• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direction estimation for two steady targets in monopulse radar

    2015-01-17 12:29:02ZhenxingLuYunjieLiandMeiguoGao

    Zhenxing Lu,Yunjie Li,and Meiguo Gao

    1.School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;

    2.The 54th Research Institute,China Electronics Technology Group Corporation,Shijiazhuang 050081,China

    Direction estimation for two steady targets in monopulse radar

    Zhenxing Lu1,2,Yunjie Li1,*,and Meiguo Gao1

    1.School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;

    2.The 54th Research Institute,China Electronics Technology Group Corporation,Shijiazhuang 050081,China

    Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio.A novel algorithm is proposed to estimate the directions of two steady targets with two pulses.The algorithm has a closedform expression and its variance is derived at high signal-to-noise ratios(SNRs).Furthermore,the pulse pair selection criterion and the estimation method with multiple pulses are given.Finally,some numerical results are shown to validate the proposed algorithm and the effect of slight target fuctuations is tested.

    direction estimation,two unresolved targets,monopulse radar.

    1.Introduction

    In radar signal processing,the amplitude comparison monopulse is commonly used to determine the direction of a target by the real part of the monopulse ratio.However,in the presence of two targets within the mainlobe of a monopulse radar,if we are not able to resolve them in range or Doppler cells,the monopulse ratio does not indicate any of the two directions.In this case,the monopulse ratio varies depending on the amplitude ratio and the relative phase of the two target signals in the sum channel.

    For different statistical types of targets,the mean and the variance of the monopulse ratio have been presented in[1]. If the amplitudes of the two target signals are steady and the phase difference between them is uniformly distributed in[0,2π],we can obtain the direction of the“l(fā)arger”target by averaging the monopulse ratio output[2,3].In this situation,an approach was proposed in[4]to attain the midpoint of the two targets with two pulses.For two Rayleigh targets,the average monopulse ratio would represent the centroid of the two targets.An algorithm based on the method of moments was developed in[5,6]to estimate the directions with known or estimated relative radar cross section(RCS).Wang[7]has derived the maximum likelihood (ML)solution of the directions of two Rayleigh targets. Both methods in[5]and[7,8]were based on the statistical characteristics of RCSs,and required suffcient samples with Rayleigh distributed amplitudes.To resolve two targets with one snapshot,an approach was given in[9,10] using an additional difference-difference channel,but for targets with the same elevation(azimuth)angle,the azimuth(elevation)angles cannot be resolved.If a sensor array is available,the spatial spectrum estimation algorithms [11–18]can be used to resolve two or more non-coherent targets.Other methods to detect and track two or more unresolved targets can be found in[19–25].

    In many scenarios,the amplitudes of two target signals are steady between pulses with a short interval,but the relative phases are different.For example,if a monopulse radar seeker working at 18 GHz moves from point(0 m, 2 000 m)to point(0 m,1 995 m)in one plane with one target at(0 m,0 m),the other from(100 m,0 m)to (99 m,0 m),and the two targets are both steady active sources or Swerling I targets whose RCSs do not fuctuate between the two instants,the amplitude changes of the two incident signals will be negligible but the relative phase will change about 5.2π(for active sources)or 10.4π(for Swerling I targets),respectively.

    To acquire the two directions,Sherman[26,27]provided fve equations from two pulses:four from the real parts and imaginary parts of the monopulse ratios,the rest from the sum signals.He mentioned an algebraic-graphical method using computer program to obtain the angles of the two targets,but did not provide the closed-form solutions.In[28],the authors gave four different equations directly from the sum and difference signals at two pulses instead of the monopulse ratios.Based on these equations, closed-form solutions for the two directions were derived. However,both methods in[27]and[28]did not consider the noise components in the sum and difference channels and their performance under the presence of noise was unknown either.In the target tracking of a monopulse radar, the statistics of direction estimation are very important forthe tracking algorithms such as Kalman fltering[29].To make better use of these estimations,their statistic performance has to be studied.From[28]we know that the estimation has a very complicated nonlinear expression.It is very diffcult to derive the probability density function (PDF)of the solution even if the noise components in the sum and difference channels are both Gaussian distributed. Based on the frst-order Taylor series expansion of the solution,the variance of the direction estimation is derived at high signal-to-noise ratios(SNRs)in this paper.We will see that,besides the SNR and target position,the variance of the estimation still depends on the phase difference of the target echoes or the power difference between the two pulses.This can also help us to select the best pulse pair to resolve the two targets when more than two pulses are obtained.

    2.Direction estimation for two targets in monopulse radar

    2.1Signal model

    When two steady targets A and B are present in the mainlobe of a monopulse radar,let θAand θBrespectively be the off-boresight angles of A and B.Regardless of the noise in the receiver,the signals in the sum and difference channels are given by

    and

    In this case,the monopulse ratio can be written as

    Let SB/SA=kejφ,where k denotes the amplitude ratio of SBand SA,and φ denotes the relative phase of SBand SA.The real part of the monopulse ratio can be expressed as follows:

    For two steady targets A and B,k can be treated as a constant and φ changes in some scenarios as illustrated in Section 1.In this case,the monopulse ratio will vary as φ changes.However,it is not easy to obtain the two directions directly from the monopulse ratio.

