• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model

    2015-01-17 12:29:10NaimingXieandSifengLiu

    Naiming Xieand Sifeng Liu

    1.College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;

    2.Institute of Grey System Studies,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model

    Naiming Xie1,2,*and Sifeng Liu1,2

    1.College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;

    2.Institute of Grey System Studies,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defned.Based on the traditional nonhomogenous discrete grey forecasting model(NDGM),the interval grey number and its algebra operations are redefned and combined with the NDGM model to construct a new interval grey number sequence prediction approach.The solving principle of the model is analyzed,the new accuracy evaluation indices,i.e.mean absolute percentage error of mean value sequence(MAPEM)and mean percent of interval sequence simulating value set covered (MPSVSC),are defned and,the procedure of the interval grey number sequence based the NDGM(IG-NDGM)is given out.Finally,a numerical case is used to test the modelling accuracy of the proposed model.Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1)model and GM(1,1)model.

    grey number,grey system theory,interval,discrete grey forecasting model,non-homogeneous exponential sequence.

    1.Introduction

    In the system forecasting process,information that can be obtained is usually limited and incomplete.Different types of uncertainty sets,such as fuzzy set,interval,rough set, and grey set,are often used to describe such uncertainty information[1].Fuzzy sets are used to describe the vague information[2],rough sets are used to characterize the inconsistent and incomplete information[3],interval numbers are used to defne the boundary information[4]while grey numbers are used to describe the partially known information which means the certain number could not be known while its potential value set can be defned[5,6]. These kinds of uncertainty information bring troubles to the system analysis process.Especially in solving system forecasting problems,it is very diffcult to catch the developing trend with the uncertainty information.The grey forecasting model,proposed by Julong Deng,is defned to solve grey uncertainty problems which lack information [5].The original idea of the grey forecasting model is to improvethe forecasting capability under the condition that the original data sequence is limited while traditional statistical models could not be constructed effectively.Traditional forecasting models,like linear regression model and time series model,usually require at least 30 observations.However,many forecasting problems,e.g.socioeconomic forecasting,are impossible to collect so many observations.

    The grey forecasting model(GM(1,1))is frstly proposed to predict and control the long-term output of grain in China[7].The mechanism of the proposed model is to dig as much as possible modelling information by accumulating generation of the original sequence.In the process of accumulating,the random disturbance of the sequence is dramatically weakened and the trend of accumulated sequence is embodied clearly.Wang et al.considered that the grey system theory was the main theoretical breakthrough of management science in China[8]. As a novel forecasting method,grey forecasting models are theoretically extended and applied widely in various real applications.In theoretical aspects,some scholars focused on improving the GM(1,1)model by combining the model with other methods or constructing expansion models[9–12].Others focused on developing new grey forecasting models for special developing rules,like S-curve and non-equidistance[13,14].For solving real applications,the grey forecasting model has been widely applied in economic developing forecasting,energy forecasting,etc[15–23].The results of these real applications showed that grey forecasting can catch the developing trend well in different cases.However,some scholarstook the view that the GM(1,1)model can only apply in the short-term and low developing ratio sequence forecasting while not adapt to high developing ratio sequences. We found that the GM(1,1)model’s parameters estimation adopted discrete equation while simulative and predictive values calculation adopted continuous equation.The difference between the two equations resulted in low simulative precision.Then we proposed discrete grey models to improve the forecasting and simulative accuracy of sequences.Hereafter,we developed the optimized form of the single variable discrete grey model and the discrete grey model approximate to the non-homogeneous exponential trend[24,25].Yao and Wang applied optimization theories to establish a generalized discrete GM(1,1)model in which the time response of simulation sequence was established directly[26–28].

    The above references mainly focused on the grey forecasting modelling and their applications based on the limited data.In fact,similar with the fuzzy set,rough set or interval number,the grey number is the true expression of grey uncertainty and it is the basic element of a grey system.Unfortunately,the grey number has not been effectively included in the grey forecasting modelling process. The grey number is defned as a number whose certain value is unknown while the potential value set is known, denoted as“?”[29].We proposed a new method on comparing grey numbers with different kinds of grey number types[30].Yang and Liu discussed the operation of grey numbers based on the kernel and greyness of different grey numbers[31].Some scholars applied grey numbers in constructing the grey decision-making model and grey relational model[32–34].However there is no paper focusing on combining grey numbers with forecasting models.This paper mainly focuses on creating such a forecasting model. We redefne the interval grey number,combine the interval grey number with non-homogenous exponential sequence to construct the novel grey forecasting model and discuss the solutions of the proposed model.

    The rest of this paper is structured as follows.In Section 2,with a brief review of the traditional nonhomogenous discrete grey forecasting model(NDGM) and redefnition of interval grey number,a novel grey forecasting model is constructed by combining the NDGM with the interval grey number sequence which approximates to the non-homogenous exponential rule.Section 3 discusses the algorithm of the proposed novel grey forecasting model.Section 4 demonstrates a numerical example of the proposedmodel and compares it with DGM(1,1) model and GM(1,1)model.Finally,Section 5 concludes the paper.

