• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal decorrelation model for the bistatic SAR interferometry

    2015-01-17 12:29:06QileiZhangandWengeChang

    Qilei Zhangand Wenge Chang

    College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China

    Temporal decorrelation model for the bistatic SAR interferometry

    Qilei Zhang*and Wenge Chang

    College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China

    This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR)interferometry.The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR)interferometry.The study of temporal decorrelation is challenging,especially for the bistatic confguration,since temporal decorrelation is related to the data acquisition geometry.To develop an appropriate theoretical model for BSAR interferometry,the existing models for monostatic SAR cases are extended,and the general BSAR geometry confguration is involved in the derivation.Therefore,the developed temporal decorrelation model can be seen as a general model. The validity of the theoretical model is supported by Monte Carlo simulations.Furthermore,the impacts of the system parameters and BSAR geometry confgurations on the temporal decorrelation model are discussed briefy.

    temporal decorrelation,bistatic synthetic aperture radar(BSAR),interferometry,geometry confguration.

    1.Introduction

    The synthetic aperture radar(SAR)interferometry is an important technique for the earth observation and measurement[1,2].Nowadays,with the development of the bistatic SAR(BSAR)techniques,the interferometric application of BSAR has been focused by more and more institutes [3–5].

    As a valuable parameter of the radar interferometry, the coherence indicates the extent of the similarity between consecutive radar images[6].Usually,the coherence performance of an SAR interferometer can be altered by several different factors,named as decorrelation sources.Among them,the temporal de-correlation plays an important role,especially,for the repeat-pass SAR interferometry[7].

    The temporal de-correlation is due to physical changes of the observed scene over the time period between consecutive observations[8].Both natural and anthropogenic physical changes could possibly be involved[9].The natural changes,like vegetation growth,wind and precipitation,could be able to reduce the coherence,while the anthropogenic changes,such as construction,demolishing and irrigation,might completely destroy the coherence.For different interferometric applications,the temporal decorrelation plays different roles.In the interferometric height measurement,the temporal decorrelation might be a negative factor,since it increases the interferometric phase uncertainty.However,in the coherent change detection(CCD),the temporal decorrelation is the value to be measured,since it indicates the extent of the change.

    In previous works,several useful models of the temporal decorrelation for the monostatic SAR interferometry have been developed[6,10–14].Most of these models are derived with the assumption that the temporal decorrelation mechanism is primarily due to random motions of element scatterers within the resolution cell[12].The validity of this assumption has been validated by real data experiments[6,14,15].An exponential model was derived by assuming the Gaussian-statistic motion in[6].Based on the assumption of the Brownian motion,F.Rocca extended the exponential model to account for different temporal baseline cases[12].Given the assumption of the Gaussianstatistic motion which varies along the vertical direction of vegetated land,M.Lavalle developed a temporal decorrelation model to evaluate the effect of wind in the forest canopy[14].

    With the development of BSAR technologies and applications,the study of the temporal decorrelation for the BSAR interferometry is needed.However,this study is more challenging,since the data acquisition geometry needs to be taken into account.In BSAR interferometry, the phase variation due to the motion of element scatterers within the resolution cell depends on the data acquisition geometry.Moreover,the structure functionof the observedscene,such as vegetated land,varies with different acquisition geometries as well.Therefore,existing temporal models for the monostatic confguration is not valid any more. To deal with this problem,this paper develops a temporal decorrelation model for the BSAR interferometry.Even though the same approach as[14]is followed,this study is more advanced than[14],due to that the general bistatic confguration is considered here.

    This paper is organized as follows.In Section 2,the fundamental theory of the temporal decorrelation for BSAR interferometry is developed based on the general BSAR imaging geometry.In Section 3,the temporal decorrelation model is derived by applying the random volume over ground(RVoG)model and by assuming that the random motion is characterized by independent Gaussian distributions.In Section 4,the validity of the developed model is verifed by performing Monte Carlo simulations.Finally,we present the sensitivity discussion of the developed model in Section 5,followed by some conclusions in Section 6.

    2.Fundamental theory

    In this section,given the principle of BSAR imaging,we present the fundamental theory of the temporal decorrelation for BSAR interferometry.Fig.1 illustrates the general imaging geometry of BSAR interferometry,where the volume scattering model is considered.As shown in Fig.1, the transmitter and the receiver illuminate a scene patch with exactly the same position at differenttimes.The complex image signals obtained at consecutive observations can be denoted as s1and s2.Let O represent the center of the resolution cell.For the resolution cell,the transmitter T is located at(αT,βT,RT)and the receiver R is located at(αR,βR,RR),where αTand αRare the azimuth angles,βTand βRare the elevation angles,RTand RRare the distance from O to T and the distance from O to R, respectively.