    2.2Closed-form solutions to resolve the two targets

    Assuming the amplitudes of SAand SBare constant and the phase difference φ varies between pulses,we can fnd two pulses with the same k and different φ.Now,instead of calculating the monopulse ratios,we can write the expressions of the sum and difference signals at pulses 1 and 2 directly as follows:

    where SAi= aAej?Ai,DAi= aAηAej?Ai,SBi= aBej?Bi,DBi=aBηBej?Bi,i=1,2,in which aAand aBdenote the amplitudes of signals from A and B respectively in the sum channel,and ?Aiand ?Bidenote the phases of signals from A and B respectively at pulse i.

    From(5)–(8)we have

    Therefore,we can obtain ηAand ηBfrom the same equation

    Equation(11)can be expressed as

    where Re(·)and Im(·)denote the real part and the imaginary part,respectively.Re(S10),Im(S10),Re(D10), Im(D10),Re(S20),Im(S20),Re(D20)and Im(D20)can be obtained directly from the in-phase and quadrature components of the sum and difference signals.

    Let

    Equation(12)can be rewritten as

    If ηA>ηB,we can derive

    2.3Remark on the solutions

    From(5)–(8)and(13)–(15)we have

    where φ1=?B1??A1and φ2=?B2??A2.

    When cosφ1?cosφ2/=0,(16)can be rewritten as

    It is obvious that ηAand ηBare the solutions of(22).

    If cosφ1?cosφ2=0,which means φ1=φ2or?φ2and the two pulses have the same amplitude in the sum channel,we have a=b=c=0 in(16).In this case,we cannot get the expected solutions from(17)and(18).

    3.Performance analysis

    3.1Estimation variances at high SNRs

    Section 2 has derived closed-form expressions for the directions of two steady targets in the noiseless monopulse model.In the case of φ1=φ2or?φ2,the two targets cannot be resolved from(17)and(18).Although the probability of φ1=φ2or?φ2is very little,the performance of the proposed method still becomes worse when φ1is closer to φ2or?φ2in the presence of noise,as the power difference a is very little and noise components will dominate the denominator in(17)and(18).Next we will derive the variances of the proposed method.

    In the presence of noise,the sum and difference signals can be written as where nsI,iand nsQ,i(i= 1,2)are the in-phase and quadrature components of the noise in the sum channel at pulse i,while ndI,iand ndQ,iare the in-phase and quadrature components of the noise in the difference channel respectively.As in[7],we assume that the noise components nsI,i,nsQ,i,ndI,iand ndQ,iare independent and Gaussian distributed variables with zero-mean and variances

    and

    where i=1,2.

    Inserting(23)–(26)into(13)–(15)and(17)–(18),we fnd that the expressions of(17)and(18)are very complicated.It is very diffcult to derive the PDFs and the variances of the estimations.

    Like the analysis in[30]and[31],we assume that the noise terms higher than the second order in(17)or(18) can be ignored at high SNRs.Then the estimate of ηAcan be written as

    where the estimation error is approximated by

    Therefore,

    Following(13)–(15),(17)–(19)and(21),we have

    Then we can derive

    In the same way,we can also derive

    If the sum channel and the difference channel have the same noise power 2σ20,i.e.σ2s=σ2d=σ20,the estimation variances can be written as

    3.2Pulse pair selection from multiple pulses

    From(34)and(35),we can see that the estimation variances are inversely proportional to the SNRs and(cosφ1?cosφ2)2.If|cosφ1?cosφ2|=2 is satisfed,the proposed algorithm will have the smallest variance(η2+1)/4SNR. Although φ1and φ2are not known and not under our control in real life,we still hope to select the best pulse pair when multiple pulses are received.

    According to(13)and(19),cosφ1?cosφ2is proportional to the power difference between pulse 1 and pulse 2 in the absence of noise.This is approximately true at high SNRs.

    In the monopulse radar,a pulse train with more than two pulses is usually employed.We assume that the two directions do not change during these pulses.In this case,we can select the pulse pair with the largest power difference from the received pulse train to obtain the best performance with the proposed two-pulse method.

    It should be noted that the‘pulse’here can also be a coherent processing interval(CPI)if the targets are steadily or slowly fuctuating so that the variation of their RCSs can be ignored between two CPIs.

    3.3Direction estimation with multiple pulses

    Assuming that we have 2N pulses received,then N independent pulse pairs can be selected from the 2N pulses. Denote the power difference of the pth pulse pair in the sum channel by ap.From(19),(34)and(35),we can write the estimation variances of the pth pulse pair as

    and

    Since not every pulse pair has the same power difference,the estimation variances of them are also different. To make a better estimation with multiple pulses,the best linear unbiased estimator(BLUE)[32]can be used.