    2.Construction of interval grey number sequence based NDGM

    The NDGM model means that the discrete grey forecasting model approximates to non-homogeneous exponential developing rules.We have constructed its model formula and discussed the solution and properties of the model[35].

    2.1NDGM

    Assume that the sequence

    is an original data sequence or system main variable data sequence,and the sequence

    is the accumulated generation sequence of X(0),where

    The equation

    is called the NDGM.?x(1)(k)is the simulative or forecasting value of x(1)(k)and β1,β2,β3are parameters.If k=1,2,...,n?1 and(4)can be rewritten into the matrix form as

    Apply the least square method with input data X(1),parameters β1,β2and β3satisfy the matrix equation

    where

    and BTis the transpose matrix of B.The equation

    is called the recursive function.?x(1)(k)in(9)is the simulative value of x(1)(k).Consider the equation

    Similarly,?x(0)(k)in(10)is thesimulativevalueofx(0)(k). Align all x(0)(k)at k=1,2,...,n,we can get the simulative sequence

    With the simulative sequence?X(0)and the original sequence X(0),the mean absolute percentage error(MAPE) is defned as

    2.2Defnition of interval grey number

    Defnition 1 Grey numberThe grey number,marked as“?”,is defned as a number whose certain value is unknown but the possible range of the true value can be got. The set D is defned as the information background of a grey number?.d?is the true value of the grey number?. Then

    (i)?is a grey number under the information background D.

    (ii)D is a potential value-covered set of?.

    (iii)d?is the true value of the grey number?.

    The grey number is marked as

    Generally,grey number could be abbreviated writing in?.

    Defnition 2Interval grey numberAssume upper and lower limitation values can be got in a continuous value-covered set D,i.e.the potential value-covered set is an interval number,and then we call?as an interval grey number and D as the interval covered set,marked as???d?∈D,D=[a,ˉa]or abbreviated as?=[a,ˉa], both the lower boundary a and the upper boundaryˉa are conventional real numbers.

    Defnition 3 Grey number operationLet Diandbe the value-covered set and true value of grey number?i, Djand d?jbe the value-covered set and true value of grey number?j,°be an operation,?ijbe the result of?iand?jon the°operation.Let Dijbe the value-covered of the grey number?ij.Then we have the general°operation formula: abbreviated as?i°?j=?ij.

    Since the grey numbers?i,?jand their true values d?i, d?jare unknown,thus the most important operation is the operation of Diand Djin the general°operation equation.Specially,if interval grey number?i=[ai,ˉai]and?j=[aj,ˉaj]are independent of each other,we can get

    Obviously,?ijis composed by?iand?j,so?ijis not independent of?i,then we can defne

    2.3Interval grey number sequence based NDGM

    As the grey number can closely express the real system, the grey number should be combined with grey forecasting models to construct novel grey forecasting models based on grey number sequences.

    Defnition 4Similar with the NDGM,assume the original grey number sequence of the main system variable is

    where x(0)(?i)(i=1,2,...,n)is the interval grey numbers.And upper and lower limitations are collected,i.e. x(0)(?1)∈[a1,ˉa1],x(0)(?2)∈[a2,ˉa2],...,x(0)(?n)∈[an,ˉan].Then,accumulated generation sequence X(1)(?) is

    where

    Then the equation

    is called interval grey number sequence based the NDGM (IG-NDGM).β1,β2and β3are model parameters.

    Defnition 5Set Skas the set of value yk,yk,meanas the mean value of yk,?Skas the set of value?yk,and?yk,meanas the mean value of?ykaccordingly,i.e.

    then defne

    as the absolute percentage error of mean value(APEM)of ykand

    as the mean absolute percentage error of sequences of simulating mean value with original mean value (MAPEM).Defne

    as the percent of interval sequence simulating value set covered(PSVSC)of ykand

    as the mean percent of PSVSC(MPSVSC).

    3.Solution of IG-NDGM

    3.1Principle of solving IG-NDGM

    To the interval grey number sequence forecasting problem, assume the original sequence is X(0)(?)and its accumulated sequence is X(1)(?).That is

    where

    Then,the most important work is to solve the simulative interval grey number sequences:

    and

    As is shown in Fig.1,the accumulated sequence X(1)(?) is divided into two sequences,i.e.upper boundary sequence

    and lower boundary sequence

    Then two separated NDGMs are constructed with ˉX(1)(?)and X(1)(?).According to the modelling process of the NDGM,we can get the simulative sequences

    and

    which compose the simulative interval grey number sequence?X(1)(?).According to(15),?x(1)(?k)is not independent of?x(0)(?1),?x(0)(?2)and?x(0)(?k),so we can get

    Fig.1 Simulative curve of IG-NDGM

    3.2Steps of IG-NDGM

    According to the process of NDGM and the principle of IG-NDGM,the IG-NDGM procedure is expressed as follows.