    Fig.1 Imaging geometry of BSAR interferometry

    Assuming that P with coordinate(x,y,z)is an arbitrary element scatterer within the resolution cell,and then the range sum T-P-R can be given by

    The complex image signals s1and s2without the system thermal noise,measured at the position O,maybe represented as the sum of complex returns of all the element scatterers within the resolution cell[6].

    where λ=c/fcis the radar wavelength,fcis the carrier frequency,c is the speed of light,W(x,y)is the BSAR point spread function(PSF),and f1(x,y,z)and f2(x,y,z) represent the complex bistatic scattering coeffcients of the element scatterer within the resolution cell for the primary acquisition and the repeat-pass acquisition,respectively. The temporal decorrelation resulted from the variation of the complex bistatic scatter can be evaluated by

    Given that the dielectric constant of element scatterers is fxed and only the positions of element scatterers vary[14], the relationship between f1(x,y,z)and f2(x,y,z)can be expressed as

    where ΔR(Δx,Δy,Δz)is the range variation caused by the position motion(Δx,Δy,Δz)of element scatterers. According to Fig.1 and(1),ΔR(Δx,Δy,Δz)can be calculated by

    Therefore,the cross-correlation of the complex images pair can be given as

    Then,assume that the imaged scene consists of the uniformly distributed and uncorrelated element scatterers[6]

    where?·?indicates the ensemble average,and ρ(x,y,z) is the average complex bistatic scatter coeffcient,representing the structure function of the resolution cell.Furthermore,assume that the random motion of element scatterers is the dominant dynamic process that occurs within the resolution cell and the position changes can be characterized by independent probability distributions p(Δx), p(Δy)and p(Δz),we can get

    Similarly,the auto-correlation of the complex images pair can be given as

    By substituting(9)and(10)into(4),we can get the evaluation of temporal decorrelation effects.However,to get the explicit expression for the temporal decorrelation model,other assumptions have to be made.

    3.Temporal decorrelation model

    Observing(9)and(10)suggests that the temporal decorrelation depends on both the structure function and the random motion.A reasonable assumption for the imaged scene(especially for the vegetated land surface)is that the structure function and the random motion only depend on the initial vertical position of element scatterers[16,17]. This means that the structure function can be expressed as ρ(x,y,z)=σ0ρ(z)and the random motion can be characterized by p(Δx,z),p(Δy,z)and p(Δz,z),where σ0is a constant value,thus

    where

    Therefore,the expression of the temporal decorrelation can be rewritten as

    We can fnd that the calculation of the temporal decorrelation rests with the structure function ρ(z)and the expressions of χ(z).

    The structure function ρ(z)depends on the scene type, weather conditions,system confgurations,polarizations, the radar wavelength,etc.[17].The in-depth study of the structure function is not the aim of this paper.Here,a twolayer coherent scattering model of the structure function named as random volume over ground(RVoG)is applied. This model has been successfully adopted by many studies for interferometric and polarimetric radar[14,16,17].As shown in Fig.2,the RVoG model considers the scattering contribution from both a randomly oriented volume and an underlying dielectric surface located at zg[18].

    Fig.2 RVoG model of the structure function

    However,considering that the incident angle and the refected angle are different in BSAR confgurations,the structure function based on the RVoG model should be extended to

    where zg≤z≤zg+hv,εvis the average bistatic scatter per unit length of the random volume layer and εgis that of the ground layer,respectively.In(15),κeis the one-way amplitude extinction coeffcient,zgis the height of the underlying ground surface,hvis the thickness of the randomvolume layer,cos θTand cos θRare the incident angle and the refected angle,respectively.

    We consider that the random motion is characterized by independent Gaussian distributions and the variance of the random motion is dependent on the initial vertical position,i.e.,Δx~N(0,σ2Δx(z)),Δy~N(0,σ2Δy(z))and Δz~N(0,σ2Δz(z)).After some algebraic derivations,the result of(13)can be given as

    where

    To derive the explicit expression of the temporal decorrelation,here the variance of the random motion is assumed to be the linear function of the variable z as[14]. Assuming that the motion standard deviation of the element scatterers is σi,gat the bottom level zg,and σi,vat the top level zg+hv,then the motion variance with respect to the vertical position z can be evaluated by

    where Δσi=σi,v?σi,gis the differential motion standard deviation,and i=Δx,Δy,Δz.

    Substituting(15)and(16)into(14)yields

    where

    γTGstands for the temporal decorrelation effect caused by the random motion of element scatterers at the bottom level,γTVstands for the temporal decorrelation effect of the whole random volume layer,and μ represents the ground-to-volume scattering ratio.The parameters ξ1and ξ2are defned as

    where

    It can be seen from(18)that the temporal coherence value is between γTVand γTG,obtained for μ=0 and μ→∞,respectively.The former research showed that the value of the ground-to-volume scattering ratio μ is subject to the polarimetric character[14].Since the polarimetric diversity is not the emphasis of this study,the value of μ is assumed to be constant between consecutive observations.

    The monostatic confguration can be seen as a particular case of the bistatic confguration.As shown in Fig.1,if we set αT=αR=π/2 and βT=βR=β,the bistatic imaging confguration will be degraded to the monostatic confguration,thus θT=θR=θ.Furthermore,assuming that the motion standard deviation of the element scatterers satisfes σΔy,g=σΔz,gand ΔσΔy=ΔσΔz,the derived temporal decorrelation model will be reduced to the expression presented in[14].If we consider the random volume layer only,i.e.,μ=0,the temporal decorrelation value satisfes γTemp=γTV.Then if the random motion is assumed to be uniform along the vertical direction,i.e. ΔσΔy=ΔσΔz=0,the temporal decorrelation model can be reduced to

    The expression shown in(24)is in agreement with the temporal de-correlation model for monostatic SAR interferometry derived in[6].This means that the temporal decorrelation model derived here is a general model for BSAR interferometry.

