systemwithout bounded actuator),and the system under bounded actuator and linear controller but without the anti-windup compensator.Also plotted in the fgures are the system responses of the dynamic anti-windup compensator designed in[19].As Fig.4 and Fig.5 suggest,for both small and large disturbances,the simultaneous anti-windup design method proposed in this paper leads to the best performance,and forces the system to leave the saturation zone earliest.We also note that the simultaneous anti-windup design avoids the control chattering that exists in the dynamic anti-windup design.

    Fig.4 System response for a small disturbance

    Fig.5 System response for a large disturbance

    5.Conclusions

    We present a simultaneous anti-windup synthesis for linear systems subject to actuator saturation,and the parameters of an output-feedback linear controller and a static anti-windup compensator could be simultaneously computed.The synthesis results are cast as an optimization over LMIs.In addition,the proposed framework,when compared with the existing results,is novel in that it provides an opportunity to search for a better performance tradeoff between the linear controller and the anti-windup compensator.Simulation results confrm the effectiveness of the proposed method.

    [1]S.S.Yoon,J.K.Park,T.W.Yoon.Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs.Automatica,2008,44(12):3176–3180.

    [2]S.Tarbouriech,M.C.Turner.Anti-windup design: an overview of some recent advances and open problems.IET Control Theory and Applications,2009,3(1):1–19.

    [3]S.Galeani,S.Tarbouriech,M.C.Turner,et al.A tutorial on modern anti-windup design.European Journal of control, 2009,3(4):418–440.

    [4]B.Hencey,A.Alleyne.An anti-windup technique for LMI regions.Automatica,2009,45(10):2344–2349.

    [5]F.Giri,F.Z.Chaoui,E.Chater,et al.SISO linear system control via saturating actuator:L2tracking performance in the presence of arbitrary-shaped inputs.International Journal of Control,2012,85(11):1694–1707.

    [6]X.J.Wu,Z.L.Lin.On immediate,delayed and anticipatory activation of anti-windup mechanism:static anti-windup case. IEEE Trans.on Automatic Control,2012,57(3):771–777.

    [7]M.Bruckner,S.Galeani,D.R.Luigi.Robustifed anti-windup via switching adaptation.IEEE Trans.on Automatic Control, 2013,58(3):731–737.

    [8]J.M.Gomes da Silva,E.B.Castelan,J.Corso,et al.Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators.Journal of the Franklin Institute,2013,350(3):464–484.

    [9]K.Sawada,T.Kiyama,T.Iwasaki.Generalized sector synthesis of output feedback control with anti-windup structure. Systems and Control Letters,2009,58(6):421–428.

    [10]D.Dai,T.Hu,A.R.Teel,et al.Output feedback design for saturated linear plants using deadzone loops.Automatica,2009, 45(12):2917–2924.

    [11]E.F.Mulder,P.Y.Tiwari,V.K.Kothare.Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization.Automatica,2009,45(3):805–811.

    [12]M.P.Ran,Q.Wang,M.L.Ni,et al.Simultaneous linear and anti-windup controller synthesis:delayed activation case. Asian Journal of Control,http://dx.doi.org/10.1002/asjc.948.

    [13]J.M.Gomes da Silva,D.Limon,T.Alamo,et al.Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints.IEEE Trans.on Automatic Control, 2008,53(10):2367–2372.

    [14]C.Scherer,P.Gahinet,M.Chilali.Multiobjective outputfeedback control via LMI optimization.IEEE Trans.on Automatic Control,1997,42(7):896–911.

    [15]S.Boyd,L.El Ghaoui,E.Feron,et al.Linear matrix inequalities in system and control theory.Philadelphia:Society for Industry and Applied Mathematics,1994.

    [16]G.Grimm,I.Postlethwaite,A.R.Teel,et al.Linear matrix inequalities for full and reduced order anti-windup synthesis. Proc.of the American Control Conference,2001:4134–4139. [17]S.Sajjadi-Kia,F.Jabbari.Modifed anti-windup compensators for stable plants.IEEE Trans.on Automatic Control,2009, 54(8):1934–1939.

    [18]B.L.Stevens,F.L.Lewis.Aircraft control and simulation. New York:Wiley-Interscience,2003.

