• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonparametric TOA estimators for low-resolution IR-UWB digital receiver

    2015-01-17 12:28:54YanlongZhangandWeidongChen

    Yanlong Zhang and Weidong Chen

    School of Electrical Science and Engineering,University of Science and Technology of China,Hefei 230027,China

    Nonparametric TOA estimators for low-resolution IR-UWB digital receiver

    Yanlong Zhang and Weidong Chen*

    School of Electrical Science and Engineering,University of Science and Technology of China,Hefei 230027,China

    Nonparametric time-of-arrival(TOA)estimators for impulse radio ultra-wideband(IR-UWB)signals are proposed.Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate.Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function.The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs), in place of high sampling rate high resolution ADCs which may not be available in practice.Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED)based estimators.

    conditional test,nonparametric estimator,time-ofarrival(TOA),low-resolution.

    1.Introduction

    Thanks to extremely short duration pulses employed,impulse radio ultra-wideband(IR-UWB)radios can provide high time resolution for time-of-arrival(TOA)based ranging[1–3].Several types of ultra-wideband receivers for TOA estimation have been investigated on the basis of different a-priori information requirements and completion complexities[4–8].Although the matched flter(MF)is the optimum receiver in the additive white Gaussian noise (AWGN)channel,it may require the knowledge of received pulse shape and complex high sampling rate high resolution analog-to-digital converters(ADCs).An alternative choice to the MF receiver is the energy detection (ED)receiver for its low complexity at sub-Nyquist sampling rates[9–14].In spite of its simplicity,ED receivers suffer severely signal-to-noise ratio(SNR)degradation and require the use of suboptimal noncoherent modulation schemes like on-off keying(OOK)or pulse-position modulation(PPM)[15,16].

    Another preferable choice can be made by restricting the resolution of ADCs at a low level,such as monobit(twolevel),three-level and two-bit(four-level).Low-resolution high sampling rate ADCs offer the potential to utilize the information of pulse shape and allow coherent modulation options such as binary phase shift keying(BPSK)[17]. Low-resolution quantization in IR-UWB communication applications has been researched[17–21],while further investigation is still needed to be done in IR-UWB TOA estimation.An estimator based on three-level quantization whose quantization parameters are optimized by maximizing the fsher information is analyzed in[22].Two nonuniform quantization based estimators whose quantizers are constructed by maximizing the defection and the slope of the power function are investigated in[23,24],respectively. However,their estimators require exact noise parameters and are sensitive to the change of noise distribution.

    From another standpoint,TOA estimation based upon low-resolution digital receivers has a close relationship with nonparametric detection,which presents robust performance in a background noise with unknown statistical information.For instance,monobit quantization is another form of sign detector[25–27].Three-level quantization can be viewed as a dead-zone limiter detector[28] while two-bit quantization can be deemed as generalizations of the sign detector[29].These detectors exhibit a nonparametric performance with respect to the probability of false alarm by using conditional statistical tests.Therefore,nonparametric detectors for the IR-UWB digital receivers can be constructed on the base of low-resolution quantization with the help of conditional tests.The goal of this paper is to combine nonparametric detection with the characteristic of impulse shape and put forward effective as well as robust TOA estimators.

    In this paper,two nonparametric TOA estimators based on the dead-zone limiter detector and generalizations of thesign detector are proposed,including three steps.The frst step quantizes the received multipath signal by the optimum quantization parameters that maximize the effciency. Then,a window flter is utilized to improve the SNR which exploits the information of pulse shape.Finally,the TOA is estimated by considering a conditional test structure for the class of symmetric probability noise density functions. Simulation results illustrate that these novel nonparametric estimators outperform traditional ED estimators.

    The rest of the paper is organized as follows.The system model is provided in Section 2.Section 3 presents the proposed TOA estimation scheme.Simulation results and discussions are described in Section 4,and Section 5 summarizes the paper.

    2.System model

    Let the received IR-UWB multipath signal be represented as follows:

    with

    where wmpis the received pulse after the channel impulse response,p(t)is the transmitted pulse with unit energy which considers a second derivative Gaussian monocycle pulse,Epis the pulse energy,dk∈{+1,?1}is the random-polarity code of the kth transmitted symbol,Ntis the symbol number,T is the symbol duration,τland alrepresent the delays of the multipath components and fading coeffcients,respectively,and n(t)denotes the AWGN with zero-mean and variance σ2.