    Step 1Collect data and form the original interval grey number sequence X(0)(?).

    Step 2Generate accumulated sequence X(1)(?)by one accumulated generating operation(AGO)as shown in (18).

    Step 3Extract the modelling sequences,i.e.the upper boundary sequenceˉX(1)(?)and the lower boundary sequence X(1)(?).

    Step 4Separately construct the NDGM equations(as shown in(4))ofˉX(1)(?)and X(1)(?),i.e.

    and

    Step 5Apply the least square method to solve the model parametersˉβ1,ˉβ2,ˉβ3and β1,β2,β3with(6).

    Step 6Apply the recursive function(9)to solve ?ˉX(1)(?)and?X(1)(?),where

    Step 7Solve the simulative sequence

    where?x(0)(?k)is solved with(28).

    Step 8Solve the simulative mean value sequence

    where

    Step 9Calculate MAPEM(%)and MPSVSC(%)with (21)and(23),analyze the simulative accuracy and apply the proposed model for forecasting.

    4.Number example illustration

    Assume that the collected original interval grey number sequence is

    And we can get the lower boundary sequence,the upper boundary sequence,and the mean value sequence:

    According to Section 3.2,we can calculate the parameters’values:

    Then we could calculate the simulative sequence as shown in Table 1.dL represents the lower boundary value and dU represents upper boundary value.The MAPEM and MPSVSC values are calculated accordingly.

    Table 1 Simulative value of IG-NDGM

    Similarly,we separately construct DGM(1,1)model and GM(1,1)model with the lower boundary sequence X(0)(?)and the upper boundary sequence ˉX(0)(?). These two models are used to simulate and forecast the lower boundary and upper boundary trends accordingly. Considering the difference of model forms,we sepa-rately calculate the model parameters with the least square method.The values of parameters and simulative equations are shown in Table 2.The results of simulative sequence and forecasting sequence are shown in Table 3.

    Table 2 Parameter values of DGM(1,1)model and GM(1,1)model

    Table 3 Simulative values of DGM(1,1)model and GM(1,1)model

    As is shown in Table 1 and Table 3,we know that all of the IG-NDGM,DGM(1,1)model and GM(1,1)model have got high simulative accuracy of MAPEM.Especially the higher accuracy is reached by the proposed IG-NDGM. The MAPEM of IG-NDGM is only 0.14%while results of DGM(1,1)model and GM(1,1)model are nearly 3%. However,the mean value is the average status of each sequence.To the interval grey number sequence,if the original grey number sequences are covered by the simulative sequences well,it illustrates that simulative results are good.We defne MPSVSC to evaluate the accuracy of sets covered.As is shown in Table 1 and Table 3,the results show that IG-NDGM can get a better simulative result while DGM(1,1)model and GM(1,1)model are inferior to the proposed IG-NDGM.The MPSVSC of IG-NDGM is only 1.73%while the results of other two models are more than 30%.

    5.Conclusions

    Considering one could only collect the interval information rather than the accurate values of the variable in the system forecasting process,we adopt interval grey number to express such uncertain information and construct a novel grey forecasting model.Firstly,we redefne grey number and interval grey number,and then we construct the IG-NDGM.Subsequently,the solving principle of IGNDGM is analyzed and the procedure is given.Next,an illustration example is used to simulate the accuracy of IG-NDGM and compared with the traditional DGM(1,1) model and GM(1,1)model.The results indicate that IGNDGM is much better than DGM(1,1)model and GM(1,1) model.It not only better simulates the mean value of sequence but also better covers the value sets of interval.Finally,the proposed approach will be a useful tool when the forecaster could not collect the certain values and would like to avoid the forecasting results deviating the development trend.

    [1]S.F.Liu,Y.Lin.Grey information theory and practical applications.London:Springer-Verlag,2006.

    [2]L.A.Zadeh.Fuzzy sets.Information and Control,1965,8(3): 338–353.

    [3]Z.Pawlak.Rough sets.International Journal of Information& Computer Sciences,1982,11(5):341–356.

    [4]R.E.Moore.Method and application of interval analysis. Philadelphia:Society for Industrial and Applied Mathematics, 1979.

    [5]J.L.Deng.The control problem of grey systems.System& Control Letters,1982,1(5):288–294.

    [6]J.L.Deng.Grey hazy sets.The Journal of Grey System,1992, 4(1):13–30.

    [7]J.L.Deng.Grey fuzzy forecast and control for grain.Journal of Huazhong University of Science&Technology,1983,11(2): 1–8.(in Chinese)

    [8]J.Wang,R.Yan,K.Hollister,et al.A historic review of management science research inChina.OMEGA-The International Journal of Management Science,2008,36(6):919–932.