    [19]G.Grimm,J.Hatfeld,I.Postlethwaite,et al.Antiwindup for stable linear systems with input saturation:an LMI-based synthesis.IEEE Trans.on Automatic Control,2003,48(9):1509–1525.

    Biographies

    Maopeng Ran was born in 1990.He received his B.E.degree in automatic control from Beihang University,in 2012.He is now a Ph.D.candidate in the School of Automation Science and Electrical Engineering,Beihang University.His research interests include missile guidance and control,and anti-windup techniques.

    E-mail:rmppinbo@asee.buaa.edu.cn

    Qing Wang is a professor in the School of Automation Science and Electrical Engineering at Beihang University.She received her Ph.D.degree in fight control,guidance and simulation from Northwestern Polytechnical University,in 1996.She has authored or co-authored more than 150 papers.Her current research interests are missile guidance and control, switch control,and fault detection.

    E-mail:wangqing@buaa.edu.cn

    Chaoyang Dong is a professor in the School of Aeronautic Science and Engineering at Beihang University.He received his Ph.D.degree in guidance,navigation and control in 1996 from Beihang University.He has authored or co-authored more than 100 papers.His research interests include dynamics and control of fight vehicles,modeling and simulation of aerospace vehicles,and synthesis of aerospace electrical system.

    E-mail:dongchaoyang@buaa.edu.cn

    Maolin Ni was born in 1963.He received his Ph.D.degree in automatic control from the China Academy ofSpace Technology,Beijing,in 1992.He was a research assistant at University of California, Davis,from 1997 to 1998,and a research fellow at Nanyang Technological University,Singapore,from 1998 to 2004.He was an engineer,senior engineer and professor at Beijing Institute of Control Engineering during 1992–1997 and 2004–2011.Currently,he is the deputy editor-in-chief of Chinese Journal of Astronautics at Chinese Society of Astronautics.His research interests include aerospace control and robust tolerant control.

    E-mail:niml@bice.org.cn

    10.1109/JSEE.2015.00016

    Manuscript received November 06,2013.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61074027;61273083).