    4.Simulation validation

    To validate the developed temporal decorrelation model, Monte Carlo simulations are performed in this section,for both monostatic and bistatic confgurations.The parameters used in the simulations are listed in Table 1.

    The principle of the simulations here is similar with that in[6].However,several necessary modifcations need tobe made to meet the assumptions introduced above.Specifcally,the simulated temporal coherence can be obtained by performing the following steps.

    Table 1 Simulation parameters

    Step1It is assumed that a set of 10000 element scatterers is randomly located within a resolution cell to simulate the random volume layer,and then it is assumed that another set of 10 000 element scatterers is randomly located at the bottom level(z=zg)to simulate the ground layer.

    It is worth noting that RTand RRcan be omitted in the phase calculation,since they are constant for all element scatterers both in the primary acquisition and the repeatpass acquisition.The PSF is chosen to be

    where Rxand Ryare the resolutions along X-axis and Y-axis,and sinc(α)=sin(πα)/πα.According to the simulation experience,it seems that the PSF is irrelevant to the result.This is reasonable because that,as shown in(11) and(12),the impact of PSF will be eliminated in the calculation of the temporal decorrelation.

    Step 3The frst image signal s1can be generated by coherent superposition based on(2).

    Step 4According to(17),the variance of random motions can be calculated,and then Gaussian distributed random motions for all element scatterers can be generated.

    Step 5Based on(3),the corresponding image signal s2can be generated by repeating Step 2 and Step 3.This time we just need to calculate the bistatic scattering coeffcient f2(x,y,z).Taking the element scatterer with the coordinate(xm,ym,zm)as an example again and assuming that the random motion is(Δxm,Δym,Δzm),the bistatic scattering coeffcient can be given as

    Step 6After the generation of s1and s2,the temporal coherence between the two images is then calculated accordingto(4).This process(Step 1–Step 6)is repeated N times to get the ensemble average.

    Meanwhile,the theoretical results of the temporal decorrelation could be calculated using the developed mathematical model and the listed parameters.At last,the comparison between the theoretical and the simulated results is presented to verify the validation of the developed bistatic temporal decorrelation model.

    4.1Monostatic confguration

    As listed in Table 1,we set αT= αR= 90°and βT=βR=45°in the simulation for the monostatic confguration.Here,the motion standard deviation is set to be σi,g=1 cm and Δσi=0:0.1:10 cm,i=Δx,Δy,Δz. Thus this simulation can be seen as a validation of the temporal decorrelation model presented in[14].The simulated and theoretical results can be obtained by applying processing approaches stated before.Fig.3 shows the comparison between the simulated and the theoretical results with different repetition times.

    It can be observed from Fig.3 that,the agreement between the simulated and the calculated results becomes better when the repetition time N increases,as expected. The agreement is good enough when N reaches 1 000.The temporal coherence is decreasing with the increasing of the differential motion standard deviation.Furthermore,the temporal coherence value starts from 0.794.In this case, Δσi=0,ξ2=0,thus γTemp=γTV=γTG.This means that the temporal coherence value in this case is resulted from the random motion occurring at the bottom level.

    Fig.3 Simulation validation of the developed temporal decorrelation model for the monostatic confguration with different repetition times

    4.2Bistatic confguration

    In this sub-section,another simulation is performed to verify the developed model for the bistatic confguration.As listed in Table 1,the geometric confguration parameters are set to be αT=50°,αR=165°,βT=60°,βR=45°. Therefore,the simulated bistatic confguration can be seen as a general confguration.The motion standard deviation is set to be σΔx,g=0.3 cm,σΔy,g= 0.5 cm, ΔσΔx=0.3×Δσ,ΔσΔy=0.5×Δσ,ΔσΔz=1×Δσ, Δσ=0:0.1:10 cm,and the repetition time is 1 000. Following the same approach as before,the simulated results can be generated.Then the comparison between the theoretical and the simulated results is illustrated in Fig.4.

    Fig.4 Simulation validation for the bistatic confguration

    It can be seen from Fig.4 that,for the bistatic confguration,the simulated results are in good agreement with the theoretical expectations.In Fig.4,the temporal coherence decreases when the differential motion standard deviation Δσ increases as well.The temporal coherence value starts from 0.863 due to decorrelation effects of the random motion occurring at the bottom level.

    The agreement between the simulated results and the theoretical expectations verifes the validity of the developed temporal decorrelation model.This implies that the developed model offers a reasonable interpretation of the BSAR temporal decorrelation mechanism.Therefore,the developed model can be used to evaluate the temporal decorrelation effect for the BSAR interferometry with different confgurations and system parameters.

    5.Sensitivity analysis

    It can be seen from the derivation of the developed theoretical model that the BSAR temporal decorrelation is dependent on the system parameters and the BSAR geometry confguration.Therefore,the sensitivity of the derived temporal decorrelation model to these parametershas to be analyzed.

