• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bayesian method for system reliability assessment of overlapping pass/fail data

    2015-01-17 12:29:36ZhipengHaoShengkuiZengandJianbinGuo

    Zhipeng Hao,Shengkui Zeng,2,and Jianbin Guo,2,*

    1.School of Reliability and Systems Engineering,Beihang University,Beijing 100191,China;

    2.Science and Technology on Reliability and Environmental Engineering Laboratory,Beijing 100191,China

    Bayesian method for system reliability assessment of overlapping pass/fail data

    Zhipeng Hao1,Shengkui Zeng1,2,and Jianbin Guo1,2,*

    1.School of Reliability and Systems Engineering,Beihang University,Beijing 100191,China;

    2.Science and Technology on Reliability and Environmental Engineering Laboratory,Beijing 100191,China

    For high reliability and long life systems,system pass/fail data are often rare.Integrating lower-level data,such as data drawn from the subsystem or component pass/fail testing, the Bayesian analysis can improve the precision of the system reliability assessment.If the multi-level pass/fail data are overlapping, one challenging problem for the Bayesian analysis is to develop a likelihood function.Since the computation burden of the existing methods makes them infeasible for multi-component systems,this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data.This approach includes three steps:fristly searching for feasible paths based on the binary decision diagram,then screening feasible points based on space partition and constraint decomposition,and fnally simplifying the likelihood function.An example of a satellite rolling control system demonstrates the feasibility and the effciency of the proposed approach.

    system reliability assessment,Bayesian analysis,limited samples,overlapping pass/fail data.

    1.Introduction

    System pass/fail data are often rare for high reliablility and long life systems in the aeronautics and astronautics area due to the diffculty of testing,which brings a great challenge to the system reliability assessment.To improve the accuracy of assessment results,a direct and effcient method is to utilize data drawn from the subsystem or component pass/fail testing[1].Graves et al.investigated possible discrepancies between reliability estimates based on different levels of data[2].Wilson et al.studied uncertainty quantifcation in the system reliability assessment with multi-level data[3].Reese et al.[4]and Jackson et al.[5]incorporated multi-level lifetime data to estimate the system reliability.Guo and Wilson provided a Bayesian method to estimate the system reliability using heterogeneous multi-level information[6,7].Peng et al.also estimated the system reliability with multi-level heterogeneous data sets[8,9].

    There are two distinct types of multi-level data:overlapping and non-overlapping[10].For‘overlapping’,it means that the data are drawn from the same system at the same time or during the same process[11,12].And vice versa. It would be a mistake to treat the overlapping data as nonoverlapping,which ignores the dependency and results in double-counting[10].For the scope of this paper,we focus on pass/fail data.

    Approximate Bayesian techniques were developed to manage multi-level pass/fail data by Martz et al.[13,14]. Then,Martz et al.pointed out that the overlapping data have a unique feature[15].Johnson et al.[16]and Hamada et al.[10]proposed fully Bayesian techniques to deal with the non-overlapping data.Graves et al.frstly introduced an approach to assess the reliability of binary-state systems by adopting overlapping data[17].The approach is based on the disjoint generalized cut sets.It is suitable to process data in a single test.For distinct records in successive tests, the disjoint algorithm should be carried out over and over again,which would lead to intensive computation.Jackson and Mosleh proposed an alternative method to incorporate the distinct records as a whole[11,12].All combinations of component state vectors are enumerated and then screened individually according to the test results.Forthe series system composed of two components in[12],only two of the 286 combinations of component state vectors are consistent with the test result.Apparently,enumeration results in redundancy.Moreover,screening wastes computation resources on the judgment of the consistency between these combinations and the test result.For the situation where a system has more components,this approach will be infeasible,which leads to intensive or even unaffordable computation[12].

    For the system reliability assessment in light of overlap-ping pass/fail data,an improved fully Bayesian approach is proposed to manage the computation burden.It includes three steps:frstly searching for the feasible paths,which defne the feasible space,based on the binary decision diagram(BDD);then screening the feasible points,which consist of the feasible sets,based on space partition and constraint decomposition;fnally simplifying the form of the likelihood function based on the frst two steps.An example of a satellite rolling control system demonstrates the feasibility and the effciency of the computation reduction and the likelihood function simplifcation of the proposed methodology.