    91精品伊人久久大香线蕉| 免费av中文字幕在线| 91久久精品国产一区二区三区| 久久影院123| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| av有码第一页| 精品一区二区免费观看| 亚洲国产最新在线播放| 久久久久久久国产电影| 国产在线免费精品| 看非洲黑人一级黄片| 久久热在线av| 婷婷色av中文字幕| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产亚洲午夜精品一区二区久久| 国产在视频线精品| 97在线人人人人妻| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 99久国产av精品国产电影| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 天天躁夜夜躁狠狠躁躁| 黄色一级大片看看| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 日韩制服丝袜自拍偷拍| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 丝袜在线中文字幕| 亚洲经典国产精华液单| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看 | 久久精品久久久久久久性| 赤兔流量卡办理| 中文天堂在线官网| av一本久久久久| 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 一级片免费观看大全| 亚洲av福利一区| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 九九在线视频观看精品| 久久久久久久大尺度免费视频| 一二三四在线观看免费中文在 | 好男人视频免费观看在线| 国产免费一区二区三区四区乱码| 黄色怎么调成土黄色| 国产1区2区3区精品| 国产成人a∨麻豆精品| 亚洲四区av| 水蜜桃什么品种好| 香蕉精品网在线| 国产亚洲av片在线观看秒播厂| 久久毛片免费看一区二区三区| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| 国产国语露脸激情在线看| 午夜激情久久久久久久| 黄色毛片三级朝国网站| 午夜激情av网站| 亚洲图色成人| 80岁老熟妇乱子伦牲交| 久久女婷五月综合色啪小说| 日韩av在线免费看完整版不卡| 日本vs欧美在线观看视频| 爱豆传媒免费全集在线观看| 哪个播放器可以免费观看大片| 妹子高潮喷水视频| 久久久久网色| 啦啦啦啦在线视频资源| 国产一区有黄有色的免费视频| 熟女av电影| 狠狠婷婷综合久久久久久88av| 超色免费av| 一级毛片 在线播放| 青春草亚洲视频在线观看| 一本久久精品| 999精品在线视频| 在线观看一区二区三区激情| 成年人免费黄色播放视频| 伊人亚洲综合成人网| www.色视频.com| 黑人欧美特级aaaaaa片| 男男h啪啪无遮挡| 日日啪夜夜爽| 国产精品久久久久久久电影| 免费久久久久久久精品成人欧美视频 | 国产激情久久老熟女| 国产黄色视频一区二区在线观看| 亚洲精品美女久久av网站| 亚洲精品,欧美精品| xxxhd国产人妻xxx| 少妇精品久久久久久久| 香蕉丝袜av| 久久人人爽人人爽人人片va| 亚洲欧美日韩另类电影网站| 看免费成人av毛片| 国产麻豆69| 最近手机中文字幕大全| 久久久精品免费免费高清| 日韩av在线免费看完整版不卡| 中文字幕最新亚洲高清| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃 | a级片在线免费高清观看视频| 只有这里有精品99| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 国产精品一国产av| 美国免费a级毛片| 欧美97在线视频| 精品福利永久在线观看| 最近中文字幕高清免费大全6| 日韩制服丝袜自拍偷拍| 久久久亚洲精品成人影院| 两个人看的免费小视频| 国产深夜福利视频在线观看| 男的添女的下面高潮视频| av一本久久久久| 欧美亚洲日本最大视频资源| 黄色一级大片看看| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 精品一区二区三卡| 日本av免费视频播放| 国产精品久久久久久av不卡| 一个人免费看片子| 日韩av在线免费看完整版不卡| 视频中文字幕在线观看| 男女午夜视频在线观看 | 婷婷色av中文字幕| 熟女av电影| 精品福利永久在线观看| 久久久久久伊人网av| 青青草视频在线视频观看| 一级黄片播放器| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看 | 国产精品久久久av美女十八| 两性夫妻黄色片 | 如何舔出高潮| av黄色大香蕉| 黄色 视频免费看| 一区在线观看完整版| 国产熟女午夜一区二区三区| 午夜久久久在线观看| 久久午夜福利片| 三上悠亚av全集在线观看| 国产精品不卡视频一区二区| 男的添女的下面高潮视频| 69精品国产乱码久久久| 欧美另类一区| 国产成人aa在线观看| 成人综合一区亚洲| 国产av码专区亚洲av| 草草在线视频免费看| 日日摸夜夜添夜夜爱| 久久久久精品性色| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 亚洲精品久久午夜乱码| 侵犯人妻中文字幕一二三四区| 久久精品熟女亚洲av麻豆精品| 久久99一区二区三区| 亚洲精品乱久久久久久| 一级毛片我不卡| 久久久久久人妻| 女性生殖器流出的白浆| 少妇被粗大猛烈的视频| 国精品久久久久久国模美| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 亚洲精品色激情综合| 亚洲国产色片| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 午夜日本视频在线| 中文字幕精品免费在线观看视频 | av在线观看视频网站免费| 日本午夜av视频| 亚洲国产精品999| 欧美日韩一区二区视频在线观看视频在线| 少妇被粗大猛烈的视频| 国产综合精华液| 三级国产精品片| 亚洲精华国产精华液的使用体验| 这个男人来自地球电影免费观看 | 男人添女人高潮全过程视频| 免费女性裸体啪啪无遮挡网站| 亚洲av.av天堂| 18禁在线无遮挡免费观看视频| 99久久人妻综合| videosex国产| www.