    We can see that(38)and(39)have a similar form with the ML angular estimator[33]for Rayleigh fuctuating targets,which is widely used in monopulse radar.

    Strictly speaking,(38)and(39)are not BLUEs,because ?ηA,pand?ηB,pfrom(17)and(18)are biased as traditional monopulse ratios.Fortunately,the biases of(17)and(18) are very small for high SNRs as shown in Section 4.

    According to the theory of BLUE[32],the variances of (38)and(39)can be written as

    4.Simulations and discussions

    We test the performance of the proposed two-pulse algorithm by numerical simulations where we assume that

    Fig.1 Bias of?ηAversus φ2

    Fig.3 RMSE of?ηAversus φ2

    We can see that the algorithm has the best performance when φ2is close to 180°.In this case,the RMSEs are smaller than those of traditional monopulse ratios with only one target present(by simulation it can be shown that RMSEs of traditional monopulse ratios are 0.073,0.023 and 0.007 for SNR=20,30,40 dB respectively).SimiaB=aA=1,ηA=0.15 and ηB=?0.2.The sum channel and the difference channel have the same noise power. The two target signals have the same phase at pulse 1,i.e. φ1=0°.

    4.1Biases and root mean square errors versus phase differenceφ2

    Fig.2 Bias of?ηBversus φ2

    Fig.4 RMSE of?ηBversus φ2

    Under different SNR s and φ2,Monte-Carlo simulations are conducted by 1 000 independent trials.Figs.1–4 show the biases and root mean square errors(RMSEs)of?ηAand?ηBin the case that φ2varies from 80°to 280°(when φ2gets closer to φ1the performance will become worse). lar to the analysis of Section 3,the variance of Re(D/S) can be approximated by(η2+1)/2SNR in the single target case,which is obviously larger than(34)or(35)in the case of φ1=0°and φ2=180°.For φ2=80°or 280°, the RMSEs are only about twice as many as those of traditional monopulse ratios.

    4.2RMSEs versus the power differencea

    Fig.5 and Fig.6 also give the RMSEs of?ηAand?ηBversus the power difference a(see(13))between the two pulses.It is shown that the RMSEs will decrease as the power difference a increases and the simulation results are very close to the theory values.At low SNRs,the variance of the algorithm might be a little larger than the theory value(see Figs.3–6).This is because the noise terms higher than the second order are neglected in the derivation of(34)and (35).

    Fig.5 RMSE of?ηAversus a

    4.3Comparison with Sherman’s method

    The proposed two-pulse method and the Sherman’s method[27]have the same signal model,so the results of them are identical to each other if the noise components are not considered.Through simulation,we fnd that the two methods still have the same results under the presence of noise as shown in Fig.7 and Fig.8.However,the proposed method has closed-form solutions while the Sherman’s method does not.

    Fig.7 RMSE of?ηAcomparison with Sherman’s method

    Fig.8 RMSE of?ηBcomparison with Sherman’s method

    It should be noted that in Fig.7 and Fig.8,only 100 Monte-Carlo simulations are conducted.This is because the Sherman’s method needs to solve a very complex nonlinear equation,which is time consuming.

    4.4Test under target fuctuations

    In the following simulations,we will consider slight fuctuations of the two targets.Let aAand aBuniformly distribute in[1,1.2],and keep the other conditions the same as Figs.1–4.The biases and RMSEs from 1 000 Monte-Carlo runs are given in Figs.9–12.Comparing Figs.9–12 with Figs.1–4,we can observe that both the biases and RMSEs become larger at high SNRs.If the fuctuations of aAand aBare denoted by ΔaAand ΔaBin(5)–(8),i.e. replacing aAand aBwith aA+ΔaAand aB+ΔaBrespectively,all the terms with ΔaAand ΔaBcan be treated as noise.When the terms produced by the fuctuations are larger than the additional noise,the performance of the proposed algorithm will become worse.In our simulations,ΔaAandΔaBare proportional to aAand aB,so the larger SNRs are,the more obvious the effect of fuctuations willbe.

    Fig.9 Bias of?ηAversus φ2,with aAand aBuniformly distributed in[1,1.2]

    Fig.10 Bias of?ηBversus φ2,with aAand aBuniformly distributed in[1,1.2]

    Fig.11 RMSE of?ηAversus φ2,with aAand aBuniformly distributed in[1,1.2]

    Fig.12 RMSE of?ηBversus φ2,with aAand aBuniformly distributed in[1,1.2]

    5.Conclusions

    Under the circumstances of two unresolved steady targets emerging in the mainlobe of a monopulse radar,we have found closed-form solutions for the directions of the two targets with the real parts and the imaginary parts of the sum and the difference signals at two pulses.It is demonstrated that the variance of the direction estimation is inversely proportional to the SNR and the power difference between the two pulses at high SNRs.Therefore,in the case of multiple pulses,the pulse pair with the largest power difference should be selected.The performance of the new algorithm is verifed by numerical simulation and the effect of slight target fuctuations is considered.