    2.Features of overlapping pass/fail data

    The features of overlapping pass/fail data are described by two related cases below.And we defne 0 as the failure state and 1 as the success state.

    Case 1The two-component series system is tested by 10 successive times.In three tests the system fails,while in the other tests it operates.For the three failure cases,the component state vectors could be(1,0),(0,1)or(0,0).For the other cases,the corresponding vector is(1,1).According to the test results,there are 10 possible combinations of these state vectors altogether,such as{2(1,0),1(0,1),0(0, 0),7(1,1)}and{1(1,0),1(0,1),1(0,0),7(1,1)}.

    Case 2On the basis of Case 1,only one individual failure of component A is simultaneously detected.For the instance that both the system and component A fail,the possible component state vector is(0,1)or(0,0).For the other two instances that the system fails and component A operates,the vector is(1,0).Therefore the number of combinations decreases to two,which are{2(1,0),1(0,1), 0(0,0),7(1,1)}and{2(1,0),0(0,1),1(0,0),7(1,1)}.

    As the preceding cases show,there are two remarkable features of overlapping data:the combination of the component state vectors and the variation of the number of a specifc vector in such a combination.In addition,overlapping data can give us some instructions to fnd out the failure locations and causes.

    3.Likelihood function of overlapping data

    One of the key issues of the Bayesian analysis is to defne the likelihood function.Generally speaking,the binomial distribution can be chosen as the likelihood function if the data are in the pass/fail form.However,when the pass/fail data are overlapping,the combinations of the component state vectors will be completely different.Then the likelihood function requires reformulation.

    For limited samples of the high reliability and long life system,each sample has its own test records,i.e.,overlapping data.Then they need their own likelihood functions, which require to be integrated.And the integrated likelihood function is achieved according to the following three steps.

    Step 1The feasible path,space and hyperplane

    The generalized cut set method implements boolean calculation at each level where the data are collected.Then a disjoint solution can be achieved by employing the disjoint algorithm.For every independent sample and its test records,the Boolean calculation and the disjoint algorithm are executed repeatedly,which leads to intensive computation.

    For enumeration,it lists all component state vectors. Each vector implies an instance of all level states of the system by the structure function.However for a specifc sample,enumeration introduces redundant state vectors, which confict with the multi-level states implied by the overlapping data.This results in intensive computation [12].

    To reduce the computation workload,we propose a BDD-based searching method to eliminate those redundant vectors,which are inconsistent with the overlapping data. Here a low-pressure coolant injection(LPCI)system[17] is taken as an example to illustrate our approach.The reliability block diagram(RBD)and the corresponding BDD of this example are shown in Fig.1.

    Note that the size of BDD heavily depends on the order of nodes,i.e.,components.According to our experience, the component with data records is chosen as the root node. If there is not any component that has data records,the sub-BDD of the lowest level subsystem is chosen,which has data records,as the frst building block.

    For the eight instances of Table 3 in[17],the generalized cut set approach is employed eight times to obtain the disjoint solutions.On the contrary,the BDD illustrates the disjoint paths.Consider Instance 2 of[17]where success is detected at the system level,112 and 212.According to Fig.1(b),the corresponding paths are 1121→1122→121→122→2121→2122,1121→1122→121’→2121→2122→221→222 and 1121→1122→121→122’→2121→2122→221→222.Because of its abstract logic attribute,the BDD model can be suitable to all test instances and samples.Thus the BDD can uniformly incorporate all overlapping data of the population.

    Note that the frst path consists of an original path of BDD,1121→1122→121→122,and a separated subpath,2121→2122.This implies that for some instances of over-lapping data,the original paths cannot fully cover the multi-level states.Some sub-paths or nodes need to combine with the original path.The integrated path is fnally achieved.

    Fig.1 LPCI system

    We observe that some paths in BDD confict with the multi-level states implied by the overlapping data.For example,the dashed paths in Fig.1(b)confict with the second instance of[17].To develop the proper likelihood function,these unqualifed paths ought to be eliminated.

    In conclusion,the feasible paths are the basis to develop the likelihood function.Detecting the feasible paths by searching the BDD model can signifcantly reduce the computation workload for the development of the likelihood function.