    [9]J.Wen,Y.Huang,J.Chen,et al.Comments on the minimum number of data required for GM(1,1)modeling.The Journal of Grey System,1999,11(3):229–243.

    [10]F.M.Tseng,H.C.Yu,G.H.Tzeng.Applied hybrid grey model to forecast—seasonal time series.Technological Forecasting and Social Change,2001,67(2/3):291–302.

    [11]W.Y.Peng,C.W.Chu.A comparison of univariate methods for forecasting container throughput volumes.Mathematicaland Computer Modelling,2009,50(7/8):1045–1057.

    [12]L.C.Hsu.Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models.Expert Systems with Applications,2009,36(4):7898–7903.

    [13]Y.M.Cheng,C.H.Yu,H.T.Wang.Short-interval dynamic forecasting for actual S-curve in the construction phase. Journal of Construction Engineering and Management-ASCE, 2009,137(11):933–941.

    [14]X.P.Xiao,K.Peng.Research on generalized non-equidistance GM(1,1)model based on matrix analysis.Grey Systems:Theory and Application,2011,1(1):87–96.

    [15]S.C.Chang,H.C.Lai,H.C.Yu.A variablePvalue rolling grey forecasting model for Taiwan semiconductor industry production.Technological Forecasting and Social Change, 2005,72(5):623–640.

    [16]L.L.Ku,T.C.Huang.Sequential monitoring of manufacturing processes:an application of grey forecasting models.International Journal of Advanced Manufacturing Technology,2006, 27(5/6):543–546.

    [17]R.C.Tsaur.Forecasting LCD TV demand using the fuzzy grey model GM(1,1).International Journal of Uncertainty Fuzziness and Knowledge-based Systems,2007,15(6):753–767.

    [18]C.Chen,H.L.Chen,S.P.Chen.Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear grey Bernoulli model NGBM(1,1).Communications in Nonlinear Science and Numerical Simulation,2008,13(6): 1194–1204.

    [19]Z.Zhao,J.Z.Wang,J.Zhao,et al.Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China. OMEGA-International Journal of Management Science,2012, 40(5):525–532.

    [20]D.Akay,M.Atak.Grey prediction with rolling mechanism for electricity demand forecasting of Turkey.Energy,2007,32(9): 1670–1675.

    [21]I.Lu,C.Lewis,S.J.Lin.The forecast of motor vehicle,energy demand and CO(2)emission from Taiwan’s road transportation sector.Energy Policy,2009,37(8):2952–2961.

    [22]U.Kumar,V.K.Jain.Time series models(grey-Markov,grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India.Energy,2010,35(4): 1709–1716.

    [23]H.W.Tang,M.S.Yin.Forecasting performance of grey prediction for education expenditure and school enrollment.Economics of Education Review,2012,31(4):452–462.

    [24]N.M.Xie,S.F.Liu.Discrete grey forecasting model and its optimization.Applied Mathematical Modelling,2009,33(2): 1173–1186.

    [25]C.Y.Zhu,N.M.Xie.Difference-ratio-based NDGM interpolation forecasting algorithm and its application.Grey Systems: Theory and Application,2012,2(1):70–80.

    [26]T.X.Yao,J.Forrest,Z.W.Gong.Generalized discrete GM(1,1)model.Grey Systems:Theory and Application,2012, 2(1):4–12.

    [27]Y.H.Wang,Q.Liu,J.R.Tang,et al.Optimization approach of background value and initial item for improving prediction precision of GM(1,1)model.Journal of Systems Engineering and Electronics,2014,25(1):77–82.

    [28]Y.H.Wang,Y.G.Dang,X.J.Pu.Improved unequal interval grey model and its application.Journal of Systems Engineering and Electronics,2011,22(3):445–451.

    [29]J.L.Deng.The elements on grey theory.Wuhan:Press of Huazhong University of Science&Technology,2002.(in Chinese)

    [30]N.M.Xie,S.F.Liu.Novel methods on comparing grey numbers.Applied Mathematical Modelling,2010,34(1):415–423.

    [31]Y.J.Yang,S.F.Liu.Reliability of operations of grey numbers using kernels.Grey Systems:Theory and Application,2011, 1(1):57–71.

    [32]E.K.Zavadskas,A.Kaklauskas,Z.Turskis,et al.Multiattribute decision-making model by applying grey numbers. Informatica,2009,20(2):305–320.

    [33]S.F.Liu,N.M.Xie,J.Forrest.Novel models of grey relational analysis based on visual angle of similarity and nearness.Grey Systems:Theory and Application,2011,1(1):8–18.

    [34]N.M.Xie,S.F.Liu.A novel grey relational model based on grey number sequences.Grey Systems:Theory and Application,2011,1(2):117–128.