    [1]M.B.Schober.Angular mean and variance for selected twosource radar-target combinations.IEEE Trans.on Aerospace and Electronic Systems,2002,38(7):1038–1046.

    [2]I.Kanter.Varieties of average monopulse responses to multiple targets.IEEE Trans.on Aerospace and Electronic Systems, 1981,17(1):25–28.

    [3]Y.M.Li,F.H.Wang,Z.T.Huang,et al.Performance of antiradiation seeker in counteracting three uncorrelated decoys. Systems Engineering and Electronics,2011,33(3):500–510. (in Chinese)

    [4]R.S.Berkowitz,S.M.Sherman.Information derivable from monopulse radar measurements of two unresolved targets. IEEE Trans.on Aerospace and Electronic Systems,1971,7(9): 1011–1013.

    [5]W.D.Blair,M.Brandt-Pearce.Monopulse DOA estimation of two unresolved Rayleigh targets.IEEE Trans.on Aerospace and Electronic Systems,2001,37(4):452–469.

    [6]W.D.Blair,G.A.Watson,M.Brandt-Pearce.Monopulse tracking of two unresolved Rayleigh targets.Proc.of the SPIE Conference on Signal and Data Processing of Small Targets, 1997:452–463.

    [7]Z.Wang,A.Sinha,P.Willett,et al.Angle estimation for two unresolved targets with monopulse radar.IEEE Trans.on Aerospace and Electronic Systems,2004,40(7):998–1019.

    [8]Z.Y.Song.H.T.Xiao,Q.Fu,et al.A novel approach tojointly estimate of the DOA of the target and decoy within the radar beam.Journal of National University of Defense Technology,2012,34(5):96–101.

    [9]Y.Zheng,S.M.Tseng,K.B.Yu.Closed-form four-channel monopulse two-target resolution.IEEE Trans.on Aerospace and Electronic Systems,2003,39(7):1083–1089.

    [10]Y.Zheng,S.M.Tseng.A closed form solution for two-target direction of arrival using four-channel monopulse.Proc.of the Thirty-ffth Asilomar Conference on Signals,Systems and Computers,2001:381–385.

    [11]W.J.Si,X.C.Si,Z.Y.Qu.New method for passive radar seeker to antagonize non-coherent radar decoy.Journal of Systems Engineering and Electronics,2010,21(3):397–403.

    [12]Y.Wang,T.Fu,M.G.Gao,et al.DOA estimation by exploiting spatial and Doppler sparsity.Proc.of the IET International Radar Conference,2013:1–4.

    [13]C.Qian,L.Huang,H.C.So.Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling.IEEE Signal Processing Letters,2014,21(2):140–144.

    [14]A.Khabbazibasmenj,A.Hassanien,S.A.Vorobyov,et al.Effcient transmit beamspace design for search-free based DOA estimation in MIMO radar.IEEE Trans.on Signal Processing, 2014,62(6):1490–1500.

    [15]P.Heidenreich,A.M.Zoubir,M.Rubsamen.Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays.IEEE Trans.on Signal Processing,2012,60(6):4683–4693.

    [16]B.Liao,Z.G.Zhang,C.Shing-chow.DOA estimation and tracking of ULAs with mutual coupling.IEEE Trans.on Aerospace and Electronic Systems,2012,48(1):891–905.

    [17]Z.Q.He,Q.H.Liu,L.N.Jin,et al.Low complexity method for DOA estimation using array covariance matrix sparse representation.Electronics Letters,2013,49(3):228–230.

    [18]N.Hu,Z.F.Ye,X.Xu,et al.DOA estimation for sparse array viasparse signal reconstruction.IEEE Trans.on Aerospace and Electronic Systems,2013,49(2):760–773.

    [19]X.Zhang,P.K.Willett,Y.Bar-Shalom.Monopulse radar detection and localization of multiple unresolved targets via joint bin processing.IEEE Trans.on Signal Processing,2005, 53(4):1225–1236.

    [20]X.Zhang,P.K.Willett,Y.Bar-Shalom.Detection and localization of multipleun resolved extended targets via monopulse radar signal processing.IEEE Trans.on Aerospace and Electronic Systems,2009,45(2):455–472.

    [21]N.Nandakumaran,A.Sinha,T.Kirubarajan.Joint detection and tracking of unresolved targets with monopulse radar.IEEE Trans.on Aerospace and Electronic Systems,2008,44(4): 1326–1341.

    [22]F.Bandiera,M.Del Coco,G.Ricci.A multitarget rangeazimuth tracker for maritime applications.Proc.of the 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2013:25–28.

    [23]P.N.Pathirana,S.C.K.Herath,A.V.Savkin.Multitarget tracking via space transformations using a single frequency continuous wave radar.IEEE Trans.on Signal Processing, 2012,60(10):5217–5229.