色视频.com| 日韩欧美精品免费久久| 亚洲少妇的诱惑av| 欧美日韩综合久久久久久| 少妇人妻久久综合中文| 亚洲国产最新在线播放| 极品少妇高潮喷水抽搐| 你懂的网址亚洲精品在线观看| 桃花免费在线播放| av电影中文网址| 精品亚洲成国产av| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 久久久久久久久久久久大奶| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| 国产精品一区二区在线不卡| 免费人成在线观看视频色| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 18+在线观看网站| 色吧在线观看| 九九爱精品视频在线观看| 22中文网久久字幕| videossex国产| 国产亚洲欧美精品永久| 亚洲国产成人一精品久久久| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 国产成人精品婷婷| av黄色大香蕉| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 狠狠婷婷综合久久久久久88av| 女人精品久久久久毛片| 在线 av 中文字幕| 免费少妇av软件| 最近最新中文字幕大全免费视频 | 久久久久久久精品精品| 男人舔女人的私密视频| 免费大片黄手机在线观看| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 亚洲综合色惰| 国产亚洲精品久久久com| 久久精品aⅴ一区二区三区四区 | 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 久久久久精品久久久久真实原创| 人妻人人澡人人爽人人| 亚洲,欧美精品.| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 免费高清在线观看视频在线观看| av不卡在线播放| 成人免费观看视频高清| 久久热在线av| 国产不卡av网站在线观看| 最近最新中文字幕免费大全7| 亚洲国产欧美日韩在线播放| 成人手机av| 国产成人aa在线观看| 国产熟女欧美一区二区| 热re99久久国产66热| 高清视频免费观看一区二区| 男女高潮啪啪啪动态图| 日韩电影二区| www.色视频.com| 久热久热在线精品观看| 香蕉国产在线看| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 男女高潮啪啪啪动态图| 久久精品aⅴ一区二区三区四区 | 亚洲情色 制服丝袜| 久久婷婷青草| 少妇的逼好多水| 国产乱人偷精品视频| 欧美人与性动交α欧美精品济南到 | 免费高清在线观看视频在线观看| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 2022亚洲国产成人精品| 91精品国产国语对白视频| 免费黄网站久久成人精品| 国产av精品麻豆| 精品午夜福利在线看| 麻豆乱淫一区二区| av有码第一页| 啦啦啦在线观看免费高清www| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 夫妻午夜视频| 婷婷成人精品国产| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 亚洲av在线观看美女高潮| 国产精品 国内视频| 青青草视频在线视频观看| 男女午夜视频在线观看 | 曰老女人黄片| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 欧美日韩亚洲高清精品| 国产一区二区在线观看日韩| 欧美成人精品欧美一级黄| 两性夫妻黄色片 | 国产女主播在线喷水免费视频网站| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 一级a做视频免费观看| 国产乱来视频区| a级片在线免费高清观看视频| 丝袜人妻中文字幕| 人人妻人人添人人爽欧美一区卜| 午夜精品国产一区二区电影| 国产女主播在线喷水免费视频网站| 久久影院123| 久久精品国产亚洲av天美| av.在线天堂| 免费av中文字幕在线| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| av播播在线观看一区| 午夜福利影视在线免费观看| 国产精品人妻久久久久久| 亚洲av男天堂| 国产极品天堂在线| 久久综合国产亚洲精品| 三上悠亚av全集在线观看| 国产成人精品无人区| 啦啦啦中文免费视频观看日本| 国产色爽女视频免费观看| 波多野结衣一区麻豆| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| a级毛片在线看网站| av在线播放精品| 日韩一区二区三区影片| 丁香六月天网| 欧美日韩视频精品一区| 欧美xxxx性猛交bbbb| 欧美日韩一区二区视频在线观看视频在线| 精品一区在线观看国产| 亚洲av在线观看美女高潮| 国产精品无大码| 国产成人免费无遮挡视频| 另类亚洲欧美激情| www.色视频.com| 国产乱来视频区| 成人亚洲精品一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 97在线人人人人妻| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 九九爱精品视频在线观看| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 深夜精品福利| 在线观看三级黄色| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 在线亚洲精品国产二区图片欧美| 男女啪啪激烈高潮av片| 咕卡用的链子| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 国产在线一区二区三区精| 国产精品成人在线| 精品一区二区三区视频在线| 久久精品人人爽人人爽视色| 久久热在线av| 精品人妻在线不人妻| 国产精品欧美亚洲77777| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 人人妻人人爽人人添夜夜欢视频| 卡戴珊不雅视频在线播放| 