    [35]N.M.Xie,S.F.Liu,Y.J.Yang,et al.On novel grey forecasting model based on non-homogeneous index sequence.Applied Mathematical Modelling,2013,37(7):5059–5068.

    Biographies

    Naiming Xie was born in 1981.He received his B.S.,M.S.and Ph.D.degrees in grey systems theory from Nanjing University of Aeronautics and Astronautics(NUAA).Now he is an associate professor and dean assistant in the College of Economics and Management of NUAA.His research interests include grey systems theory and management science.

    E-mail:xienaiming@nuaa.edu.cn

    Sifeng Liu was born in 1955.He received his B.S. degree in Henan University,M.S.degree in Shandong University and Ph.D.degree in grey systems theory from Huazhong University of Science& Technology.Now he is the dean of Institute of Grey System Studies of NUAA and a professor in the College of Economics and Management of NUAA.He is also the chairman of IEEE Grey System Society and vice chairman of IEEE SMC China(Beijing)Branch and editor-inchief of The Journal of Grey System.His research interests include grey systems theory,management science and project management.

    E-mail:sfiu@nuaa.edu.cn

    10.1109/JSEE.2015.00013

    Manuscript received March 17,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(70901041;71171113)and the Aeronautical Science Foundation of China(2014ZG52077).

    亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 日本-黄色视频高清免费观看| 亚洲电影在线观看av| 亚洲成色77777| 久久久精品免费免费高清| 涩涩av久久男人的天堂| 欧美成人午夜免费资源| 黄色欧美视频在线观看| 另类亚洲欧美激情| 国产成人午夜福利电影在线观看| 国产精品蜜桃在线观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品古装| 丰满人妻一区二区三区视频av| 精品久久久久久电影网| 亚洲av.av天堂| 国产男人的电影天堂91| 精品一区在线观看国产| 亚洲va在线va天堂va国产| 久久久久国产精品人妻一区二区| 亚洲av综合色区一区| 又黄又爽又刺激的免费视频.| 乱码一卡2卡4卡精品| 亚洲美女搞黄在线观看| 亚洲一区二区三区欧美精品| 肉色欧美久久久久久久蜜桃| 亚洲成色77777| 国产免费一级a男人的天堂| 国产一区二区三区av在线| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类| 国产精品麻豆人妻色哟哟久久| 丝瓜视频免费看黄片| 乱人伦中国视频| 能在线免费看毛片的网站| 丰满乱子伦码专区| 国产精品秋霞免费鲁丝片| 日韩av在线免费看完整版不卡| 大话2 男鬼变身卡| 亚洲精品aⅴ在线观看| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级 | 日本黄色日本黄色录像| av福利片在线| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 人人妻人人爽人人添夜夜欢视频 | 91精品伊人久久大香线蕉| 妹子高潮喷水视频| 黄色配什么色好看| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 成年av动漫网址| 国产成人一区二区在线| 欧美日韩视频精品一区| 国产黄片视频在线免费观看| 亚洲不卡免费看| 九草在线视频观看| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播| 十八禁网站网址无遮挡 | 亚洲不卡免费看| 人妻制服诱惑在线中文字幕| 极品人妻少妇av视频| 91精品国产国语对白视频| 如何舔出高潮| 久久久久久久久久成人| 国产成人精品久久久久久| 亚洲精品视频女| 精品国产一区二区久久| 亚洲av.av天堂| 亚洲一级一片aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜视频国产福利| av在线观看视频网站免费| 有码 亚洲区| 国产片特级美女逼逼视频| 久久国产精品男人的天堂亚洲 | 黄色配什么色好看| 少妇人妻久久综合中文| 老司机影院成人| 国产一区有黄有色的免费视频| 九九在线视频观看精品| 又粗又硬又长又爽又黄的视频| av国产久精品久网站免费入址| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲av综合色区一区| 99久久人妻综合| 黄色欧美视频在线观看| 亚洲久久久国产精品| 国产欧美亚洲国产| 国产精品久久久久久久电影| 亚洲第一区二区三区不卡| 乱码一卡2卡4卡精品| 色网站视频免费| 国产精品麻豆人妻色哟哟久久| 亚洲色图综合在线观看| 国产一区二区在线观看av| 国产av精品麻豆| 国产av精品麻豆| 亚洲av欧美aⅴ国产| 一区在线观看完整版| 黑人猛操日本美女一级片| 亚洲国产精品成人久久小说| 久久精品国产鲁丝片午夜精品| h视频一区二区三区| 国产成人精品福利久久| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲欧美一区二区av| 国产黄片美女视频| 国产成人freesex在线| 国产成人freesex在线| 免费av不卡在线播放| 日韩欧美 国产精品| 色吧在线观看| 91久久精品国产一区二区三区| 99九九在线精品视频 | 国产毛片在线视频| 国产欧美日韩精品一区二区| 赤兔流量卡办理| 80岁老熟妇乱子伦牲交| 欧美区成人在线视频| 久久99蜜桃精品久久| 十分钟在线观看高清视频www | 又爽又黄a免费视频| 青春草视频在线免费观看| 国产亚洲精品久久久com| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 午夜视频国产福利| 成年美女黄网站色视频大全免费 | 美女脱内裤让男人舔精品视频| 街头女战士在线观看网站| 五月玫瑰六月丁香| 美女福利国产在线| 97精品久久久久久久久久精品| 亚洲不卡免费看| 少妇的逼水好多| 老司机影院毛片| 国产精品无大码| 99久久精品热视频| 成人国产av品久久久| 伦理电影免费视频| 高清欧美精品videossex| 免费看av在线观看网站| 亚洲美女搞黄在线观看| 一级黄片播放器| 欧美成人午夜免费资源| 亚洲国产精品999| 亚洲欧美精品自产自拍| 性色av一级| 在线观看免费高清a一片| 曰老女人黄片| 高清毛片免费看| av有码第一页| 亚洲欧美精品自产自拍| 女人精品久久久久毛片| 春色校园在线视频观看| 久久久a久久爽久久v久久| 大陆偷拍与自拍| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 热re99久久精品国产66热6| 尾随美女入室| 欧美日韩视频精品一区| 日本爱情动作片www.