    [24]F.Bandiera,M.Mancino,G.Ricci.Localization strategies for multiple point-like radar targets.IEEE Trans.on Signal Processing,2012,60(12):6708–6712.

    [25]L.F.Zhou,M.Zhang,N.Zhao.Angle estimation for two unresolved Swerling I targets in monopulse radar.Proc.of the International Conference on Microwave and Millimeter Wave Technology,2010:1622–1625.

    [26]S.M.Sherman.Complex indicated angles applied to unresolved radar targets and multipath.IEEE Trans.on Aerospace and Electronic Systems,1971,7(1):160–170.

    [27]S.M.Sherman,D.K.Barton.Monopulse principles and techiques.2nd ed.London:Artech House Publisher,2011.

    [28]Z.X.Lu,M.G.Gao,H.Q.Jiang,et al.Closed-form solutions for directions of two steady targets with two pulses in monopulse radar.Proc.of the IEEE Radar Conference,2012: 74–78.

    [29]W.D.Blair,M.Brandt-Pearce.Statistical description of monopulse parameters for tracking Rayleigh targets.IEEE Trans.on Aerospace and Electronic Systems,1998,34(2): 597–612.

    [30]Y.T.Chan,K.C.Ho.A simple and effcient estimator for hyperbolic location.IEEE Trans.on Signal Processing,1994, 42(8):1905–1915.

    [31]K.C.Ho.Bias reduction for an explict solution of source localization using TDOA.IEEE Trans.on Signal Processing,2012, 60(5):2101–2114.

    [32]S.M.Kay.Fundeamentals of statistical signal processing. Beijing:Publishing House of Electronics Industry,2003.

    [33]E.Mosca.Angle estimation in amplitude comparison monopulse systems.IEEE Trans.on Aerospace and Electronic Systems,1969,5(2):205–212.

    Biographies

    Zhenxing Lu was born in 1984.He received his B.S.,M.S and Ph.D.degrees from Shandong University,Harbin Institute of Technology and Beijing Institute of Technology in 2005,2007 and 2014, respectively.Now he is an engineer of the 54th Research Institute of China Electronics Technology Group Corporation.His research interests include radar signal processing and adaptive beamforming. E-mail:lzx-1984@163.com

    Yunjie Li was born in 1975.He received his B.S., M.S.and Ph.D.degrees in electronic engineering from the Beijing Institute of Technology in 2005. He became a lecturer from the school of Information and Electronic Engineering at Beijing Institute of Technology in 2005 and now is an associate researcher.His primary research interests include radar systems,radar signal processing and radar electronic reconnaissance.

    E-mail:liyunjie@bit.edu.cn

    Meiguo Gao was born in 1965.He received his B.S.,M.S.and Ph.D.degrees in electronic engineering from the Beijing Institute of Technology.He became a lecturer from the School of Information and Electronic Engineering at Beijing Institute of Technology in 1994 and now is a full professor.His primary research interests include real time signal processing,and radar electronic reconnaissance.

    E-mail:meiguo g@bit.edu.cn

    10.1109/JSEE.2015.00009

    Manuscript received November 22,2013.

    *Corresponding author.