    The received signal is fltered by a low-pass flter(LPF), and then sampled with the sampling period Ts(see Fig.1). Each symbol is sampled by N=?T/Ts?points.The ith full-resolution sample of the kth symbol rk,ican be written as

    Fig.1 Low-resolution digital receiver architecture

    Collect the samples as an observation vector R = [R0R1...RN?1],where Ri=[r1,ir2,i...rNt,i]T. Then rk,iis quantized according to carefully designed parameters.The test statistic is produced in the nonparametric detector based upon a conditional test structure,which presents a constant false alarm probability in additive noise with a symmetric density function assumption.Finally,the digital signal processing(DSP)section of the receiver provides the fnal TOA result.

    3.Quantization and TOA estimation scheme

    3.1Low-resolution quantization

    TOA estimation can be treated as a binary hypothesis testing problem,where an sample vector Ri= [r1,ir2,i...rNt,i]Tis given.Then a choice has to be made between a null hypothesis H0and an alternative hypothesis H1.

    where wiis a constant,Ni= [n1,in2,i...nNt,i]Tare independent random variables representing the noise, each with identical probability density function f(x).The sign detector can be used as a nonparametric detector for this problem.This detector is based on the test statistic

    The function l0(x)is a two-level approximation to the linear function l(x),defned as l(x)=x.In addition,we consider a detector based only on the signs of the samples in Riwhich satisfy|rk,i|≥c for certain c>0[28].The resulting detector is an extension of the sign detector,and employs the dead-zone limiter lc(x)to operate the data, where lc(x)is given by

    The test statistic Tc(Ri)can be written as Tc(Ri)= 2N1p?N1,where N1pis the number of Riin the interval[c,∞),N1is the number of samples which satisfy |rk,i|≥ c in Ri.The optimum value c?for the Gaussian noise is 0.612σ[28].The nonlinearity lc(x)can be replaced by another one giving a closer approximation to the function l(x).Consider the four-level quantization of l(x)provided by the nonlinearity lc,h(x),

    Then the test statistic Tc,h(Ri)can be written as Tc,h(Ri)=2N1p?N1+h(2N2p?N2),where N1pand N2pare the number of Riin the interval[c,∞)and[0,c), N1and N2are the number of samples in Riwhich satisfy |rk,i|≥ c and|rk,i|< c,respectively.For the Gaussiannoise,the four-level sign detector with the optimal parameters c?=0.98σ and h?=0.30 has the maximized effcacy[29].Equations(5),(6)and(7)can be implemented by fast comparators or low-resolution ADCs.

    3.2Nonparametric detector based on conditional tests

    The sign detector l0(x)is a nonparametric detector,because the distribution of its test statistic T0(Ri)under H0is distributed binomially with the probability of success p=1/2 and the number of trials n=Nt,independent of the particular probability density function f(x).In the dead-zone limiter lc(x),the samples are operated to obtain the number N1pand N1.A test function based on the test statistic Tc(Ri)cannot be the basis for a nonparametric detector for H1versus H0.This is because the distribution of Tc(Ri)under H0depends on the probability density function f(x).Although the distribution of Tc(Ri)under H0depends on the specifc f(x),it is distributed binomially under H0(conditioned on N1)with parameters p=1/2 and n=N1,independent of the f(x)with only a symmetry distribution assumption.Therefore,a nonparametric detector can be constructed based on the conditional test.

    The analysis still holds for the four-level sign detector lc,h(x)(see Fig.2).Conditioned upon the value of N1and N2(N1+N2=Nt),the distribution of Tc,h(Ri)under H0is exactly known which is independent of the special f(x).This is because N1pand N2pare(conditionally) independently,binomially distributed with probability of success p=1/2 and the number of tests n=N1and n=N2,respectively.This result is an outcome of the symmetry assumption on the noise density.Besides,the three-level detector is a special case of the four-level sign detector with h=0.

    Fig.2 Four-level nonparametric detector based on conditional test

    In the traditional detection scheme,suppose the signal is positive,then the detector is given as

    Consequently,for each outcome N1there is a conditional test based on(9)as shown in Fig.2.The only hypothesis we should make on the noise probability density function is that it is symmetric with zero-mean.The overall detection algorithm exhibits a nonparametric performance with respect to the probability of false alarm.The entries in the table of values of the threshold μN(yùn)t,α(N1)do not depend on the parameter c,and the detector retains nonparametric for any value of c≥0.The table look-up is effortless to implement and its entries can easily be produced from the binomial distribution function on the basis of the system parameters Ntand α.