    Step 2The feasible points and set

    For the given overlapping data,not all points in the feasible hyperplane coincide with the data.To develop the likelihood function,we need to identify the appropriate points.

    In fact,the test result consists of two portions:the distinct instances of multi-level states,e.g.,eight instances of [17],and the occurrence times of a specifc instance,e.g., the assumption in the former step.Therefore the test result restricts the possible combinations of the feasible paths and the occurrence times of a specifc feasible path in the com-bination.Actually,it is the criterion to screen the points, i.e.,combinations,in the feasible hyperplane.Now the feasible point is defned by the selected point consistent with the test result in the feasible hyperplane.

    Fig.2 Reduction of spaces

    Since there are exactly two consequences of the pass/fail test,the feasible paths lead to either success or failure. Thus the feasible paths are classifed into two categories, the success paths and the failure paths.The feasible space is then divided into two subspaces,the success space and the failure space,respectively,denoted by S and F,as the two regions labeled by S and F in Fig.3.

    Fig.3 Success space and failure space

    The test result gives the number of system success k and system failure l(k+l=n),both of which are constraints. Each constraint defnes a hyperplane,which means that the feasible hyperplane is divided into two sub-hyperplanes,as the dot lines in S and F in Fig.3.

    For the points(ki1,ki2,...,kis)in the success hyperplane,their coordinates satisfy k=ki1+ki2+···+kis,and the corresponding probability vector is(pi1,pi2,...,pis). For the points(lj1,lj2,...,ljf)in the failure hyperplane, their coordinates satisfy l=lj1+lj2+···+ljf,and the corresponding probability vector is(pj1,pj2,...,pjf).

    After space partition and constraint decomposition,the screening workload is remarkably reduced.The feasible point can be obtained by pairing its counterparts in the success and failure spaces.All feasible points form the feasible set.The likelihood function is developed according to the feasible set.

    Each sample has its own numbers of system success and failure,i.e.,a pair of constraints.Each pair leads to its own feasible points and feasible set.

    Step 3The integrated likelihood function

    Each feasible point corresponds to a specifc combination of the feasible paths.The coordinates of a feasible point are the occurrence times of the feasible paths.Thus the probability of a feasible point is

    The likelihood function of a specifc sample is

    According to Step 2,the likelihood function is simplifed as follows:

    For the population,including z samples,the integrated likelihood function is

    Based on the Bayesian theorem,the joint posterior distribution of uncertain parameters in the system reliability function is obtained.The posterior predictive distribution of the system reliability is also ascertained.

    4.Reliability assessment of satellite rolling control system

    Fig.4 illustrates RBD and BDD of a satellite rolling control system.It consists of dual-redundancy fight control computer C11/C21,electronic control unit C12/C22,engine control unit C31,and engine C32.With the aid of sensors, overlapping data are recorded for two samples in a ground test as shown in Table 1.

    Fig.4 RBD and BDD of a satellite rolling control system

    Table 1 Overlapping data of the rolling control system

    Table 2 Feasible paths of S1

    Table 3 Feasible paths of S2

    After space partition and constraint decomposition,the number of feasible points is presented in Table 4.The total screening workload is 162,which is nearly 7×1011times less than enumeration.

    Table 4 Number of feasible points

    The likelihood function for S1 is

    where p1s=p1s1+p1s2,p1f=(p1f1+p1f2+p1f3+ p1f4+p1f5).

    The likelihood function for S2 is

    where p2s=p2s1+p2s2,p2s′=p2s3+p2s4.

    The integrated likelihood function is

    Assume that the prior distributions of C12and C31are both U(0,1),which makes the observations dominate the posteriors.Fig.5 and Fig.6 illustrate the posteriors of C12, C31and the system.The uncertainties of C12,C31and the system are presented in Table 5.It is obvious that C12is the weak point,which is consistent with the overlapping data in Table 1.Since C12and C22are identical,we can conclude that C22is also of relatively low reliability.However,thanks to the parallel confguration,which can provide high reliability with relatively low component reliability,the system is highly reliable.