    5.1Impact of system parameters

    The system parameters include the radar carrier frequency (or wavelength),the extinction coeffcient,the thickness of random volume layers and the ground-to-volume scattering ratio.To analyze the impact of these parameters,both the BSAR geometry confguration and the random motion of element scatterers should be fxed.Without loss of generality,they are set to be the same as the ones used in the simulation,i.e.αT=50°,βT=60°,αR=165°,βT= 45°,σΔx,g=0.3 cm,σΔy,g=0.5 cm,σΔz,g=1 cm and ΔσΔx=0.3×Δσ,ΔσΔy=0.5×Δσ,ΔσΔz=1×Δσ, Δσ=[0,1 cm,2 cm].

    The temporal decorrelation effects with different system parameters are plotted in Fig.5.Overall,the higher differential motion standard deviation Δσ,the lower temporal coherence value.Moreover,if Δσ=0,then γTemp= γTV=γTG.As given by(19)and verifed by Fig.5,the temporal coherence value is irrelevant to other three parameters except the radar carrier frequency in this case.

    Fig.5(a)shows the impact of the carrier frequency on the temporal decorrelation.In the calculation,the extinction coeffcient is set to be κe=1 dB/m,the thickness of vegetation layers is set to be hv=10 m,and the groundto-volume scattering ratio is set to beμ=0.2.It canbe observed from Fig.5(a)that higher carrier frequency yields lower temporal coherence.This implies that the BSAR interferometry with lower carrier frequency benefts from lower temporal coherence loss.Fig.5(b)indicates the impact of extinction coeffcients on the temporal decorrela-tion.Here,system parameters are set to bef0=1.62GHz, hv=10 m,μ=0.2.In Fig.5(b),we can fnd that higher extinction coeffcients result in higher temporal coherence loss,as expected.Fig.5(c)illustrates the impact of the thickness of random volume layers on the temporal decorrelation.Similarly,the system parameters are fxed to be f0=1.62 GHz,κe=1 dB,μ=0.2.It seems that the temporal coherence is decreasing as the thickness of vegetable layers is increasing.Fig.5(d)shows the impact of the ground-to-volume scattering ratio on the temporal decorrelation.Here the system parameters are fxed to be f0=1.62 GHz,κe=1 dB,hv=10 m.The temporal coherence value increases as the ground-to-volume scattering ratio μ grows.

    Fig.5 Impact of system parameters on the temporal decorrelation effect

    5.2Impact of BSAR geometry confguration

    From(18)to(23),we know that the geometry confguration is another important factor to impact the temporal decorrelation in BSAR confgurations.To study the impact of the geometry confguration,other parameters should be fxed.Here,they are set to be f0=1.62 GHz, κe=1 dB,hv=10 m,μ=0.2.Furthermore,it can be seen from the developed model that the impact of the transmitter’s position(αT,βT)and that of the receiver’s position(αR,βR)are symmetrical.Therefore,it is reasonable to assume that(αR,βR)is fxed while(αT,βT)varies.In the following calculations,the receiver’s position is set to be αR=165°,βR=45°,and the transmitter’s position is chosen as 0°≤ αT< 360°,20°≤ βT≤ 80°.Two sets of random motions are applied in the calculation.One of them is set to be σΔx,g=σΔy,g=σΔz,g=1 cm and ΔσΔx=ΔσΔy=ΔσΔz=0.1 cm,while the other oneis set to be σΔx,g=0.3 cm,σΔx,g=0.5 cm,σΔz,g=1 cm and ΔσΔx=0.3 cm,ΔσΔy=0.5 cm,ΔσΔz=1 cm. The calculated results are plotted in Fig.6.

    Fig.6 Impact of BSAR geometry confguration on the temporal decorrelation effect

    Fig.6 demonstrates that the bistatic acquisition geometry impacts the temporal decorrelation.For the same random motion,temporal decorrelation varies with the bistatic geometry confguration.However,comparing Fig.6(a)and Fig.6(b)suggests that the impact of the geometry confguration on the temporal decorrelation is operated through the structure function and random motions.

    6.Conclusions

    This paper develops a temporal decorrelation model for the interferometric application of BSAR.Based on a general BSAR geometry confguration,the theoretical model to describe the temporal decorrelation in this case is derived by extending existing monostatic models.The validity of the developed model is tested by Monte Carlo simulations. The good agreement between the theoretical and the simulated results verifes the validity of the derived model. Moreover,the sensitivity analysis of the derived model is presented as well.

    [1]R.Bamler,P.Hartl.Synthetic aperture radar interferometry. Inverse Problems,1998,14:1–54.

    [2]X.M.Xie.Multi-baseline phase unwrapping algorithm for In-SAR.Journal of Systems Engineering and Electronics,2013, 24(3):417–425.

    [3]S.Duque,P.Lopez-Dekker,J.J.Mallorqui.Single-pass bistatic SAR interferometry using fxed-receiver confgurations: theory and experimental validation.IEEE Trans.on Geoscience and Remote Sensing,2010,48(6):2740–2749.

    [4]J.Guo,Z.F.Li,Y.Y.Liu,et al.InSAR signal processing for distributed satellites in the case of squit.Systems Engineering and Electronics,2011,33(6):1243–1246.(in Chinese)

    [5]F.Liu,M.Antoniou,Z.Zeng,et al.Coherent change detection using passive GNSS-based BSAR:experimental proof of concept.IEEE Trans.on Geoscience and Remote Sensing,2012, 51(8):4544–4555.