    3.3Window flter

    Let the received pulse p(t)be sampled at a rate of 1/Ts. This yields Np=Tp/Tssamples of p(t).Assuming Tpis integer multiples of Ts.If the received pulse shape is known at the receiver,a matched flter can be used to obtain decision variables for TOA estimation.However,the full resolution ideal received waveform is impractical to obtain.The matched flter can have problems of distortion, and timing mismatch.Instead,we can make use of the sign information of samples,which is insensitive to mismatch. Besides,the threshold is relatively easy to calculate when only the polar information is adopted for the nonparametric detection.As depicted in Fig.3,we adopt the second derivative Gaussian monocycle pulse with τ=0.7 ns as the transmitted pulse.

    Fig.3 The second derivative Gaussian monocycle pulse with τ= 0.7 ns

    In Fig.3,the sampling period is Ts=0.25ns,so we can choose the weight window as window=[?1 1 1?1]. Thus,the new test statistic can be written as

    3.4TOA estimation scheme

    The goal of TOA estimation is to precisely identify the frst path in received signals.A simple technique to detect the frst path is to compare the samples with the predetermined threshold.For low-resolution IR-UWB digital receivers, the received signal is sampled,quantized and then correlated with the weight window flter.The test statistic and threshold for each sampling time are obtained based on the samples.The frst sample which exceeds the threshold is likely to be the sample of the frst path.According to the previous analysis,the complete TOA scheme can be summarized as follows:

    (i)Quantize the received signals by(6)or(7).

    (ii)Gather the quantized samples,conduct the window flter,and obtain the test statistic Tc(Ri)or Tc,h(Ri)and the threshold μN(yùn)t,α(N1).

    (iii)Compare the test statistic with the threshold by(9). Then the frst sample which exceeds the threshold is the fnal TOA.

    4.Simulation results and discussions

    In this section,we present the simulation results of the proposed nonparametric TOA estimators.Simulations are conducted on each of the 10 000 channel realizations of IEEE 802.15.4a channel model 1(CM1),and each realization has a TOA which is uniformly distributed within (0,T).The pulse repetition interval T is set at 100 ns,and the sampling rate of the low-resolution digital receiver is fs=4 GHz.The shaping pulse p(t)is a second derivative Gaussian monocycle pulse with τ=0.7 ns,which is the parameter that determines the width of the pulse.SNR is defned as SNRΔ=Ep/N0,where Epis the symbol energy.

    As shown in Fig.4,the performance of nonparametric detectors on mean absolute error(MAE)is compared with two other representative ED methods[9,10].The frst method[9]estimates TOA by utilizing a normalized threshold and the second method[10]estimates TOA by choosing the optimal threshold that minimizes MAE.ED based methods use the same sequence length Nt=50 as our methods while the integrate time is restricted to 1 ns due to the implementation limit.ξn= 0.25 and ws=30 ns are the normalized threshold and the searched back window,respectively.We fnd that the nonparametric estimators provide obvious performance improvement over ED based estimators.The three-level estimator is preferred for its simplicity and satisfactory performance while high-level estimators increase complexity with little beneft achieved.

    Fig.4 MAE for different estimators with respect to Ep/NO

    The performance of nonparametric detectors is insensitive to deviation of the Gaussian noise variance σ2which is utilized in setting the parameter of c,as illustrated in Fig.5.

    Fig.5 Performance comparison with respect to Ep/NObetween setting different values of c for nonparametric detector and setting different threshold values for energy detector

    In this Fig.5,MAEs of different TOA schemes are plotted against different quantization parameter c,which im-plies c/=c?,where c?is the optimum value.It is observed that the estimators are close to the optimal result for a large range values of σ and the conditional test keeps its excellent performance for different c/=c?.However,the JBSF algorithm is sensitive to the deviation of the threshold which is dependent upon the noise variance.Besides, the performance of the four-level estimator is more robust than three-level estimator.

    Fig.6 shows that the proposed window flter algorithms incur 1–2 dB SNR beneft in standard UWB fading channels at the price of higher computational complexity.The improvement is obvious with SNR being10–20dB,which is therefore useful when Ntis limited.

    Fig.6 Performance comparison between using window flter and without using window flter for nonparametric detector

    5.Conclusions

    In this paper,nonparametric TOA estimators based on conditional tests have been suggested for IR-UWB applications.The TOA estimators quantize the received signal by parameters that are carefully designed.The window flter is used to improve the SNR and the conditional test provides the fnal TOA results.Simulation results indicate that our estimators give more precise and robust results compared with traditional ED based estimators.

    [1]S.Gezici,Z.Tian,G.B.Giannakis,et al.Localization via ultra-wideband radios:a look at positioning aspects for future sensor networks.IEEE Signal Processing Magazine,2005, 22(4):70–84.