    Fig.5 Posterior distributions of C12and C31

    Fig.6 Posterior distributions of the system

    Table 5 Uncertainty of C12,C31and the system

    5.Conclusions

    For the system reliability assessment in light of overlapping pass/fail data,an improved fully Bayesian approach is proposed to manage the computation burden.The main advantage of this approach over alternative methods is the feasibility for multi-component systems,which is verifed by an example of a satellite rolling control system.For the six component control system,comparing with enumeration,the proposed Bayesian approach signifcantly reduces the computation workload by1229129451times and simplifes the form of the likelihood function.In addition,uncertainties of the parameters in the system reliability function can also be obtained.

    [1]M.Huang,Y.Zhao.A numerical analysis method for the integrated reliability assessment.Systems Engineering and Electronics,2002,24(11):131–134.(in Chinese)

    [2]T.L.Graves,C.M.Anderson-Cook,M.S.Hamada.Reliability models for almost-series and almost-parallel systems.Technometrics,2010,52(2):160–171.

    [3]A.G.Wilson,C.M.Anderson-Cook,A.V.Huzurbazar.A case study for quantifying system reliability and uncertainty.Reliability Engineering and System Safety,2011,96(9):1076–1084.

    [4]C.S.Reese,A.Wilson,J.Q.Guo,et al.A Bayesian model for integrating multiple sources of lifetime information in systemreliability assessments.Journal of Quality Technology,2011, 43(2):127–141.

    [5]C.Jackson,A.Mosleh.Bayesian inference with overlapping data for systems with continuous life metrics.Reliability Engineering and System Safety,2012,106:217–231.

    [6]J.Q.Guo,A.G.Wilson.Bayesian methods for estimating system reliability using heterogeneous multilevel information. Technometrics,2013,55(4):461–472.

    [7]J.Q.Guo,A.G.Wilson.Bayesian methods for estimating the reliability of complex systems using heterogeneous multilevel information.Proc.of the Joint Statistical Meeting,2011.

    [8]W.W.Peng,H.Z.Huang,M.Xie,et al.A Bayesian approach for system reliability analysis with multilevel pass-fail,lifetime and degradation data sets.IEEE Trans.on Reliability, 2013,62(3):689–699.

    [9]W.W.Peng,Z.L.Xiao,Y.Y.Wang,et al.A combined Bayesian framework for satellite reliability estimation.Proc. of the International Conference on Quality,Reliability,Risk, Maintenance,and Safety Engineering,2011.

    [10]M.S.Hamada,H.F.Martz,C.S.Reese,et al.A fully Bayesian approach for combining multilevel failure information in fault tree quantifcation and optimal follow-on resource allocation. Reliability Engineering and System Safety,2004,86(3):297–305.

    [11]C.Jackson,A.Mosleh.Downwards propagating:Bayesian analysis of complex on-demand systems.Proc.of Annual Reliability and Maintainability Symposium,2010:1–6.

    [12]C.Jackson,A.Mosleh.Downwards inference:Bayesian analysis of overlapping higher-level data sets of complex binarystate on-demand systems.Proc.of the Institution of Mechanical Engineers,Part O:Journal of Risk and Reliability,2012, 226(2):182–193.

    [13]H.F.Martz,R.A.Wailer,E.T.Fickas.Bayesian reliability analysis of series systems of binomial subsystems and components.Technometrics,1988,30(2):143–154.

    [14]H.F.Martz,R.A.Wailer.Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components.Technometrics,1990,32(4):407–416.

    [15]H.F.Martz,R.G.Almond.Using higher-level failure data in fault tree quantifcation.Reliability Engineering and System Safety,1997,56(1):29–42.

    [16]V.E.Johnson,T.L.Graves,M.S.Hamada,et al.A hierarchical model for estimating the reliability of complex systems.J. M.Bernardo.Bayesian Statistics 7.USA:Oxford University Press,2003:199–213.

    [17]T.L.Graves,M.S.Hamada,R.M.Klamann,et al.Using simultaneous higher-level and partial lower-level data in reliability assessments.Reliability Engineering and System Safety, 2008,93(8):1273–1279.

    Biographies

    Zhipeng Hao was born in 1981.He is a Ph.D.candidate in systems engineering at School of Reliability and Systems Engineering,Beihang University.He also holds the master degree of applied mathematics.His current research interests are reliability assessment and integration design of system reliability and performance.