    [6]H.A.Zebker,J.Villasenor.Decorrelation in interferometric radar echoes.IEEE Trans.on Geoscience and Remote Sensing,1992,30(5):950–959.

    [7]Z.Li,M.Guo.A new three-stage inversion procedure of forest height with the improved temporal decorrelation RVoG model. Proc.of the IEEE Geoscience and Remote Sensing Symposium (IGARSS),2012:5141–5144.

    [8]K.Papathanassiou,S.Cloude.The effect of temporal decorrelation on inversion of forest parameters from Pol-InSAR data. Proc.of the IEEE Geoscience and Remote Sensing Symposium (IGARSS),2003:1429–1431.

    [9]R.Ahmed,P.Siqueira,S.Hensley,et al.A survey of temporal decorrelation from spaceborne L-band repeat-pass InSAR. Remote Sensing of Enviroment,2011,115(11):2887–2896.

    [10]F.Lombardini,F.Cai.Temporal decorrelation robust SAR tomography.IEEE Trans.on Geoscience and Remote Sensing, 2014,52(9):5412–5421.

    [11]J.Askne,P.Dammert,L.M.H.Ulander,et al.C-band repeatpass interferometric SAR observations of the forest.IEEE Trans.on Geoscience and Remote Sensing,1997,35(1):25–35.

    [12]F.Rocca.Modeling interferogram stacks.IEEE Trans.on Geoscience and Remote Sensing,2007,45(10):3289–3299.

    [13]M.Neumann,L.Ferro-Famil,A.Reigber.Estimation of forest structure,ground and canopy layer characteristics from multibaseline polarimetric SAR data.IEEE Trans.on Geoscience and Remote Sensing,2010,48(3):1086–1104.

    [14]M.Lavalle,M.Simard,S.Hensley.A temporal decorrelation model for polarimetric radar interferometers.IEEE Trans.on Geoscience and Remote Sensing,2012,50(7):2880–2888.

    [15]M.Simard,S.Hensley,M.Lavalle,et al.An empirical assessment of temporal decorrelation using the uninhabited aerial vehiclesynthetic aperture radar over forested landscapes.Remote Sensing,2012,4:975–986.

    [16]S.Cloude,K.Papathanassio.Three-stage inversion process for polarimetric SAR interferometry.IEE proceeding-Radar Sonar Navigation,2003,150(3):125–134.

    [17]R.N.Treuhaft,S.N.Madsen,M.Moghaddam,et al.Vegetation characteristics and underlying topography from interferometric radar.Radio Science,1996,31(6):1449–1485.

    [18]R.N.Treuhaft,P.Siqueria.Vertical structure of vegetated land surfaces from interferometric and polarimetric radar.Radio Science,2000,35(1):141–177.

    Biographies

    Qilei Zhang was born in 1985.He received his B.S.degree in communication engineering and M.S.degree in information and communication engineering from the National University of Defense Technology,in 2007 and 2009,respectively, where he is currently working towards his Ph.D. degree.From January 2012 to July 2013,he was a visiting Ph.D.student with the University of Birmingham,UK.His research interests include bistatic synthetic aperture radar synchronization,imaging and interferometric applications.

    E-mail:zhangqilei@nudt.edu.cn

    Wenge Chang was born in 1965.He received his B.S.degree and Ph.D.degree from the National University of Defense Technology,in 1987 and 2001, respectively.From December 2007 to June 2008,he was an academic visitor with the University of Birmingham,UK.He is currently a professor with the National University of Defense Technology.His research interests include synthetic aperture radar and array signal processing.

    E-mail:changwenge@nudt.edu.cn

    10.1109/JSEE.2015.00011

    Manuscript received April 28,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61101178;61271441).