    妹子高潮喷水视频| www日本在线高清视频| 男女床上黄色一级片免费看| 午夜视频精品福利| 国产高清视频在线播放一区 | 久久久久久久国产电影| 新久久久久国产一级毛片| 午夜影院在线不卡| 18禁国产床啪视频网站| 日本黄色日本黄色录像| 亚洲av日韩精品久久久久久密| 成人亚洲精品一区在线观看| 国产免费av片在线观看野外av| 丝袜喷水一区| 精品人妻1区二区| 国产日韩欧美亚洲二区| 巨乳人妻的诱惑在线观看| 日韩 欧美 亚洲 中文字幕| 国产av一区二区精品久久| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 精品欧美一区二区三区在线| 精品高清国产在线一区| 人人妻人人添人人爽欧美一区卜| 高清av免费在线| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久二区二区免费| 久久精品国产a三级三级三级| 捣出白浆h1v1| 三级毛片av免费| 丁香六月欧美| 日本五十路高清| 久久精品人人爽人人爽视色| e午夜精品久久久久久久| 在线观看免费高清a一片| 成人av一区二区三区在线看 | 精品一区二区三区av网在线观看 | 女性被躁到高潮视频| 一边摸一边做爽爽视频免费| 久久久久久久大尺度免费视频| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区四区第35| 美女中出高潮动态图| 男人添女人高潮全过程视频| 久久天堂一区二区三区四区| 亚洲中文av在线| 最近中文字幕2019免费版| 中亚洲国语对白在线视频| 成人黄色视频免费在线看| 18禁裸乳无遮挡动漫免费视频| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜添小说| 色婷婷久久久亚洲欧美| 国产精品一二三区在线看| av在线app专区| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 国产成人啪精品午夜网站| 亚洲av成人一区二区三| 亚洲精品国产区一区二| 午夜福利一区二区在线看| 国产成人精品无人区| 国产一区二区在线观看av| 中文字幕最新亚洲高清| 一本久久精品| 丝瓜视频免费看黄片| 亚洲精品美女久久av网站| cao死你这个sao货| 各种免费的搞黄视频| 国产免费视频播放在线视频| 亚洲欧美精品综合一区二区三区| 国产免费一区二区三区四区乱码| 国产精品 欧美亚洲| 一本综合久久免费| 妹子高潮喷水视频| 人妻 亚洲 视频| 日韩视频一区二区在线观看| 美女大奶头黄色视频| 麻豆国产av国片精品| 国产男人的电影天堂91| 久久久久久久精品精品| 免费日韩欧美在线观看| 欧美亚洲日本最大视频资源| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区四区第35| 亚洲精品一二三| 老熟妇乱子伦视频在线观看 | 久久久久久人人人人人| 欧美精品av麻豆av| 成人18禁高潮啪啪吃奶动态图| 9191精品国产免费久久| 男人爽女人下面视频在线观看| 亚洲专区中文字幕在线| 久久久国产一区二区| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 三上悠亚av全集在线观看| 国产xxxxx性猛交| 日韩欧美免费精品| 女人精品久久久久毛片| 精品国产国语对白av| 亚洲精品一区蜜桃| 国产av精品麻豆| 日韩制服骚丝袜av| 搡老熟女国产l中国老女人| 18禁观看日本| 在线观看免费日韩欧美大片| 精品久久久久久久毛片微露脸 | 欧美精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 亚洲av日韩精品久久久久久密| 中亚洲国语对白在线视频| av又黄又爽大尺度在线免费看| 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 男女边摸边吃奶| 多毛熟女@视频| 亚洲欧美清纯卡通| 欧美在线黄色| 这个男人来自地球电影免费观看| 亚洲精品久久午夜乱码| av线在线观看网站| 国产伦人伦偷精品视频| www.精华液| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 91国产中文字幕| 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 欧美日韩亚洲综合一区二区三区_| 操出白浆在线播放| 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 日本精品一区二区三区蜜桃| 极品人妻少妇av视频| 人妻人人澡人人爽人人| 国产主播在线观看一区二区| 日本av免费视频播放| 一区二区三区四区激情视频| 精品亚洲成国产av| 久久精品国产亚洲av高清一级| 18禁裸乳无遮挡动漫免费视频| 不卡av一区二区三区| 日韩视频在线欧美| 亚洲五月婷婷丁香| 免费在线观看日本一区| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐动态| 欧美性长视频在线观看| 美女中出高潮动态图| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频 | 91成年电影在线观看| 操美女的视频在线观看| 日韩免费高清中文字幕av| 国产又爽黄色视频| 正在播放国产对白刺激| 亚洲成人手机| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 十分钟在线观看高清视频www| 波多野结衣一区麻豆| 色老头精品视频在线观看| 国产精品二区激情视频| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 好男人电影高清在线观看| 咕卡用的链子| 在线观看舔阴道视频| 国产亚洲精品一区二区www | 黄色视频不卡| 久久女婷五月综合色啪小说| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区黑人| 汤姆久久久久久久影院中文字幕| 欧美成狂野欧美在线观看| 精品熟女少妇八av免费久了| 极品人妻少妇av视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美成狂野欧美在线观看| 99国产精品99久久久久| 男女无遮挡免费网站观看| 一区二区三区精品91| 丁香六月欧美| 他把我摸到了高潮在线观看 | 99国产精品一区二区蜜桃av | 老司机福利观看| 岛国在线观看网站| 99国产精品免费福利视频| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 日本黄色日本黄色录像| 久久久久视频综合| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 午夜福利在线观看吧| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 久久精品成人免费网站| 大片免费播放器 马上看| 在线观看免费视频网站a站| 国产黄频视频在线观看| 欧美乱码精品一区二区三区| 蜜桃在线观看..