    E-mail:haozhipeng@buaa.edu.cn

    Shengkui Zeng was born in 1968.He received his Ph.D.degree from Beihang University in 2009.Now he is a professor,and a vice-dean of School of Reliability and Systems Engineering,Beihang University. His current research interests include integration design of system reliability and performance,comprehensive quality design,and physics of failure based reliability design and analysis.

    E-mail:zengshengkui@buaa.edu.cn

    Jianbin Guo was born in 1978.He received his Ph.D.degree from Beihang University in 2008.Now he is an assistant professor in School of Reliability and Systems Engineering,Beihang University.His current research interests include electromechanical system reliability simulation,integration design of reliability and performance,and comprehensive design of performance and reliability maintainability supportability.

    E-mail:guojianbin@buaa.edu.cn

    10.1109/JSEE.2015.00025

    Manuscript received May 05,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61304218).

    亚洲九九香蕉| 亚洲av第一区精品v没综合| tocl精华| 中文字幕久久专区| 一区二区三区激情视频| 国产一区二区在线观看日韩 | 国产高清激情床上av| 国产一区二区在线av高清观看| 午夜免费激情av| 国产精品亚洲av一区麻豆| 少妇的逼水好多| 999精品在线视频| 最新中文字幕久久久久 | 成人一区二区视频在线观看| 国产99白浆流出| 99久久精品热视频| 啪啪无遮挡十八禁网站| 日本在线视频免费播放| 免费av不卡在线播放| 丁香欧美五月| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 国产伦在线观看视频一区| 97碰自拍视频| 精品久久久久久久毛片微露脸| 久9热在线精品视频| 真实男女啪啪啪动态图| 国产精品久久久久久久电影 | 在线观看午夜福利视频| 中文字幕最新亚洲高清| 亚洲电影在线观看av| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 亚洲国产看品久久| 免费看十八禁软件| 久久久久久久久免费视频了| 老汉色∧v一级毛片| 岛国视频午夜一区免费看| 日韩高清综合在线| 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看 | 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 午夜福利欧美成人| 高清毛片免费观看视频网站| 久久久精品大字幕| 1000部很黄的大片| 一个人免费在线观看的高清视频| 欧美中文日本在线观看视频| 国产精品99久久99久久久不卡| 久久精品aⅴ一区二区三区四区| 欧美黑人巨大hd| 久久精品国产99精品国产亚洲性色| 中文资源天堂在线| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 99久国产av精品| 老司机深夜福利视频在线观看| 日本与韩国留学比较| 噜噜噜噜噜久久久久久91| 国产成人av教育| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 99在线视频只有这里精品首页| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费| 哪里可以看免费的av片| 亚洲人与动物交配视频| 亚洲午夜理论影院| 国产成人系列免费观看| 国产成人影院久久av| 国产成人啪精品午夜网站| 亚洲av片天天在线观看| 国产亚洲精品久久久com| 免费在线观看亚洲国产| 国产精品一区二区免费欧美| 久久国产精品影院| 热99在线观看视频| 97超视频在线观看视频| 18美女黄网站色大片免费观看| 美女扒开内裤让男人捅视频| 亚洲av片天天在线观看| 97碰自拍视频| 宅男免费午夜| 最近最新免费中文字幕在线| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 精品福利观看| 亚洲真实伦在线观看| xxx96com| 免费一级毛片在线播放高清视频| 国产视频一区二区在线看| 国产野战对白在线观看| 男女那种视频在线观看| 亚洲成av人片在线播放无| 亚洲自偷自拍图片 自拍| 日本黄色视频三级网站网址| 