    [2]M.Dashti,M.Ghoraishi,J.Takada,et al.High-precision timeof-arrival estimation for UWB localizers in indoor multipath channels.Novel Applications of the UWB Technologies,Rijeka:InTech,2011:397–422.

    [3]D.Jourdan,D.Dardari,M.Z.Win.Position error bound for UWB localization in dense cluttered environments.IEEE Trans.on Aerospace and Electronic Systems,2008,44(2): 613–628.

    [4]L.Reggiani,G.M.Maggio.Rapid search algorithms for code acquisition in UWB impulse radio communications.IEEE Journal on Selected Areas in Communications,2005,23(5): 898–908.

    [5]I.Guvenc,Z.Sahinoglu,P.V.Orlik.TOA estimation for IRUWB systems with different transceiver types.IEEE Trans.on Microwave Theory and Techniques,2006,54(4):1876–1886.

    [6]N.R.Jeon,H.B.Lee,C.G.Park,et al.Superresolution TOA estimation with computational load reduction.IEEE Trans.on Vehicular Technology,2010,59(8):4139–4144.

    [7]B.Nadler.Nonparametric detection of signals by information theoretic criteria:performance analysis and an improved estimator.IEEE Trans.on Signal Processing,2010,58(5):2746–2756.

    [8]G.Bellusci,G.J.Janssen,J.Yan,et al.Performance evaluation of a low-complexity receiver concept for toa-based ultrawideband ranging.IEEE Trans.on Vehicular Technology,2012, 61(9):3825–3837.

    [9]I.Guvenc,Z.Sahinoglu.Threshold-based TOA estimation for impulse radio UWB systems.Proc.of the IEEE International Conference on Ultra-Wideband,2005:420–425.

    [10]I.Guvenc,H.Arslan.Comparison of two searchback schemes for non-coherent toa estimation in ir-uwb systems.Proc.of the IEEE Sarnoff Symposium,2006:1–4.

    [11]A.A.D’Amico,U.Mengali,L.Taponecco.TOA estimation with the IEEE 802.15.4a standard.IEEE Trans.on Wireless Communications,2010,9(7):2238–2247.

    [12]A.Giorgetti,M.Chiani.Time-of-arrival estimation based on information theoretic criteria.IEEE Trans.on Signal Processing,2013,61(8):1869–1879.

    [13]H.Ding,W.Liu,X.Huang,et al.First path detection using rank test in IR-UWB ranging with energy detection receiver under harsh environments.IEEE Communications Letters,2013,17(4):761–764.

    [14]W.Liu,H.Ding,X.Huang,et al.TOA estimation in IR-UWB ranging with energy detection receiver using received signal characteristics.IEEE Communications Letters,2012,16(5): 738–741.

    [15]H.Arslan,Z.N.Chen,M.G.Di Benedetto.Ultra wideband wireless communication.New York:John Wiley&Sons, 2006.

    [16]Z.Sahinoglu,S.Gezici,I.Guvenc.Ultra-wideband positioning systems.New York:Cambridge University Press,2008.

    [17]L.Ke,H.Yin,W.Gong,et al.Finite-resolution digital receiver design for impulse radio ultra-wideband communication.IEEE Trans.on Wireless Communications,2008,7(12): 5108–5117.

    [18]J.Tang,Z.Xu,B.M.Sadler.Performance analysis of b-bit digital receivers for TR-UWB systems with inter-pulse interference.IEEE Trans.on Wireless Communications,2007,6(2): 494–505.

    [19]H.Yin,Z.Wang,L.Ke,et al.Monobit digital receivers:design,performance,and application to impulse radio.IEEE Trans.on Communications,2010,58(6):1695–1704.

    [20]F.Sun,H.Yin,W.Wang.Ranging implementation using fniteresolution digital receiver for IEEE 802.15.4a systems.Proc. of the IEEE Vehicular Technology Conference,2011:1–5.

    [21]Y.Ma,F.Sun,W.Wang.A two-step IR-UWB acquisition method based on monobit receiver.Proc.of the IEEE International Conference on Ultra-Wideband,2011:195–199.

    [22]K.Liu,H.Yin,W.Chen.Low complexity tri-level samplingreceiver design for uwb time-of-arrival estimation.Proc.of the IEEE International Conference on Communications,2011: 1–5.

    [23]F.Sun,H.Yin,W.Wang.Finite-resolution digital receiver for UWB TAO estimation.IEEE Communications Letters,2012, 16(1):76–79.