| 国产成人一区二区三区免费视频网站| 国产精品国产三级国产专区5o| www.999成人在线观看| 性少妇av在线| 动漫黄色视频在线观看| 在线看a的网站| 国产精品一区二区免费欧美 | 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 国产免费一区二区三区四区乱码| 宅男免费午夜| 超色免费av| 大片免费播放器 马上看| 一区二区日韩欧美中文字幕| 国产区一区二久久| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| www.精华液| 自线自在国产av| 中亚洲国语对白在线视频| 美女福利国产在线| 国产欧美日韩一区二区三 | 国产精品一二三区在线看| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 天堂8中文在线网| 免费少妇av软件| 久久久国产成人免费| av一本久久久久| 啦啦啦中文免费视频观看日本| 免费少妇av软件| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 九色亚洲精品在线播放| 免费观看av网站的网址| netflix在线观看网站| 亚洲第一青青草原| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 午夜福利在线观看吧| 我要看黄色一级片免费的| 亚洲成av片中文字幕在线观看| 777米奇影视久久| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| 精品亚洲成国产av| 精品久久久久久电影网| 少妇粗大呻吟视频| 一区二区三区精品91| 亚洲一区中文字幕在线| 国产男女超爽视频在线观看| 精品少妇内射三级| 丝袜喷水一区| 国产成人免费观看mmmm| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 国产精品一区二区免费欧美 | 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 日本一区二区免费在线视频| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 国产精品1区2区在线观看. | 国产av一区二区精品久久| 两人在一起打扑克的视频| 婷婷成人精品国产| 免费看十八禁软件| a 毛片基地| 亚洲九九香蕉| 精品国产国语对白av| 亚洲国产日韩一区二区| 淫妇啪啪啪对白视频 | 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 欧美日韩一级在线毛片| 亚洲精品在线美女| 国产成人影院久久av| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 国产成人精品久久二区二区免费| 亚洲精品久久成人aⅴ小说| 亚洲av国产av综合av卡| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 丰满饥渴人妻一区二区三| avwww免费| 女警被强在线播放| av不卡在线播放| 一区福利在线观看| 叶爱在线成人免费视频播放| 777米奇影视久久| 亚洲国产精品成人久久小说| 两个人免费观看高清视频| 国产色视频综合| 午夜日韩欧美国产| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 大片免费播放器 马上看| 国产欧美日韩一区二区三 | 99国产精品99久久久久| 啦啦啦免费观看视频1| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| 91九色精品人成在线观看| 国产淫语在线视频| 免费观看a级毛片全部| 美国免费a级毛片| 亚洲国产精品999| 99精品欧美一区二区三区四区| 日本精品一区二区三区蜜桃| 精品少妇久久久久久888优播| 91麻豆精品激情在线观看国产 | 久久中文看片网| 亚洲精品国产一区二区精华液| 国产成人系列免费观看| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线| 黄色片一级片一级黄色片| 纯流量卡能插随身wifi吗| 国产一区二区三区av在线| 一边摸一边做爽爽视频免费| 欧美精品人与动牲交sv欧美| 一级黄色大片毛片| 亚洲一区二区三区欧美精品| 久久人人爽人人片av| 国产成人精品无人区| 色婷婷久久久亚洲欧美| 亚洲av欧美aⅴ国产| 美女国产高潮福利片在线看| 国产成人精品久久二区二区91| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 国产精品免费视频内射| 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 最近最新免费中文字幕在线| 亚洲欧美日韩另类电影网站| 十八禁人妻一区二区| 一二三四在线观看免费中文在| 国产精品 国内视频| 亚洲欧美精品综合一区二区三区| 免费高清在线观看视频在线观看| 亚洲熟女毛片儿| 亚洲精品日韩在线中文字幕| 亚洲中文字幕日韩| 69精品国产乱码久久久| 乱人伦中国视频| 久久久精品国产亚洲av高清涩受| 亚洲成人免费av在线播放| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 欧美一级毛片孕妇| 搡老岳熟女国产| 国产亚洲欧美精品永久| 欧美黑人精品巨大| 亚洲精品国产色婷婷电影| 18禁国产床啪视频网站| 91老司机精品| 日韩,欧美,国产一区二区三区| 