• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heavy metal(loid)pollution in mine wastes of a Carlin-type gold mine in southwestern Guizhou,China and its environmental impacts

    2015-01-17 09:25:41PingLiJunfangZhangJianxuWangZhonggenLi
    Acta Geochimica 2015年3期

    Ping Li?Junfang Zhang?Jianxu Wang?Zhonggen Li

    Heavy metal(loid)pollution in mine wastes of a Carlin-type gold mine in southwestern Guizhou,China and its environmental impacts

    Ping Li1?Junfang Zhang2?Jianxu Wang1?Zhonggen Li1

    Mercury pollution resulting from artisanal gold mining is a serious environmental problem in many developing countries.In this study,we analyzed heavy metal(loid)contamination in mine wastes from a Carlin-type gold minein southwestern Guizhou,China.Highly elevated levels of As,Hg,Tl,Sb,and Cd—up to 5844,28, 29,581 and 3.0 mg/kg,respectively—were observed in the mine wastes,but no signifcant accumulation of Cr,Ni,Cu, Zn,and Pb was found.The smelting process of gold ores had signifcant impacts on the enrichment of As,Tl,and Hg in the mine wastes.Due to the signifcant metal(loid) pollution in this gold mine,the ecological risks are classifed as‘‘very high.’’Hg and As are the major pollutants with a relative contribution of 55.9%and 24.2%to the risk index,respectively.Phytoremediation could be used to reduce heavy metal contamination and recycle the gold simultaneously.Hg–As–Tl pollution should be considered in gold extraction at Carlin-type gold mines.

    Heavy metals·Metalloid·Potential ecological risk assessment·Enrichment factor· Mine waste·Carlin-type gold mine

    1 Introduction

    China produced the most gold in the world in 2007,and kept this record at least through the following 6 years.Gold output in China increased 11.7%in 2012 with a yield of 403 tonnes(CGA 2013).Gold resources are unevenly distributed in China.Many types of gold ore have been found in northern and eastern China.Primary gold ore occurs mainly in Shandong,Henan,Hebei,Shaanxi,Jilin, and Hubei Provinces;while gold placers are found mainly along the margins of northeastern China,such as Heilongjiang,Shaanxi,Gansu,Sichuan,and Inner Mongolia. Recently,western provinces such as Guizhou and Yunnan have gained a sharp increase in gold production.

    In Guizhou Province,gold production has increased since the advent of bacterial pretreatment to extract invisible gold in sulfde minerals a few years ago.Carlin-type gold ore is a typical refractory ore,characterized by low gold grade and high sulfur and arsenic concentrations.Gold usually occurs in these ores as discrete particulates (<0.1 μm in diameter)within sulfde minerals.For Carlintype gold ore,bioleaching is advantageous over other traditional methods(Qiu et al.2012).

    Carlin-type gold deposits(also known as sedimenthosted gold deposits)are the largest hydrothermal gold deposits in the world and are widely distributed in the United States and China(Tretbar et al.2000;Hu et al. 2002).The region of southwestern Guizhou,is an important component of the Yunnan–Guizhou–Guangxi‘‘gold triangle’’area.Carlin-type gold deposits in southwestern Guizhou,China,are hosted in late Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Precambrian Yangtze craton.The deposits can be classifed as two types,namely the fault type and the stratabound type,based on their occurrence,shape and structuralcontrols(Zhang et al.2003;Xia et al.2012).They have similar characteristics to Carlin-type gold deposits in Nevada,including notable enrichment in As,Sb,Hg,and Tl (Hu et al.2002;Xia et al.2012).

    Unfortunately,many modern gold mining practices have led to elevated levels of pollutants in air,soil,and water. Artisanal and small-scale gold mining(ASGM)was the largest anthropogenic source of Hg emission to the air in the world in 2010 at 727 tonnes or 37%of the global anthropogenic emissions(UNEP 2013).ASGM has been recognized as one of the Top 10 Toxic Pollution Problems in 2012 by Blacksmith Institute.The technique is popular in developing countries because of its simple processes and low costs;it accounts for about 20%of global gold production.The Hg pollution resulting from ASGM is a serious environmental problem in South America,China, Russia,Southeast Asia,and Africa(Lacerda and Salomons 1998;Feng et al.2006).In 1996,ASGM was banned in China and dissolution with cyanide(CN)has been widely developed.In this technique,fnely ground high-grade ore is mixed with CN;low-grade ores are stacked into heaps and sprayed with a CN solution.