免费高清在线观看日韩| 一本大道久久a久久精品| 男女免费视频国产| 少妇人妻精品综合一区二区| 亚洲色图 男人天堂 中文字幕 | 亚洲中文av在线| videossex国产| 香蕉丝袜av| 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 91aial.com中文字幕在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人久久精品综合| 亚洲国产看品久久| 成人漫画全彩无遮挡| 精品人妻熟女毛片av久久网站| 在线观看免费高清a一片| 国产精品一区二区在线观看99| 久久精品国产综合久久久 | 少妇人妻精品综合一区二区| 欧美日韩视频精品一区| 亚洲国产精品国产精品| 大片电影免费在线观看免费| kizo精华| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 国产 精品1| 超色免费av| 久久久久久久大尺度免费视频| 少妇人妻 视频| 99视频精品全部免费 在线| 欧美性感艳星| 国产精品不卡视频一区二区| 欧美国产精品一级二级三级| 乱码一卡2卡4卡精品| 国产熟女午夜一区二区三区| 韩国av在线不卡| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 亚洲久久久国产精品| 一边亲一边摸免费视频| 在线观看人妻少妇| 日韩伦理黄色片| 婷婷色av中文字幕| 男女边摸边吃奶| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 在线精品无人区一区二区三| 国国产精品蜜臀av免费| 精品亚洲成国产av| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美| 国产极品天堂在线| 国产精品一区www在线观看| 欧美xxⅹ黑人| av国产久精品久网站免费入址| 国产一区二区三区综合在线观看 | 波野结衣二区三区在线| 大码成人一级视频| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 永久免费av网站大全| 日本欧美国产在线视频| 国产免费福利视频在线观看| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 高清av免费在线| 国产一区有黄有色的免费视频| 国产极品粉嫩免费观看在线| 妹子高潮喷水视频| 久久99精品国语久久久| 99热6这里只有精品| 女人被躁到高潮嗷嗷叫费观| 日本黄大片高清| 国产精品久久久久成人av| 九九在线视频观看精品| 丰满少妇做爰视频| 亚洲成人av在线免费| 美女内射精品一级片tv| 免费高清在线观看日韩| 王馨瑶露胸无遮挡在线观看| 九九在线视频观看精品| 午夜老司机福利剧场| 一级毛片黄色毛片免费观看视频| 春色校园在线视频观看| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 日本黄大片高清| 热99国产精品久久久久久7| 在线看a的网站| 我要看黄色一级片免费的| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| av卡一久久| 国产男女超爽视频在线观看| 99九九在线精品视频| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 亚洲av免费高清在线观看| 最近最新中文字幕大全免费视频 | 亚洲av综合色区一区| 观看av在线不卡| 亚洲精品国产av蜜桃| 亚洲国产av新网站| av黄色大香蕉| 国产一区亚洲一区在线观看| 男女无遮挡免费网站观看| 男女国产视频网站| 国产精品不卡视频一区二区| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 97精品久久久久久久久久精品| 亚洲国产av新网站| 久久久欧美国产精品| 9191精品国产免费久久| 国产极品天堂在线| 老女人水多毛片| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 如何舔出高潮| 一级a做视频免费观看| 成人免费观看视频高清| 在线免费观看不下载黄p国产| 极品人妻少妇av视频| 18禁国产床啪视频网站| 一本大道久久a久久精品| 国产一区二区三区av在线| 日本欧美视频一区| 日日爽夜夜爽网站| a级毛片在线看网站| 99久久人妻综合| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 婷婷成人精品国产| 九色成人免费人妻av| 国产精品.久久久| 久久久久国产精品人妻一区二区| 99热网站在线观看| 国产成人精品一,二区| 天美传媒精品一区二区| 边亲边吃奶的免费视频| 久久精品国产亚洲av天美| av天堂久久9| 中文字幕人妻丝袜制服| 如何舔出高潮| 97在线视频观看| 欧美日韩综合久久久久久| 国产亚洲一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91| 黄色一级大片看看| 少妇人妻精品综合一区二区| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 美女国产高潮福利片在线看| 日本wwww免费看| 久久av网站| 中文乱码字字幕精品一区二区三区| 国产国语露脸激情在线看| 国产成人午夜福利电影在线观看| 最近手机中文字幕大全| 日韩中字成人| 热99久久久久精品小说推荐| 国产精品久久久久成人av| 看非洲黑人一级黄片| 另类亚洲欧美激情| 99久久综合免费| 丝袜人妻中文字幕| 天天影视国产精品| 美女福利国产在线| 日本与韩国留学比较| 美女中出高潮动态图| 精品少妇内射三级| 黄片无遮挡物在线观看| 日韩精品免费视频一区二区三区 | 亚洲国产日韩一区二区| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 免费大片黄手机在线观看| 99久久精品国产国产毛片| 国产欧美日韩综合在线一区二区| 宅男免费午夜| 丰满少妇做爰视频| 国产黄色免费在线视频| 久久人人97超碰香蕉20202| 国产欧美另类精品又又久久亚洲欧美| 熟女av电影| 人妻人人澡人人爽人人| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 免费av中文字幕在线| 成人免费观看视频高清|