    [24]M.A.Lexa.Quantization via empirical divergence maximization.IEEE Trans.on Signal Processing,2012,60(12):6408–6420.

    [25]J.Carlyle,J.Thomas.On nonparametric signal detectors. IEEE Trans.on Information Theory,1964,10(2):146–152.

    [26]J.Fang,Y.Liu,H.Li,et al.One-bit quantizer design for multisensor GLRT fusion.IEEE Signal Processing Letters,2013, 20(3):257–260.

    [27]H.Chen,P.K.Varshney.Nonparametric one-bit quantizers for distributed estimation.IEEE Trans.on Signal Processing, 2010,58(7):3777–3787.

    [28]S.A.Kassam,J.B.Thomas.Dead-zone limiter:an application of conditional tests in nonparametric detection.The Journal of the Acoustical Society of America,1976,60(4):857–862.

    [29]S.A.Kassam,J.B.Thomas.Generalizations of the sign detector based on conditional tests.IEEE Trans.on Communications,1976,24(5):481–487.

    Biographies

    Yanlong Zhang was born in 1988.He received his B.S.degree in electronic engineering and information science from Xi’an Jiaotong University, Xi’an,China,in 2005.He is currently pursuing his Ph.D.degree with the Department of Electrical and Information Science at University of Science and Technology of China,Hefei,China.His research focuses on ultrawide bandwidth time-of-arrival estimation and localization.

    E-mail:zhyl007@mail.ustc.edu.cn

    Weidong Chen received his B.S.degree from the Department of Electronic Engineering,University of Electronic Science and Technology of China in 1990,and M.S.and Ph.D.degrees from University of Science and Technology of China in 1994 and 2005 respectively.He is currently a professor and executive director of the Department of Electronic Engineering and Information Science,University of Science and Technology of China.His current research interests include microwave and millimeter wave technology and systems.

    E-mail:wdchen@ustc.edu.cn

    10.1109/JSEE.2015.00004

    Manuscript received November 02,2013.

    *Corresponding author.

    This work was supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204).