在线观看| 超碰97精品在线观看| 久久久久久久久久成人| 午夜av观看不卡| 久久99热这里只频精品6学生| 51国产日韩欧美| 91成人精品电影| 亚洲av二区三区四区| 少妇人妻久久综合中文| 99久国产av精品国产电影| 精品一区二区三卡| 亚洲精品自拍成人| 久久人人爽av亚洲精品天堂| 欧美丝袜亚洲另类| 国产一区二区三区综合在线观看 | 三级国产精品片| 国产成人精品一,二区| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 岛国毛片在线播放| 一区在线观看完整版| 久久青草综合色| 高清毛片免费看| 国产成人精品福利久久| 一区在线观看完整版| 少妇猛男粗大的猛烈进出视频| 嘟嘟电影网在线观看| a级片在线免费高清观看视频| 一区二区三区精品91| av天堂久久9| 男人狂女人下面高潮的视频| kizo精华| 色网站视频免费| 搡女人真爽免费视频火全软件| 国产免费视频播放在线视频| 亚洲美女搞黄在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 精品人妻熟女av久视频| 亚洲人成网站在线观看播放| 色网站视频免费| 久久久久视频综合| 中文乱码字字幕精品一区二区三区| 国产高清三级在线| 大香蕉久久网| 国产一区二区三区av在线| 久久综合国产亚洲精品| 三级国产精品片| 久久狼人影院| 免费观看在线日韩| 只有这里有精品99| 免费看不卡的av| 色94色欧美一区二区| 久久久久久久久久久久大奶| 97超碰精品成人国产| a级毛片在线看网站| 久久久久人妻精品一区果冻| 韩国av在线不卡| 人人妻人人看人人澡| 久久99蜜桃精品久久| 高清不卡的av网站| 新久久久久国产一级毛片| av福利片在线观看| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| videos熟女内射| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| 免费播放大片免费观看视频在线观看| 少妇人妻一区二区三区视频| 久久久国产精品麻豆| 成人免费观看视频高清| 国产成人freesex在线| 老司机亚洲免费影院| 日韩免费高清中文字幕av| 一级毛片电影观看| 国产亚洲午夜精品一区二区久久| 精品少妇久久久久久888优播| 国产高清国产精品国产三级| 一级毛片 在线播放| 久久久国产欧美日韩av| 在线 av 中文字幕| 欧美精品国产亚洲| 丰满人妻一区二区三区视频av| 大码成人一级视频| 在线 av 中文字幕| av黄色大香蕉| 日本91视频免费播放| 高清视频免费观看一区二区| 在线精品无人区一区二区三| 赤兔流量卡办理| 伊人久久国产一区二区| 国产69精品久久久久777片| 亚洲av免费高清在线观看| 成年人午夜在线观看视频| 卡戴珊不雅视频在线播放| 国产精品欧美亚洲77777| 色吧在线观看| 久久久久精品久久久久真实原创| 国产亚洲欧美精品永久| 成人影院久久| 亚洲国产最新在线播放| 人妻少妇偷人精品九色| 久久av网站| 日韩视频在线欧美| 国产乱人偷精品视频| 黑人巨大精品欧美一区二区蜜桃 | 男人添女人高潮全过程视频| 美女视频免费永久观看网站| 最近手机中文字幕大全| 欧美另类一区| 国产熟女午夜一区二区三区 | 国产精品久久久久成人av| 午夜激情久久久久久久| 91久久精品电影网| 久久婷婷青草| 中文字幕制服av| 插阴视频在线观看视频| 国产视频首页在线观看| 国产极品粉嫩免费观看在线 | 黑人猛操日本美女一级片| 日韩精品有码人妻一区| 日本午夜av视频| 你懂的网址亚洲精品在线观看| 少妇被粗大的猛进出69影院 | 卡戴珊不雅视频在线播放| av在线播放精品| 日韩三级伦理在线观看| 91aial.com中文字幕在线观看| av.在线天堂| 一个人看视频在线观看www免费| 高清毛片免费看| 女性被躁到高潮视频| 国产精品国产三级专区第一集| 欧美+日韩+精品| 日本黄色片子视频| av在线播放精品| 91精品国产国语对白视频| 国产精品欧美亚洲77777| 视频区图区小说| 少妇被粗大猛烈的视频| 国产日韩一区二区三区精品不卡 | 色婷婷av一区二区三区视频| 亚洲国产精品一区三区| 日本猛色少妇xxxxx猛交久久| 亚洲真实伦在线观看| 日本黄色日本黄色录像| 极品教师在线视频| 免费黄色在线免费观看| 18禁在线无遮挡免费观看视频| 久久ye,这里只有精品| 久久人人爽av亚洲精品天堂| a 毛片基地| 蜜桃在线观看..| 亚洲精品aⅴ在线观看| 精品一区二区免费观看| 国产av码专区亚洲av| 97超碰精品成人国产| 一级爰片在线观看| 女的被弄到高潮叫床怎么办| 97精品久久久久久久久久精品| 久久午夜福利片| 久久6这里有精品| 成人漫画全彩无遮挡| 看非洲黑人一级黄片| 2022亚洲国产成人精品| 夜夜看夜夜爽夜夜摸| 亚洲国产精品一区二区三区在线| 黄色日韩在线| 日韩,欧美,国产一区二区三区| 国产在线男女| 亚洲三级黄色毛片| 丝袜喷水一区| 纯流量卡能插随身wifi吗| 涩涩av久久男人的天堂| 中文字幕制服av| 国产亚洲一区二区精品| 亚洲人与动物交配视频| 嘟嘟电影网在线观看| 午夜激情福利司机影院| 热99国产精品久久久久久7| 国产精品欧美亚洲77777| 青青草视频在线视频观看| 成人影院久久| 一级a做视频免费观看| 中国三级夫妇交换| 精品久久国产蜜桃| 国产亚洲91精品色在线| 91午夜精品亚洲一区二区三区| 成年美女黄网站色视频大全免费 | 国产免费一区二区三区四区乱码| 免费观看无遮挡的男女| 久久99热这里只频精品6学生| 久久影院123| 午夜老司机福利剧场| 王馨瑶露胸无遮挡在线观看| 男人爽女人下面视频在线观看| 国产69精品久久久久777片| 在线免费观看不下载黄p国产| 老司机影院成人| 免费观看的影片在线观看| 嫩草影院入口| 日韩 亚洲 欧美在线| 欧美日韩av久久| 下体分泌物呈黄色| 最近2019中文字幕mv第一页| 老司机亚洲免费影院| 另类精品久久| 色视频www国产| 亚洲欧美日韩另类电影网站| 乱系列少妇在线播放| 国产成人aa在线观看| 中文字幕免费在线视频6| 纯流量卡能插随身wifi吗| 亚洲精品中文字幕在线视频 | 中文字幕精品免费在线观看视频 | 激情五月婷婷亚洲| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| 中国国产av一级| 亚洲情色 制服丝袜| 国产视频首页在线观看| 亚洲自偷自拍三级| 成人毛片a级毛片在线播放| 日本免费在线观看一区| 制服丝袜香蕉在线| 精品熟女少妇av免费看| 在线看a的网站| 欧美三级亚洲精品| 日本色播在线视频| 日韩精品有码人妻一区| 免费播放大片免费观看视频在线观看| 国产熟女午夜一区二区三区 | 久久久久国产网址| 成人免费观看视频高清| 亚洲精品乱码久久久久久按摩| 中文字幕人妻丝袜制服| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 插逼视频在线观看| 中国三级夫妇交换| 少妇 在线观看| 国产免费福利视频在线观看| 又爽又黄a免费视频| 欧美国产精品一级二级三级 | 午夜福利影视在线免费观看| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 国产一区二区三区综合在线观看 | 熟女电影av网| 亚洲真实伦在线观看| 国产成人一区二区在线| 午夜免费观看性视频| 国产午夜精品一二区理论片| 欧美+日韩+精品| 成人亚洲精品一区在线观看| 国产黄片美女视频| 色网站视频免费| 精华霜和精华液先用哪个| 欧美bdsm另类| 国产精品女同一区二区软件| 91精品伊人久久大香线蕉| 久久久久网色| 亚洲av综合色区一区| 成年av动漫网址| 国产淫语在线视频| 国产熟女欧美一区二区| 在线观看av片永久免费下载| 免费人妻精品一区二区三区视频| 日韩精品有码人妻一区| 男女免费视频国产| 色吧在线观看| 欧美性感艳星| 久久午夜福利片| 久久久久久人妻| 精品一区二区三卡| 在线精品无人区一区二区三| 99精国产麻豆久久婷婷| 日产精品乱码卡一卡2卡三| 亚洲怡红院男人天堂| √禁漫天堂资源中文www| 天堂8中文在线网| 春色校园在线视频观看| 国产乱来视频区| 国产又色又爽无遮挡免| 久久女婷五月综合色啪小说| 在线天堂最新版资源| 婷婷色麻豆天堂久久| 亚洲av二区三区四区| 99精国产麻豆久久婷婷| 草草在线视频免费看| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 日韩精品免费视频一区二区三区 | 国产亚洲精品久久久com| 妹子高潮喷水视频| 夜夜爽夜夜爽视频| www.av在线官网国产| 欧美精品一区二区大全| 九色成人免费人妻av| 高清不卡的av网站| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 熟女电影av网| 一边亲一边摸免费视频| 国产av国产精品国产| 国产淫片久久久久久久久| 男女无遮挡免费网站观看| 成人亚洲精品一区在线观看| 婷婷色麻豆天堂久久| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 亚洲国产精品国产精品| 国产精品不卡视频一区二区| 日本免费在线观看一区| 国产男人的电影天堂91| 校园人妻丝袜中文字幕| a 毛片基地| 老女人水多毛片| 九草在线视频观看| freevideosex欧美| 日日啪夜夜撸| 日本vs欧美在线观看视频 | 成人影院久久| 免费观看的影片在线观看| 久热久热在线精品观看| 国产黄片美女视频| 国产一区二区三区av在线| 五月玫瑰六月丁香| 好男人视频免费观看在线| 亚洲av综合色区一区| 国产精品.久久久| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| 午夜福利视频精品| 韩国高清视频一区二区三区| 大香蕉久久网| 在线观看免费高清a一片| 日韩精品免费视频一区二区三区 | 丁香六月天网| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| 国产日韩一区二区三区精品不卡 | 色5月婷婷丁香| 纵有疾风起免费观看全集完整版| 日本wwww免费看| 久久国产亚洲av麻豆专区| 天堂俺去俺来也www色官网| 五月开心婷婷网| 精华霜和精华液先用哪个| 啦啦啦在线观看免费高清www| 99热6这里只有精品| 午夜免费观看性视频| 亚洲第一区二区三区不卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲一区二区三区欧美精品| 一级毛片久久久久久久久女| 国产精品一二三区在线看| h日本视频在线播放| 亚洲天堂av无毛| 观看美女的网站| 亚洲成人一二三区av| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 久久99热这里只频精品6学生| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 成人二区视频| 久久毛片免费看一区二区三区| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 久久午夜福利片| 春色校园在线视频观看| 高清在线视频一区二区三区| 黄色配什么色好看| 国产精品福利在线免费观看| 欧美性感艳星| 特大巨黑吊av在线直播| 国产成人精品无人区| 日韩av免费高清视频| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 汤姆久久久久久久影院中文字幕| 九色成人免费人妻av| 少妇熟女欧美另类| 99国产精品免费福利视频| 日本av免费视频播放| 亚洲,一卡二卡三卡| 久久久久久人妻| 久久久久久久久久人人人人人人| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播| 十八禁网站网址无遮挡 | 成人免费观看视频高清| 日韩欧美 国产精品| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 女人久久www免费人成看片| 欧美另类一区| 在线观看www视频免费| 岛国毛片在线播放| a级毛片免费高清观看在线播放| 亚洲欧美日韩另类电影网站| 在线精品无人区一区二区三| 国产 一区精品| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 国产精品成人在线| 9色porny在线观看| av在线老鸭窝| 男女啪啪激烈高潮av片| 18禁在线播放成人免费| 日日啪夜夜爽| 欧美三级亚洲精品| 视频中文字幕在线观看| 自线自在国产av| 午夜福利在线观看免费完整高清在| 人人妻人人澡人人看| 我要看黄色一级片免费的| 日韩电影二区| av在线观看视频网站免费| 亚洲精品久久午夜乱码| 亚洲成人手机| a级一级毛片免费在线观看| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 另类精品久久| 男人舔奶头视频| av国产精品久久久久影院| 国产精品99久久99久久久不卡 | 最近2019中文字幕mv第一页| tube8黄色片| 国产av码专区亚洲av| 亚洲精品亚洲一区二区| 日韩人妻高清精品专区| 人人澡人人妻人| 亚洲精华国产精华液的使用体验| av免费观看日本| 久久久久人妻精品一区果冻|