    Carlin-type gold deposits show enrichment in Au,Sb, Hg,Tl,and Ba.This enrichment results from hydrothermal circulation with a temperature of up to 300°C.The associated trace elements are released into the environment during mining and refning processes.This paper evaluates heavy metal and metalloid pollution and their possible sources in Laowanchang gold mine in Guizhou Province,China.The results provide scientifc input to pollution control and remediation efforts in Carlin-type gold mines.

    2 Materials and methods

    2.1 Study area

    The Laowanchang gold mine is located in the south of Qinglong County(Fig.1).The ore is a Carlin-type gold deposit with the characteristic Au–As–Sb–Hg–Tl trace element assemblage.It is considered to be the product of weathering evolution of a primary Carlin-type gold deposit. It formed through the accumulation of ore-forming material by karst collapse,followed by lateralization(Yang and Liu 2003;Yang et al.2004).The granulating-dumpleaching technique was used to extract gold in this mine. The processing techniques included grinding,concentration,dehydration,and pressure oxidation before cyanidation(Fig.2;Ren 2003).The total gold reserve of this mine was 2278 kg,with a grade of 0.5–1.25 g/t.During the period of 1993–2008,signifcant quantities of mine wastes were produced and piled in the mining area.

    2.2 Sample collection

    In October 2010,49 mine waste and surface soil samples were collected in the study area(Fig.1).The sampling sites can be categorized into fve types:mine wastes in the settling tank(A),mine wastes(B),crude ores(C),corn feld soil(D),and background soil(E).The settling tank was a separation unit separating solids from the waste water.Suspended particles were settled to the bottom of the tank and the waste water was discharged.The corn felds are very close to mine waste heaps.The control site selected for comparison with the polluted sites was located~5 km from the gold mine sites.

    Crude ores were collected from different areas and smelted at Laowanchang sites.The mine wastes were heaped in Laowanchang and Hongyan sites.The crude ores were extracted from the land surface and the grasses and trees removed,causing soil erosion in the mining area.

    Every sample consisted of a composite of four to fve subsamples within an area of 1 m2.A profle of the mine waste was collected at site QL5,and it was divided into ten depths with an interval of 30 cm.We collected mine ore waste samples at different depths.In the laboratory,the samples were air-dried,ground,and passed through a 100-mesh nylon sieve prior to geochemical analysis.

    2.3 Analytical methods

    The prepared samples were digested in the mixed acid of HNO3–HF,and Cd,Sb,Tl,Cr,Ni,Cu,Zn,Pb,and Sc concentrations in the digests were determined by Inductively Coupled Plasma Mass Spectroscopy (ICPMS,Element,Finnigan MAT Co)according to the method developed by Qi and Gre′goire(2000).Arsenic concentrations in samples were digested by HNO3–HCl–H2O2and determined by atomic fuorescence spectrometry (AFS-920, Beijing Jitian Instrument Corporation).

    Mercury concentrations in the samples were analyzed by the RA-915+Hg analyzer coupled with the PYRO-915+attachment(Lumex Co.,Russia).Au concentrations in the samples were analyzed by aqua regia digestion and atomic absorption spectrometry detection.CN concentrations in the samples were determined by the Pyridine Pyrazolone Spectrophotometric Method(Xu et al.1999) with a limit of detection(LOD)of 0.025 mg/kg.Concentrations below the LOD were assumed to be the LOD in the calculation and assessment.In addition,the pH was determined with a pH meter in 2.5:1(v/m)water/solid suspension.

    Quality assurance and quality control consisted of method blanks,duplicates, and certifed referencematerials.Recoveries of certifed reference materials (GBW07405 and GBWE070023)for all elements ranged between 90.2%and 106%(Table 1).The relative percentage difference was<10%for heavy metals and metalloids in duplicate samples.All chemical analyses were carried out in the Institute of Geochemistry,Chinese Academy of Sciences.