    国产在线免费精品| 亚洲四区av| 日韩av免费高清视频| 极品人妻少妇av视频| 美女主播在线视频| freevideosex欧美| 成年美女黄网站色视频大全免费 | 高清在线视频一区二区三区| 少妇 在线观看| 成年人午夜在线观看视频| 婷婷色综合www| 毛片一级片免费看久久久久| 色视频在线一区二区三区| 草草在线视频免费看| 日本-黄色视频高清免费观看| 亚洲成人av在线免费| 赤兔流量卡办理| 精品亚洲乱码少妇综合久久| 免费看日本二区| 最近的中文字幕免费完整| 亚洲国产最新在线播放| 少妇猛男粗大的猛烈进出视频| 一级二级三级毛片免费看| 国产精品免费大片| 国产一区二区在线观看av| 人人妻人人澡人人看| 26uuu在线亚洲综合色| 日本av免费视频播放| 美女大奶头黄色视频| 成人毛片a级毛片在线播放| 国产有黄有色有爽视频| 成人亚洲精品一区在线观看| 亚洲国产日韩一区二区| kizo精华| 精品一区二区三卡| 中文字幕人妻熟人妻熟丝袜美| 99久久人妻综合| 国产精品久久久久久精品古装| 秋霞在线观看毛片| 一本大道久久a久久精品| 亚洲婷婷狠狠爱综合网| 久久国产亚洲av麻豆专区| 久久ye,这里只有精品| 中文精品一卡2卡3卡4更新| 国产男女内射视频| 在线观看三级黄色| 一区二区三区精品91| 国产黄频视频在线观看| 国产免费视频播放在线视频| 一级毛片久久久久久久久女| 爱豆传媒免费全集在线观看| 草草在线视频免费看| 日韩不卡一区二区三区视频在线| 69精品国产乱码久久久| 国产午夜精品久久久久久一区二区三区| 亚洲一区二区三区欧美精品| 中文字幕人妻丝袜制服| 五月开心婷婷网| 人人妻人人爽人人添夜夜欢视频 | 人妻制服诱惑在线中文字幕| 亚洲人成网站在线观看播放| 精品一区二区三卡| 国产亚洲av片在线观看秒播厂| 亚洲国产毛片av蜜桃av| 狠狠精品人妻久久久久久综合| 亚洲av不卡在线观看| 欧美3d第一页| 国产精品久久久久久久久免| 男人狂女人下面高潮的视频| 男人狂女人下面高潮的视频| 极品教师在线视频| 91精品国产九色| 免费看av在线观看网站| 另类精品久久| 日韩一区二区三区影片| 妹子高潮喷水视频| 欧美成人精品欧美一级黄| 丰满饥渴人妻一区二区三| 黄色视频在线播放观看不卡| av女优亚洲男人天堂| 国产精品99久久99久久久不卡 | 国产探花极品一区二区| 国产伦理片在线播放av一区| 久久毛片免费看一区二区三区| 国产成人精品一,二区| 精品99又大又爽又粗少妇毛片| 国产一级毛片在线| 久久精品久久久久久久性| 黄色视频在线播放观看不卡| 国产美女午夜福利| 人妻少妇偷人精品九色| 男人爽女人下面视频在线观看| 精品卡一卡二卡四卡免费| 一本久久精品| 久久国内精品自在自线图片| 一本一本综合久久| 热99国产精品久久久久久7| 日韩免费高清中文字幕av| 91精品伊人久久大香线蕉| 精品人妻偷拍中文字幕| 久久99蜜桃精品久久| 色网站视频免费| 一个人看视频在线观看www免费| 久久国产亚洲av麻豆专区| 各种免费的搞黄视频| 多毛熟女@视频| 国产精品免费大片| 美女xxoo啪啪120秒动态图| 亚洲精品色激情综合| 啦啦啦在线观看免费高清www| 亚洲自偷自拍三级| 国产男人的电影天堂91| 国产精品免费大片| 亚洲欧洲精品一区二区精品久久久 | 日韩电影二区| 欧美97在线视频| 久久久久久久亚洲中文字幕| 97在线人人人人妻| 国产一级毛片在线| 亚洲av不卡在线观看| 日韩 亚洲 欧美在线| 国产黄片视频在线免费观看| 91精品国产国语对白视频| 嫩草影院入口| 亚洲高清免费不卡视频| 久久韩国三级中文字幕| 91久久精品国产一区二区成人| 美女福利国产在线| 一级毛片我不卡| 人妻人人澡人人爽人人| 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| av国产久精品久网站免费入址| 国产黄片视频在线免费观看| 最近中文字幕高清免费大全6| 啦啦啦中文免费视频观看日本| 久久青草综合色| 在线观看免费高清a一片| 亚洲成人手机| 丰满少妇做爰视频| 亚洲,一卡二卡三卡| 高清欧美精品videossex| 午夜福利影视在线免费观看| 春色校园在线视频观看| 老司机影院成人| 最近手机中文字幕大全| 日日摸夜夜添夜夜爱| 欧美日韩视频高清一区二区三区二| 男女国产视频网站| 久久影院123| av一本久久久久| 搡老乐熟女国产| 久久久精品94久久精品| 精品久久国产蜜桃| 偷拍熟女少妇极品色| 久久韩国三级中文字幕| 老司机亚洲免费影院| 青春草国产在线视频| 男人狂女人下面高潮的视频| 欧美成人午夜免费资源| 日本欧美视频一区| 久久久欧美国产精品| 99国产精品免费福利视频| 天天操日日干夜夜撸| 国产精品.久久久| av网站免费在线观看视频| 这个男人来自地球电影免费观看 | 欧美日韩av久久| 色视频www国产| 丝瓜视频免费看黄片| 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区四那| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 22中文网久久字幕| 69精品国产乱码久久久| 美女国产视频在线观看| 2018国产大陆天天弄谢| 97在线视频观看| 日本爱情动作片www.在线观看| 久久午夜福利片| 夜夜骑夜夜射夜夜干| 狂野欧美白嫩少妇大欣赏| 国产精品蜜桃在线观看| 国产成人精品一,二区| 亚洲国产精品999| 免费av不卡在线播放| 汤姆久久久久久久影院中文字幕| 国产伦精品一区二区三区视频9| 国产精品免费大片| 91久久精品国产一区二区成人| 欧美 亚洲 国产 日韩一| 最近的中文字幕免费完整| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品视频女| 欧美xxⅹ黑人| 久久久午夜欧美精品| 人人妻人人澡人人看| 欧美另类一区| 男男h啪啪无遮挡| 一级毛片我不卡| 麻豆精品久久久久久蜜桃| 欧美成人午夜免费资源| 久久狼人影院| 亚洲欧美日韩东京热| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 美女主播在线视频| 亚洲精品乱久久久久久| av天堂久久9| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影小说| 日本黄色片子视频| 久久久a久久爽久久v久久| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 国产免费福利视频在线观看| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 免费大片18禁| 午夜福利影视在线免费观看| 99热6这里只有精品| videos熟女内射| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 最黄视频免费看| 国国产精品蜜臀av免费| 久久 成人 亚洲| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 日韩,欧美,国产一区二区三区| av.