    老师上课跳d突然被开到最大视频| 精品少妇黑人巨大在线播放| 国产成人精品福利久久| av网站免费在线观看视频| 日韩制服骚丝袜av| 王馨瑶露胸无遮挡在线观看| 中文字幕亚洲精品专区| 国产欧美亚洲国产| 一区二区三区精品91| 久久99热这里只有精品18| 一级毛片电影观看| 国产精品熟女久久久久浪| 纯流量卡能插随身wifi吗| 97超碰精品成人国产| 午夜福利在线观看免费完整高清在| 深夜a级毛片| 国产成人免费观看mmmm| 插阴视频在线观看视频| 少妇熟女欧美另类| 日日摸夜夜添夜夜添av毛片| av在线观看视频网站免费| 日本猛色少妇xxxxx猛交久久| 欧美成人一区二区免费高清观看| 亚洲精品国产av蜜桃| 亚洲性久久影院| 日韩av不卡免费在线播放| 黑人高潮一二区| 好男人视频免费观看在线| 男人狂女人下面高潮的视频| 久久av网站| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 九九在线视频观看精品| 亚洲av男天堂| 18禁裸乳无遮挡免费网站照片| 熟妇人妻不卡中文字幕| 成人亚洲精品一区在线观看 | 午夜激情久久久久久久| 简卡轻食公司| 久热这里只有精品99| 全区人妻精品视频| 日韩大片免费观看网站| 久久久久网色| 久久毛片免费看一区二区三区| 国产免费一级a男人的天堂| 成人国产av品久久久| 又大又黄又爽视频免费| 在线观看美女被高潮喷水网站| 51国产日韩欧美| 亚洲第一av免费看| 精品人妻偷拍中文字幕| 国产精品三级大全| 色视频www国产| 色5月婷婷丁香| 国产极品天堂在线| 91久久精品国产一区二区三区| 亚洲精品日本国产第一区| 99热这里只有精品一区| 在线观看免费视频网站a站| 久久精品熟女亚洲av麻豆精品| 国内精品宾馆在线| 18禁在线播放成人免费| 最新中文字幕久久久久| av免费观看日本| 日产精品乱码卡一卡2卡三| 亚洲欧美精品专区久久| 日韩精品有码人妻一区| 亚洲国产欧美在线一区| 深爱激情五月婷婷| 免费看日本二区| 熟女av电影| 免费人妻精品一区二区三区视频| 一级二级三级毛片免费看| 97精品久久久久久久久久精品| 在线观看一区二区三区激情| 国产av一区二区精品久久 | 免费久久久久久久精品成人欧美视频 | 国产在线男女| 内射极品少妇av片p| av福利片在线观看| 午夜福利网站1000一区二区三区| 美女主播在线视频| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 我的老师免费观看完整版| 99热国产这里只有精品6| 精品一区在线观看国产| 国产精品女同一区二区软件| 亚洲国产最新在线播放| 欧美3d第一页| 成人一区二区视频在线观看| 人体艺术视频欧美日本| av国产免费在线观看| 欧美少妇被猛烈插入视频| 成年女人在线观看亚洲视频| 午夜精品国产一区二区电影| 赤兔流量卡办理| 色网站视频免费| 免费人妻精品一区二区三区视频| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 18禁动态无遮挡网站| 欧美高清成人免费视频www| 天堂中文最新版在线下载| 最新中文字幕久久久久| 天堂8中文在线网| 精品一区二区三区视频在线| 97精品久久久久久久久久精品| 欧美3d第一页| 99久久精品一区二区三区| 大陆偷拍与自拍| 久久热精品热| 少妇人妻 视频| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片 | 高清午夜精品一区二区三区| 97超视频在线观看视频| 丝袜脚勾引网站| 一个人免费看片子| 在线亚洲精品国产二区图片欧美 | 少妇人妻精品综合一区二区| 天堂8中文在线网| 国产精品国产三级国产av玫瑰| 成人特级av手机在线观看| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区 | 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 高清在线视频一区二区三区| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 亚洲人成网站高清观看| 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 97在线人人人人妻| 日日啪夜夜撸| 一区二区三区乱码不卡18| 秋霞伦理黄片| 亚洲欧洲国产日韩| 少妇 在线观看| 国产成人freesex在线| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 精品人妻熟女av久视频| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 嘟嘟电影网在线观看| 国产av精品麻豆| 亚洲内射少妇av| 色视频www国产| av福利片在线观看| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 黄片wwwwww| 亚洲欧美清纯卡通| 久久久久久久久久成人| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 亚洲美女视频黄频| 国产亚洲一区二区精品| 身体一侧抽搐| 久久 成人 亚洲| 精品久久久噜噜| 亚洲精品,欧美精品| 亚洲高清免费不卡视频| 午夜免费观看性视频| 日本午夜av视频| 99久久精品国产国产毛片| 久久亚洲国产成人精品v| 草草在线视频免费看| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线 | h日本视频在线播放| 一级片'在线观看视频| 蜜桃亚洲精品一区二区三区| 午夜福利高清视频| 99久久综合免费| 国产欧美日韩精品一区二区| 日本vs欧美在线观看视频 | 国产精品国产av在线观看| 免费播放大片免费观看视频在线观看| 人妻系列 视频| 免费av不卡在线播放| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 亚洲精品aⅴ在线观看| 久久青草综合色| 国产成人精品一,二区| 精品人妻视频免费看| 最近手机中文字幕大全| 国产成人精品福利久久| 亚洲精品国产成人久久av| 亚洲图色成人| 五月伊人婷婷丁香| 99热6这里只有精品| 黄色日韩在线| 精品少妇久久久久久888优播| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 乱系列少妇在线播放| 女性生殖器流出的白浆| 视频中文字幕在线观看| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| 久久久久国产精品人妻一区二区| av.