    Fig.1 Location of the sampling sites in the Laowanchang gold mine, southwestern Guizhou,China

    Fig.2 The sketch map of the process of gold smelting in the Laowanchang mine

    2.4 Potential ecological risk assessment

    Themethodofpotentialecologicalriskassessmentwascreated by Hakanson(1980)and has been widely applied to the pollution assessment of sediment and soil.It integrates concentrationandecologicaltoxicityofdifferentpollutants,andgives a potential ecological risk index as shown in Eq.(1):

    Table 1 List of certifed reference materials used in the present study and the results obtained

    where RI is the potential ecological risk index;Ei is the potential ecological risk factor for a given pollutant(i);Ti is the‘‘toxic-response’’factor for a given pollutant as calculated by Hakanson(1980),i.e.,Hg=40,Cd=30, As=Tl=Sb=10,Pb=Cu=Ni=5,Cr=2,Zn= 1;and Ci is the ratio of metal(loid)concentration in the sample to the corresponding background level.RI can be divided into four levels:RI<150,low ecological risk;150<RI<300,moderate ecological risk;300<RI<600,considerable ecological risk;and RI>600,very high ecological risk.

    2.5 Calculation of enrichment factors

    The Enrichment Factor(EF)has been widely used to quantify the extent of human-induced contamination;it is defned as the relative abundance of a chemical element in the environmental media compared with the background (Shotyk et al.2000).EF is calculated according to Eq.(2):

    where M is the concentration of the element under consideration and X is the concentration of the chosen reference element.The reference element is conservative, and the most commonly used elements are Al,Fe,Sc,and Ti(Hernandez et al.2003;Abrahim and Parker 2008). In this study,Sc was selected as it is generally considered to be mainly originated from natural sources(rock weathering).

    3 Results

    3.1 Major elements and pH

    The gold ore is composed of SiO2,Fe2O3,Al2O3,and TiO2(Chen 1999)as shown in Table 2.Compared with Guizhou red soil,the gold ore is rich in SiO2and Fe,and depleted in Ca and Mg.This indicates the gold mine originated from a primary Carlin-type gold deposit through strong weathering evolution.The deposit formed through the accumulation of ore-forming material by karst collapse followed by lateralization(Chen 1999;Yang et al.2004).

    The pH in the mine wastes and soil samples are listed in Table 3.The pH in the mine waste was higher than that in the crude or soil due to addition of quicklime during the smelting process(Fig.2).

    Table 2 Composition of major elements of the gold ore and Guizhou red soil(Data from Chen 1999)(%)

    3.2 Heavy metal(loid)concentrations

    The background concentrations of heavy metal(loid)s in Guizhou soil and heavy metal(loid)concentrations at the reference site are listed in Table 4.The background levels of As,Hg,Tl,and Cd at the reference site of the study area were comparable with the background levels of these elements in soil in Guizhou.However,the concentration of Sb and Au in soil at the reference site in this study was signifcantly higher than the background concentrations of these elements in soil of Guizhou Province.This might be related to Sb and Au mineralization in this region.

    No signifcant accumulation of Cr,Ni,Cu,Zn,and Pb was observed in the mine wastes(Table 3).The maximum concentrations of As,Hg,Tl,Sb,and Cd were 5844,28,29, 581,and 3.0 mg/kg,respectively.The As and Hg concentrations were elevated by three orders of magnitude compared with the background values at the reference site. The maximum concentrations of CN and Au were 4.0 and 4.8 mg/kg,respectively.

    Concentrations of selected trace elements differed signifcantly between different types of samples(Fig.3). Among these types,the highest concentrations for As,Hg, Tl,Au,and CN were observed in types A and B.However, for Sb and Cd,the highest concentrations were observed in type C samples,indicating high metal levels in the crude ores related to mineralization.

    3.3 Mine waste profle

    The concentrations of elements,pH,and organic matter in the profle of mine waste are shown in Fig.4.Sb and Cd concentrations were nearly constant at different depths.Hg,Tl,Au,and CN concentrations varied greatly at different depths,but the overall trend was consistent.