在线天堂| 亚洲中文av在线| 18+在线观看网站| 五月开心婷婷网| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 国产精品福利在线免费观看| 97超视频在线观看视频| 青青草视频在线视频观看| 最近手机中文字幕大全| 亚洲国产欧美日韩在线播放 | 少妇丰满av| 一级毛片电影观看| 亚洲,一卡二卡三卡| 熟女人妻精品中文字幕| 精品人妻一区二区三区麻豆| 亚洲欧美日韩东京热| 美女大奶头黄色视频| 国产一区二区在线观看av| 国产高清有码在线观看视频| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 久久久国产精品麻豆| 国产精品成人在线| 日韩三级伦理在线观看| 成人影院久久| 18禁在线无遮挡免费观看视频| 国产日韩欧美视频二区| 国产在线一区二区三区精| 国产探花极品一区二区| 只有这里有精品99| 99热国产这里只有精品6| 国产精品秋霞免费鲁丝片| 九色成人免费人妻av| 午夜久久久在线观看| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 国产极品天堂在线| 亚洲伊人久久精品综合| 亚洲av电影在线观看一区二区三区| 国内精品宾馆在线| 亚洲av不卡在线观看| 久久这里有精品视频免费| 天堂中文最新版在线下载| 街头女战士在线观看网站| 亚洲av福利一区| 亚洲成人手机| 国产精品伦人一区二区| 免费看不卡的av| 寂寞人妻少妇视频99o| 日日撸夜夜添| 亚洲成人手机| 国产欧美日韩一区二区三区在线 | 18+在线观看网站| 国产成人精品久久久久久| 一级毛片 在线播放| 嫩草影院入口| 黑人巨大精品欧美一区二区蜜桃 | 91精品伊人久久大香线蕉| 欧美日韩亚洲高清精品| 人妻制服诱惑在线中文字幕| 国产精品福利在线免费观看| 狂野欧美激情性xxxx在线观看| 欧美精品亚洲一区二区| 大又大粗又爽又黄少妇毛片口| 夜夜看夜夜爽夜夜摸| 色婷婷av一区二区三区视频| 大片免费播放器 马上看| 亚洲精品国产av蜜桃| 免费大片黄手机在线观看| 日韩中字成人| 日本av手机在线免费观看| 精品国产一区二区三区久久久樱花| 亚洲av日韩在线播放| 少妇人妻久久综合中文| av在线播放精品| 亚洲精品456在线播放app| 午夜视频国产福利| 高清午夜精品一区二区三区| 日本wwww免费看| 啦啦啦中文免费视频观看日本| 晚上一个人看的免费电影| 免费看光身美女| 亚洲熟女精品中文字幕| 91在线精品国自产拍蜜月| 特大巨黑吊av在线直播| 日本黄色日本黄色录像| 欧美日韩精品成人综合77777| 亚洲国产精品一区三区| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件| 青春草国产在线视频| 久久精品国产亚洲av涩爱| 街头女战士在线观看网站| 在线观看美女被高潮喷水网站| 亚洲av综合色区一区| 国产黄片美女视频| 亚洲伊人久久精品综合| 男男h啪啪无遮挡| 久久精品国产a三级三级三级| 夜夜看夜夜爽夜夜摸| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 国产精品国产av在线观看| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 一级毛片久久久久久久久女| 亚洲人与动物交配视频| 久久这里有精品视频免费| 欧美精品一区二区大全| 大码成人一级视频| av女优亚洲男人天堂| 少妇精品久久久久久久| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 六月丁香七月| 国产深夜福利视频在线观看| a 毛片基地| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 久久精品久久久久久噜噜老黄| 毛片一级片免费看久久久久| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 国产精品一区www在线观看| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 国产亚洲最大av| 欧美日韩亚洲高清精品| 精品酒店卫生间| 日本vs欧美在线观看视频 | 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 精品久久国产蜜桃| 国产视频内射| 亚洲,欧美,日韩| 精品国产一区二区久久| av不卡在线播放| 一级毛片久久久久久久久女| 少妇人妻精品综合一区二区| 亚洲无线观看免费| 五月伊人婷婷丁香| 一级毛片我不卡| 在线观看一区二区三区激情| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 国产成人免费无遮挡视频| 熟妇人妻不卡中文字幕| 久久久久久久久久人人人人人人| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 久久久久久久久久成人| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 少妇的逼水好多| 久久国产乱子免费精品| 2021少妇久久久久久久久久久| 人妻 亚洲 视频| 国产熟女午夜一区二区三区 | 99九九在线精品视频 | 日韩强制内射视频| 高清毛片免费看| 男女边摸边吃奶| 大片免费播放器 马上看| 99久久精品一区二区三区| 日本午夜av视频| 五月天丁香电影| 99国产精品免费福利视频| 一本—道久久a久久精品蜜桃钙片| 99热全是精品| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 中文在线观看免费www的网站| freevideosex欧美| 精品久久久精品久久久| 人妻一区二区av| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看| 