在线天堂| 黄色怎么调成土黄色| 国产成人a区在线观看| 免费观看a级毛片全部| 亚洲精品日本国产第一区| 国产在线免费精品| 欧美性感艳星| 青春草视频在线免费观看| 精品人妻视频免费看| 老司机影院成人| 欧美激情极品国产一区二区三区 | 少妇高潮的动态图| 18禁在线播放成人免费| av视频免费观看在线观看| 国产精品国产三级国产av玫瑰| 老司机影院成人| www.av在线官网国产| 国产精品欧美亚洲77777| 又爽又黄a免费视频| 亚洲av国产av综合av卡| 五月天丁香电影| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 在线观看人妻少妇| 成人国产麻豆网| 99热全是精品| 亚洲欧美一区二区三区黑人 | 亚洲美女搞黄在线观看| 精品人妻视频免费看| 简卡轻食公司| 日本黄大片高清| 国产成人免费无遮挡视频| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 免费黄频网站在线观看国产| 久久久成人免费电影| 青春草国产在线视频| 你懂的网址亚洲精品在线观看| 观看美女的网站| 精品一品国产午夜福利视频| 黑人高潮一二区| 欧美极品一区二区三区四区| 久久国产乱子免费精品| 久久久久国产精品人妻一区二区| 91久久精品电影网| 毛片女人毛片| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 九九久久精品国产亚洲av麻豆| 亚洲成人一二三区av| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| 人妻一区二区av| 国产精品免费大片| 国产成人精品一,二区| 一区二区av电影网| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 久久青草综合色| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| 丝袜喷水一区| 少妇被粗大猛烈的视频| 国产精品熟女久久久久浪| 另类亚洲欧美激情| 久久精品人妻少妇| 亚洲怡红院男人天堂| 视频中文字幕在线观看| 久久国内精品自在自线图片| 日本黄色片子视频| 国产伦理片在线播放av一区| 国产真实伦视频高清在线观看| 嫩草影院入口| 丝袜喷水一区| 七月丁香在线播放| videos熟女内射| 99热国产这里只有精品6| 成年免费大片在线观看| 亚洲av国产av综合av卡| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 国模一区二区三区四区视频| 波野结衣二区三区在线| 一区二区三区四区激情视频| 91狼人影院| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 如何舔出高潮| 看非洲黑人一级黄片| 啦啦啦啦在线视频资源| 日本av免费视频播放| 秋霞在线观看毛片| 国产极品天堂在线| 建设人人有责人人尽责人人享有的 | 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 色网站视频免费| 毛片一级片免费看久久久久| 五月开心婷婷网| 观看美女的网站| 尾随美女入室| 一级毛片久久久久久久久女| 在线精品无人区一区二区三 | h日本视频在线播放| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 中国国产av一级| 午夜视频国产福利| 亚洲精品国产色婷婷电影| 亚洲丝袜综合中文字幕| 97在线视频观看| 秋霞伦理黄片| 国产视频首页在线观看| 久久av网站| 青春草亚洲视频在线观看| kizo精华| 观看美女的网站| 国产成人一区二区在线| 久久久久久久精品精品| 欧美+日韩+精品| 欧美性感艳星| 国产一区二区三区综合在线观看 | 插逼视频在线观看| 亚洲精品国产av成人精品| 欧美区成人在线视频| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 啦啦啦视频在线资源免费观看| 国产精品.久久久| 亚洲成人av在线免费| 久久久精品94久久精品| 午夜精品国产一区二区电影| 成人毛片60女人毛片免费| 美女xxoo啪啪120秒动态图| 国产爽快片一区二区三区| 成人毛片a级毛片在线播放| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 2022亚洲国产成人精品| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 成年免费大片在线观看| 亚洲精品,欧美精品| 日本黄色片子视频| 日韩中字成人| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 中文字幕制服av| 精品国产乱码久久久久久小说| 亚洲av不卡在线观看| 日韩精品有码人妻一区| 新久久久久国产一级毛片| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 99久久中文字幕三级久久日本| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 精品少妇黑人巨大在线播放| 国产精品久久久久久av不卡| 三级经典国产精品| 亚洲va在线va天堂va国产| 肉色欧美久久久久久久蜜桃| 久久久久精品性色| 午夜福利在线在线| 亚洲精品456在线播放app| 精华霜和精华液先用哪个| 18禁动态无遮挡网站| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| xxx大片免费视频| 青春草视频在线免费观看| 国产精品欧美亚洲77777| 18+在线观看网站| 偷拍熟女少妇极品色| 你懂的网址亚洲精品在线观看| av国产久精品久网站免费入址| 欧美区成人在线视频| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 国产真实伦视频高清在线观看| 特大巨黑吊av在线直播| 菩萨蛮人人尽说江南好唐韦庄| 涩涩av久久男人的天堂| 七月丁香在线播放| 亚洲丝袜综合中文字幕| 偷拍熟女少妇极品色| 日本黄色日本黄色录像| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 中文乱码字字幕精品一区二区三区| 中文字幕av成人在线电影| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 成年免费大片在线观看| 视频区图区小说| 国产 一区 欧美 日韩| 高清av免费在线| 蜜桃在线观看..