久久人人精品亚洲av| 国产成年人精品一区二区| 日本a在线网址| 精品熟女少妇八av免费久了| 校园春色视频在线观看| 日韩欧美在线乱码| 老汉色∧v一级毛片| 九九久久精品国产亚洲av麻豆 | 久久久久久久精品吃奶| 成人性生交大片免费视频hd| 级片在线观看| 免费av不卡在线播放| 亚洲国产精品999在线| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 人妻丰满熟妇av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲一区二区三区色噜噜| 久久香蕉国产精品| 亚洲国产中文字幕在线视频| 午夜福利高清视频| 欧美激情在线99| 伦理电影免费视频| 日韩欧美 国产精品| 久久久国产精品麻豆| 成人鲁丝片一二三区免费| 成年版毛片免费区| 欧美日韩中文字幕国产精品一区二区三区| 老司机福利观看| 亚洲欧美精品综合一区二区三区| 天堂√8在线中文| 在线免费观看不下载黄p国产 | 国产精华一区二区三区| 国产午夜精品论理片| 国产不卡一卡二| 欧美成人一区二区免费高清观看 | 搡老妇女老女人老熟妇| 久久伊人香网站| 动漫黄色视频在线观看| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 不卡一级毛片| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 国产伦在线观看视频一区| 日本 av在线| 久久性视频一级片| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 亚洲国产日韩欧美精品在线观看 | 99久久无色码亚洲精品果冻| 国产av麻豆久久久久久久| 午夜影院日韩av| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 日韩欧美精品v在线| 最近最新免费中文字幕在线| 国产亚洲精品综合一区在线观看| 麻豆国产97在线/欧美| aaaaa片日本免费| 亚洲国产精品合色在线| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 国产精品自产拍在线观看55亚洲| 一本精品99久久精品77| 91av网一区二区| 一本久久中文字幕| 不卡av一区二区三区| 国产精品一及| www国产在线视频色| 九九在线视频观看精品| 制服丝袜大香蕉在线| 午夜久久久久精精品| 18禁观看日本| 麻豆av在线久日| 国产激情偷乱视频一区二区| 欧美在线黄色| 狂野欧美白嫩少妇大欣赏| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 国产69精品久久久久777片 | www国产在线视频色| 国产精品久久久久久久电影 | 欧美中文日本在线观看视频| ponron亚洲| а√天堂www在线а√下载| 99热这里只有是精品50| 99re在线观看精品视频| bbb黄色大片| 欧美激情久久久久久爽电影| 琪琪午夜伦伦电影理论片6080| 久久草成人影院| 欧美三级亚洲精品| cao死你这个sao货| 香蕉久久夜色| 国产三级黄色录像| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 一本一本综合久久| 手机成人av网站| 十八禁网站免费在线| 首页视频小说图片口味搜索| 黄色 视频免费看| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区| 国产成人系列免费观看| 在线免费观看不下载黄p国产 | 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 两个人视频免费观看高清| 脱女人内裤的视频| 宅男免费午夜| 亚洲欧美精品综合久久99| 国语自产精品视频在线第100页| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 中文字幕熟女人妻在线| 欧美3d第一页| 神马国产精品三级电影在线观看| 久久中文看片网| 成人无遮挡网站| 亚洲第一电影网av| 一级黄色大片毛片| 国产欧美日韩一区二区三| 国产精品久久视频播放| 午夜久久久久精精品| 亚洲电影在线观看av| 波多野结衣高清作品| 1024手机看黄色片| 国产精品电影一区二区三区| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 国产不卡一卡二| 午夜免费激情av| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 黄片大片在线免费观看| 欧美不卡视频在线免费观看| 久久久久久大精品| 国产探花在线观看一区二区| 亚洲,欧美精品.