久久久国产精品麻豆| 国产视频首页在线观看| 久久久a久久爽久久v久久| 亚洲美女黄色视频免费看| 亚洲四区av| 九草在线视频观看| 国产视频首页在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 成人无遮挡网站| 欧美+日韩+精品| 亚洲av男天堂| 国产黄色视频一区二区在线观看| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 十八禁高潮呻吟视频 | 老司机亚洲免费影院| 不卡视频在线观看欧美| 国产成人精品婷婷| 如何舔出高潮| 久久国产精品大桥未久av | 欧美3d第一页| 两个人的视频大全免费| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 国产av精品麻豆| 97在线视频观看| 中文字幕亚洲精品专区| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 午夜精品国产一区二区电影| 夜夜看夜夜爽夜夜摸| 婷婷色综合www| 国产成人91sexporn| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院 | 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 亚洲经典国产精华液单| 成人国产av品久久久| 天堂8中文在线网| 欧美3d第一页| 女人久久www免费人成看片| 国产男人的电影天堂91| 一本久久精品| 国产av一区二区精品久久| 少妇人妻 视频| 一级毛片我不卡| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| av一本久久久久| 国产日韩欧美亚洲二区| 22中文网久久字幕| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 美女主播在线视频| 久久精品久久精品一区二区三区| 亚洲va在线va天堂va国产| 99久久精品国产国产毛片| 亚洲综合精品二区| 国产精品一区www在线观看| 91成人精品电影| av有码第一页| 国产精品福利在线免费观看| 国产男女内射视频| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 大香蕉97超碰在线| 亚洲国产精品999| 久久久久久久久大av| 免费观看的影片在线观看| 久久久久久久久久成人| 亚洲综合色惰| 亚洲欧美日韩另类电影网站| 国产成人精品福利久久| 三上悠亚av全集在线观看 | 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| a级毛片在线看网站| 在现免费观看毛片| 九九在线视频观看精品| 啦啦啦中文免费视频观看日本| 亚洲精华国产精华液的使用体验| 高清av免费在线| 丝袜喷水一区| 亚洲综合色惰| 内地一区二区视频在线| 欧美日韩视频精品一区| a级毛色黄片| 在线观看av片永久免费下载| 国产亚洲精品久久久com| 99精国产麻豆久久婷婷| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 国产高清国产精品国产三级| a级一级毛片免费在线观看| 久久久久久久久大av| 乱人伦中国视频| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 少妇人妻久久综合中文| av在线app专区| 日韩一区二区视频免费看| 99久久精品热视频| 老女人水多毛片| 久久精品久久久久久噜噜老黄| 午夜91福利影院| 久久久国产精品麻豆| 综合色丁香网| 日韩在线高清观看一区二区三区| 成人特级av手机在线观看| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 精品一区二区三卡| 亚洲欧洲国产日韩| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 亚洲国产毛片av蜜桃av| 亚洲怡红院男人天堂| 亚洲图色成人| 又粗又硬又长又爽又黄的视频| 日韩欧美一区视频在线观看 | 亚洲欧美中文字幕日韩二区| 午夜福利网站1000一区二区三区| 少妇 在线观看| 亚洲欧美精品自产自拍| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说| videossex国产| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 高清视频免费观看一区二区| 2022亚洲国产成人精品| 黄色毛片三级朝国网站 | 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 色5月婷婷丁香| 成人影院久久| 男女无遮挡免费网站观看| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 免费观看av网站的网址| 精品少妇内射三级| 熟女av电影| 成人18禁高潮啪啪吃奶动态图 | 一级二级三级毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 国产黄色视频一区二区在线观看| 内射极品少妇av片p| 成人18禁高潮啪啪吃奶动态图 | 久久久久国产精品人妻一区二区| 欧美三级亚洲精品| 久久97久久精品| 精品一品国产午夜福利视频| 黑人高潮一二区| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 99热这里只有精品一区| 中文天堂在线官网| 久久97久久精品| 99re6热这里在线精品视频| 国国产精品蜜臀av免费| av在线老鸭窝| 一本色道久久久久久精品综合| 黑人巨大精品欧美一区二区蜜桃 | 五月天丁香电影| 亚洲欧美精品自产自拍| 性色avwww在线观看| 精品国产露脸久久av麻豆| 中文字幕精品免费在线观看视频 | 国产成人精品婷婷| 国产欧美日韩精品一区二区| 一本色道久久久久久精品综合| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 在线亚洲精品国产二区图片欧美 | 男的添女的下面高潮视频| 亚洲四区av| 久久久久久久久久久久大奶| 亚洲国产最新在线播放| 免费看光身美女| 国产免费视频播放在线视频| 亚洲性久久影院| 亚洲,一卡二卡三卡| 亚洲久久久国产精品| 国产成人免费无遮挡视频|