| 观看美女的网站| 伦理电影大哥的女人| 日韩欧美精品免费久久| 交换朋友夫妻互换小说| 久久国内精品自在自线图片| 国产黄片美女视频| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| videos熟女内射| 国产亚洲欧美精品永久| 国产毛片在线视频| av卡一久久| 全区人妻精品视频| 少妇 在线观看| 亚洲天堂av无毛| 国产乱人偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 男女免费视频国产| 久久久久性生活片| 日韩伦理黄色片| 丝袜喷水一区| 狂野欧美激情性xxxx在线观看| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 欧美精品人与动牲交sv欧美| 亚洲av综合色区一区| 亚洲美女视频黄频| 免费人成在线观看视频色| 激情 狠狠 欧美| 大香蕉久久网| 国产精品熟女久久久久浪| 婷婷色麻豆天堂久久| 免费观看在线日韩| 亚州av有码| 中文字幕制服av| 国产永久视频网站| 久久久色成人| 国产白丝娇喘喷水9色精品| 多毛熟女@视频| 最近最新中文字幕大全电影3| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 亚洲精品视频女| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 老司机影院成人| 久久人妻熟女aⅴ| 插阴视频在线观看视频| 你懂的网址亚洲精品在线观看| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 午夜激情福利司机影院| 精品国产三级普通话版| 黄色欧美视频在线观看| 人人妻人人添人人爽欧美一区卜 | 超碰av人人做人人爽久久| 国产黄片美女视频| 精品人妻熟女av久视频| 少妇丰满av| 精品一区二区三卡| 伦理电影免费视频| 三级经典国产精品| 日韩 亚洲 欧美在线| av国产免费在线观看| 97在线人人人人妻| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 亚洲av国产av综合av卡| 直男gayav资源| 有码 亚洲区| 亚洲最大成人中文| 五月天丁香电影| 久久国产乱子免费精品| 成人美女网站在线观看视频| 超碰av人人做人人爽久久| 国产av码专区亚洲av| 韩国av在线不卡| 精品一区二区免费观看| 国产精品人妻久久久久久| 99久久综合免费| 中文字幕av成人在线电影| 国产91av在线免费观看| 日本猛色少妇xxxxx猛交久久| 人妻制服诱惑在线中文字幕| 国内精品宾馆在线| 成人黄色视频免费在线看| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 99视频精品全部免费 在线| 少妇熟女欧美另类| 亚洲av.av天堂| 欧美日本视频| 97热精品久久久久久| 日韩av在线免费看完整版不卡| 亚洲精品乱码久久久v下载方式| 国产亚洲午夜精品一区二区久久| 成人免费观看视频高清| 日韩 亚洲 欧美在线| 又大又黄又爽视频免费| 久久这里有精品视频免费| 91久久精品国产一区二区成人| 亚洲av欧美aⅴ国产| 国产91av在线免费观看| 国国产精品蜜臀av免费| 波野结衣二区三区在线| 麻豆乱淫一区二区| 99热网站在线观看| 91狼人影院| 2021少妇久久久久久久久久久| 深夜a级毛片| 成人综合一区亚洲| 高清不卡的av网站| 91午夜精品亚洲一区二区三区| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 最近中文字幕2019免费版| 建设人人有责人人尽责人人享有的 | 色视频在线一区二区三区| 午夜福利在线观看免费完整高清在| 国产精品伦人一区二区| 久久人人爽人人爽人人片va| 亚洲中文av在线| 少妇 在线观看| 高清日韩中文字幕在线| 99re6热这里在线精品视频| 日韩亚洲欧美综合| 五月伊人婷婷丁香| a级一级毛片免费在线观看| 精品久久久久久久末码| 欧美亚洲 丝袜 人妻 在线| tube8黄色片| 青青草视频在线视频观看| 亚洲电影在线观看av| 国产v大片淫在线免费观看| 免费久久久久久久精品成人欧美视频 | 最新中文字幕久久久久| 80岁老熟妇乱子伦牲交| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| 亚洲国产毛片av蜜桃av| 嫩草影院新地址| 交换朋友夫妻互换小说| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂 | 久久99热6这里只有精品| 日韩中文字幕视频在线看片 | 中文乱码字字幕精品一区二区三区| 看非洲黑人一级黄片| 赤兔流量卡办理| 国语对白做爰xxxⅹ性视频网站| 精品人妻视频免费看| h视频一区二区三区| 97热精品久久久久久| 国产一区二区三区av在线| 成人一区二区视频在线观看| 王馨瑶露胸无遮挡在线观看| 街头女战士在线观看网站| 欧美一级a爱片免费观看看| 91精品伊人久久大香线蕉| 汤姆久久久久久久影院中文字幕| 又黄又爽又刺激的免费视频.| 国产av国产精品国产| 日韩av不卡免费在线播放| 观看免费一级毛片| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠久久av| 老师上课跳d突然被开到最大视频| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 老女人水多毛片| 最近中文字幕高清免费大全6| 久久精品人妻少妇| 亚洲第一av免费看| 久久青草综合色| 午夜日本视频在线| 免费少妇av软件| 好男人视频免费观看在线| 国产真实伦视频高清在线观看| 久久久精品免费免费高清| 精品久久久精品久久久|