| 特大巨黑吊av在线直播| 无遮挡黄片免费观看| 两性夫妻黄色片| 成人高潮视频无遮挡免费网站| 国产一区二区激情短视频| 精品久久久久久久久久久久久| 久久久国产欧美日韩av| 美女 人体艺术 gogo| 九九在线视频观看精品| 精品久久久久久久末码| 亚洲午夜精品一区,二区,三区| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 18禁黄网站禁片免费观看直播| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 国产免费av片在线观看野外av| 欧美丝袜亚洲另类 | 日本免费a在线| 精品国内亚洲2022精品成人| 丰满人妻一区二区三区视频av | 黑人欧美特级aaaaaa片| 香蕉av资源在线| 国产69精品久久久久777片 | 免费看十八禁软件| 亚洲中文日韩欧美视频| 亚洲片人在线观看| 午夜激情欧美在线| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 免费看光身美女| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 久久99热这里只有精品18| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 俺也久久电影网| 欧美日韩瑟瑟在线播放| a级毛片a级免费在线| 夜夜躁狠狠躁天天躁| 国产免费av片在线观看野外av| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 亚洲成人久久爱视频| 亚洲 欧美 日韩 在线 免费| 18禁裸乳无遮挡免费网站照片| 曰老女人黄片| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 综合色av麻豆| 国产成人精品久久二区二区免费| 亚洲国产欧美人成| 真人做人爱边吃奶动态| 亚洲精品国产精品久久久不卡| 观看免费一级毛片| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 日本三级黄在线观看| 丁香欧美五月| 人妻久久中文字幕网| 男女午夜视频在线观看| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| a在线观看视频网站| 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| 免费av不卡在线播放| 日韩av在线大香蕉| 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 亚洲av中文字字幕乱码综合| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品50| 十八禁网站免费在线| 男女那种视频在线观看| 天堂动漫精品| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 日韩欧美国产在线观看| 久久久久久久久久黄片| 淫妇啪啪啪对白视频| 色吧在线观看| 国产在线精品亚洲第一网站| 黄片小视频在线播放| 日韩欧美国产在线观看| 美女高潮喷水抽搐中文字幕| 欧美一级a爱片免费观看看| 黄片小视频在线播放| av黄色大香蕉| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| xxx96com| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 久久久久久久午夜电影| 人人妻人人看人人澡| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 国产又黄又爽又无遮挡在线| 亚洲av美国av| 国产激情欧美一区二区| 亚洲中文av在线| 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 窝窝影院91人妻| 一二三四社区在线视频社区8| 男女那种视频在线观看| 久久久水蜜桃国产精品网| 日日夜夜操网爽| 成年女人永久免费观看视频| 国产亚洲精品综合一区在线观看| 在线观看美女被高潮喷水网站 | 狂野欧美激情性xxxx| 成人三级黄色视频| 又爽又黄无遮挡网站| 少妇人妻一区二区三区视频| 欧美一级毛片孕妇| 久久久成人免费电影| 欧美国产日韩亚洲一区| 亚洲片人在线观看| 亚洲第一电影网av| 99精品欧美一区二区三区四区| 久久国产精品人妻蜜桃| 天堂动漫精品| 中文字幕av在线有码专区| 91麻豆精品激情在线观看国产| 性欧美人与动物交配| 手机成人av网站| 精品福利观看| 午夜免费观看网址| 久久九九热精品免费| 黑人操中国人逼视频| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| h日本视频在线播放| 国产午夜精品久久久久久| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 免费看日本二区| 国产精品综合久久久久久久免费| 国模一区二区三区四区视频 | 国产野战对白在线观看| 91在线精品国自产拍蜜月 | 亚洲国产日韩欧美精品在线观看 | 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 巨乳人妻的诱惑在线观看| 亚洲人与动物交配视频| 全区人妻精品视频| 亚洲欧美一区二区三区黑人| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 日韩人妻高清精品专区| 一本久久中文字幕| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 美女高潮喷水抽搐中文字幕| 99热这里只有精品一区 | 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看| 午夜福利欧美成人| 两个人看的免费小视频| 女生性感内裤真人,穿戴方法视频| 9191精品国产免费久久| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 一本一本综合久久| 精品人妻1区二区| 欧美成人免费av一区二区三区| 久久久成人免费电影| 国产成人av激情在线播放| 床上黄色一级片| 中文资源天堂在线| 99久久精品一区二区三区| 长腿黑丝高跟| 