久久青草综合色| 日韩,欧美,国产一区二区三区| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 人成视频在线观看免费观看| 久热爱精品视频在线9| 亚洲激情五月婷婷啪啪| 亚洲精品国产区一区二| 母亲3免费完整高清在线观看| 午夜91福利影院| 两个人免费观看高清视频| 女警被强在线播放| 亚洲一区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 一区福利在线观看| 精品国产一区二区久久| 美女国产高潮福利片在线看| 国产成人精品在线电影| 男人爽女人下面视频在线观看| 午夜免费鲁丝| 午夜影院在线不卡| 热99re8久久精品国产| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区| 日日摸夜夜添夜夜添小说| 他把我摸到了高潮在线观看 | 久久精品久久久久久噜噜老黄| 又紧又爽又黄一区二区| 欧美日韩亚洲综合一区二区三区_| 精品国内亚洲2022精品成人 | 中文字幕色久视频| 不卡一级毛片| 两性夫妻黄色片| 18禁观看日本| 欧美一级毛片孕妇| 久久亚洲国产成人精品v| 亚洲情色 制服丝袜| 精品人妻熟女毛片av久久网站| 男男h啪啪无遮挡| 免费女性裸体啪啪无遮挡网站| 精品福利观看| 久久性视频一级片| 亚洲伊人色综图| 一本色道久久久久久精品综合| 欧美在线黄色| 9色porny在线观看| 免费高清在线观看日韩| 亚洲国产精品成人久久小说| 欧美精品一区二区免费开放| 国产精品影院久久| 婷婷丁香在线五月| 高清视频免费观看一区二区| 黑人操中国人逼视频| 肉色欧美久久久久久久蜜桃| 久久人人爽人人片av| av福利片在线| 无遮挡黄片免费观看| 国产亚洲欧美精品永久| 男女床上黄色一级片免费看| 精品少妇内射三级| 纵有疾风起免费观看全集完整版| 国产精品1区2区在线观看. | 亚洲精品国产精品久久久不卡| 色播在线永久视频| 最近最新中文字幕大全免费视频| 韩国高清视频一区二区三区| 性少妇av在线| 欧美变态另类bdsm刘玥| 丁香六月欧美| 亚洲一码二码三码区别大吗| 另类精品久久| 日韩一卡2卡3卡4卡2021年| 免费少妇av软件| 青春草亚洲视频在线观看| 五月开心婷婷网| 精品久久久精品久久久| 中国美女看黄片| 999精品在线视频| 两人在一起打扑克的视频| 久久精品国产亚洲av香蕉五月 | 一级毛片电影观看| 国产一区二区三区综合在线观看| 亚洲自偷自拍图片 自拍| 最新的欧美精品一区二区| 亚洲全国av大片| 女人精品久久久久毛片| 1024香蕉在线观看| 99久久99久久久精品蜜桃| 交换朋友夫妻互换小说| 欧美日韩亚洲高清精品| 老司机福利观看| 亚洲成av片中文字幕在线观看| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 老司机靠b影院| 少妇的丰满在线观看| 日韩电影二区| 国精品久久久久久国模美| 香蕉丝袜av| 一二三四在线观看免费中文在| 在线观看免费午夜福利视频| 男女无遮挡免费网站观看| 久久久久久久精品精品| 国内毛片毛片毛片毛片毛片| 97精品久久久久久久久久精品| 女警被强在线播放| 日韩欧美一区视频在线观看| av在线播放精品| 肉色欧美久久久久久久蜜桃| 久久久久久免费高清国产稀缺| 国产麻豆69| 国产免费av片在线观看野外av| 在线观看免费高清a一片| 欧美精品一区二区大全| 亚洲精品中文字幕在线视频| 日韩大片免费观看网站| 亚洲男人天堂网一区| 99九九在线精品视频| 免费看十八禁软件| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 亚洲精品美女久久av网站| 色婷婷久久久亚洲欧美| 美女主播在线视频| 久久精品熟女亚洲av麻豆精品| 国产成人av激情在线播放| 男女之事视频高清在线观看| 国产成人欧美| 成年女人毛片免费观看观看9 | 飞空精品影院首页| 一级片'在线观看视频| 99re6热这里在线精品视频| 美国免费a级毛片| 中国美女看黄片| 亚洲精品一区蜜桃| 成人18禁高潮啪啪吃奶动态图| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 国产一区二区三区在线臀色熟女 | 亚洲av日韩精品久久久久久密| a 毛片基地| 国产成人一区二区三区免费视频网站| 在线永久观看黄色视频| 精品少妇内射三级| 汤姆久久久久久久影院中文字幕| 精品亚洲成国产av| 黄色a级毛片大全视频| 国产免费福利视频在线观看| 啦啦啦啦在线视频资源| 爱豆传媒免费全集在线观看| 国产一卡二卡三卡精品| 无限看片的www在线观看| 如日韩欧美国产精品一区二区三区| 日本欧美视频一区| xxxhd国产人妻xxx| 亚洲黑人精品在线| 国产在线一区二区三区精| 91大片在线观看| 亚洲性夜色夜夜综合| 久久久精品区二区三区| 国产男人的电影天堂91| 美女高潮到喷水免费观看| 手机成人av网站| 日本wwww免费看| 18禁国产床啪视频网站| 超碰成人久久| 国产欧美日韩综合在线一区二区| 国产又色又爽无遮挡免| 欧美人与性动交α欧美软件| 99精品久久久久人妻精品| 久久久精品免费免费高清| 咕卡用的链子| 大香蕉久久成人网| tube8黄色片| av在线播放精品| 1024视频免费在线观看| 免费黄频网站在线观看国产| av国产精品久久久久影院| 精品福利永久在线观看| 午夜免费成人在线视频| 青春草亚洲视频在线观看| 狠狠狠狠99中文字幕| 国产高清视频在线播放一区 | 亚洲国产日韩一区二区| 国产精品1区2区在线观看. | 人成视频在线观看免费观看| 乱人伦中国视频| 精品一区二区三区av网在线观看 | av在线app专区| 欧美大码av| 亚洲av日韩在线播放| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 99久久人妻综合| 法律面前人人平等表现在哪些方面 | 国产不卡av网站在线观看| 午夜福利视频精品| cao死你这个sao货| 超碰97精品在线观看| 国产精品亚洲av一区麻豆| 免费在线观看完整版高清| 欧美乱码精品一区二区三区| 老鸭窝网址在线观看| 建设人人有责人人尽责人人享有的| 久久久精品国产亚洲av高清涩受| 啦啦啦免费观看视频1| 搡老乐熟女国产| 在线精品无人区一区二区三| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99|