欧美高清成人免费视频www| 制服丝袜大香蕉在线| 亚洲色图av天堂| 性色avwww在线观看| 麻豆久久精品国产亚洲av| 香蕉国产在线看| 精品国产亚洲在线| 69av精品久久久久久| 日本熟妇午夜| 男女之事视频高清在线观看| 又黄又粗又硬又大视频| 亚洲国产欧美一区二区综合| 国产99白浆流出| 三级毛片av免费| 在线视频色国产色| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看| 欧美不卡视频在线免费观看| 午夜精品在线福利| 午夜影院日韩av| 日本三级黄在线观看| 国产精品一区二区三区四区久久| 亚洲av成人一区二区三| 母亲3免费完整高清在线观看| 国产99白浆流出| 国内精品久久久久久久电影| 国产高清激情床上av| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清专用| 亚洲自拍偷在线| 亚洲第一电影网av| 久久久久久国产a免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 高清毛片免费观看视频网站| 久久欧美精品欧美久久欧美| 熟女少妇亚洲综合色aaa.| 99精品欧美一区二区三区四区| 欧美高清成人免费视频www| 日韩av在线大香蕉| 悠悠久久av| 亚洲一区高清亚洲精品| 午夜免费观看网址| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 午夜视频精品福利| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 免费在线观看影片大全网站| 中出人妻视频一区二区| 日本精品一区二区三区蜜桃| 91九色精品人成在线观看| 中亚洲国语对白在线视频| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 中文字幕人妻丝袜一区二区| 搞女人的毛片| 男插女下体视频免费在线播放| 欧美又色又爽又黄视频| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 中文资源天堂在线| a在线观看视频网站| 99国产极品粉嫩在线观看| svipshipincom国产片| 亚洲精品国产精品久久久不卡| 欧美日韩瑟瑟在线播放| 久9热在线精品视频| 成人三级黄色视频| 亚洲av成人精品一区久久| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 熟女人妻精品中文字幕| 男人舔女人下体高潮全视频| 可以在线观看毛片的网站| 成人午夜高清在线视频| 日韩欧美 国产精品| 特大巨黑吊av在线直播| 国产高清视频在线观看网站| 国产成+人综合+亚洲专区| 亚洲精品久久国产高清桃花| 精品人妻1区二区| 中文字幕最新亚洲高清| 久久中文字幕人妻熟女| 久久精品91蜜桃| 美女高潮的动态| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 两性夫妻黄色片| 成人三级黄色视频| 看免费av毛片| 国产精品久久久久久人妻精品电影| av在线蜜桃| 老司机午夜福利在线观看视频| 亚洲国产欧洲综合997久久,| www日本在线高清视频| 男人和女人高潮做爰伦理| 色在线成人网| 夜夜躁狠狠躁天天躁| 亚洲精品中文字幕一二三四区| av在线蜜桃| 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 激情在线观看视频在线高清| 可以在线观看的亚洲视频| 热99在线观看视频| 亚洲午夜理论影院| 免费观看的影片在线观看| 少妇人妻一区二区三区视频| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 此物有八面人人有两片| 中文在线观看免费www的网站| 久久久久久国产a免费观看| 一二三四在线观看免费中文在| aaaaa片日本免费| 日韩欧美三级三区| 成人高潮视频无遮挡免费网站| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 午夜日韩欧美国产| 欧美xxxx黑人xx丫x性爽| 国产男靠女视频免费网站| 国产 一区 欧美 日韩| 一个人免费在线观看电影 | 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 国产精品国产高清国产av| 国产成人aa在线观看| 99久久精品热视频| 国产伦在线观看视频一区| 亚洲欧美日韩高清专用| 亚洲片人在线观看| 亚洲国产日韩欧美精品在线观看 | 99精品在免费线老司机午夜| 啪啪无遮挡十八禁网站| 久久久久亚洲av毛片大全| 国产高清三级在线| 亚洲av熟女| 神马国产精品三级电影在线观看| 两个人看的免费小视频| 国产成人精品无人区| 成人av一区二区三区在线看| 国产精品永久免费网站| 国产精品av久久久久免费| 亚洲精品在线美女| 亚洲男人的天堂狠狠| 淫秽高清视频在线观看| 国产亚洲av高清不卡| 老司机午夜福利在线观看视频| 国产三级黄色录像| 午夜两性在线视频| 成人三级做爰电影| or卡值多少钱| 色哟哟哟哟哟哟| 国产激情久久老熟女| 极品教师在线免费播放| 悠悠久久av| 精品久久久久久久久久久久久| 免费大片18禁| 日韩中文字幕欧美一区二区| 亚洲第一欧美日韩一区二区三区| 久久精品综合一区二区三区| 亚洲国产高清在线一区二区三| 高清在线国产一区| 哪里可以看免费的av片| 国产精品亚洲美女久久久| 精品熟女少妇八av免费久了| 久久精品国产清高在天天线| 成人高潮视频无遮挡免费网站|