    Table 3 Statistics of studied elements and parameters in different types of mine waste (Mean±SD)

    Table 4 The heavy metal(loid)concentrations in background soil of Guizhou,soil from control site in the study area,and the national limit levels(mg/kg)

    Arsenic concentrations in the profle decreased with depth.Redox potential(Eh)and pH are the most important factors controlling As speciation and mobility.Arsenic is relatively mobile under a reducing environment in contrast to other heavy metals(Smedley and Kinniburgh 2002). Reducing conditions and high pH(8.36–8.70)at the bottom of mine wastes can lead to the desorption of As from mineral oxides and to the reductive dissolution of Fe and Mn oxides.Thus,As can migrate to underground water from mine wastes and its concentrations were notably less in the bottom layer.

    4 Discussion

    4.1 Risk index

    The ecological impacts of heavy metals and metalloids in mine wastes and soils are listed in Table 5.RI for all sample types reached‘‘very high’’levels,indicating serious heavy metal and metalloid pollution in the study area.The average relative contribution from each element,as calculated as the percentage of Ei compared to RI was:Hg 55.9%,As 24.2%,Cd 12.4%,Tl 4.1%,and Sb 2.5%. Average relative contributions from Cr,Ni,Cu,Zn,and Pb were very small(<0.5%).Hg and As are the majorpollutants in this gold mine,and remedial techniques are urgently needed to mitigate the historical pollution before land reclamation.

    A comparison of heavy metal pollution in different gold mines in China is shown in Table 6.Due to the widespread use of Hg for gold extraction before 1996 in China,Hg is the major pollutant in most gold mines of China.Other heavy metals(Cd and Cu)were also observed at elevated levels in some gold mines.The ecological risks in the study mine were much higher than other gold mines.Even though amalgamation was not used in this mine,Hg is still the major pollutant in this Carlin-type gold mining area.

    4.2 Pollution source analysis

    In order to evaluate the impact of the smelting process on the accumulation of heavy metals and metalloids in the mine wastes,trace element concentrations in the crude ore were considered as the background values to calculate EFs. The results are listed in Table 7.The values of EF,using Sc as the reference element,were in the range of 0.9–8.0.The EFs were 0.9 and 1.0 for Cd and 1.4 and 1.3 for Sb, indicating no signifcant enrichment.High EF values were observed for Hg,As,and Tl,with a range of 3.3–8.0.These three elements(Hg,As,and Tl)had accumulatedsignifcantly in the mine wastes of the settling tank through the smelting process,but there was nearly no impact on Cd and Sb from the smelting process.The geochemical behavior of heavy metals and metalloids varied in the smelting process.According to the EF values,the trace elements can be divided into two groups:Hg–As–Tl and Cd–Sb.

    Table 5 Result of potential ecological risk assessment in the study area

    The correlation analysis between all trace elements is shown in Table 8.The As,Hg,and Tl concentrations signifcantly correlated with each other(p<0.001);and Cd and Sb signifcantly correlated(p<0.01).According to the correlation factors,the elements can be divided into twogroups:As–Hg–Tl and Cd–Sb.In other words,the results were identical with those of the EF analysis and indicated that the crude ores were the main pollution source and the smelting process caused signifcant enrichment of Hg,As, and Tl in the mine wastes.

    Fig.4 Distribution patterns of trace element concentrations and other parameters in the mine waste profle

    Table 6 Comparison of heavy metal pollution in gold mines of China

    Table 7 Enrichment factors of mine wastes through smelting process

    Table 8 Pearson correlations between different trace elements in the samples

    4.3 Implications for phytoremediation

    This study revealed heavy metal and metalloid(Hg,As,Tl, Cd,and Sb)contamination and gold enrichment in mine wastes.In 1998,Anderson et al.(1998)frst reported harvesting a crop of gold in plants—gold phytomining.The increase in gold prices during recent decades combined with higher gold concentrations in plant tissues and higher biomass yield has made gold phytomining economically feasible(Wilson-Corral et al.2012).Gold phytomining trials in the feld have been reported in the Fazenda Brasileiro gold mine,Brazil(Anderson et al.2005),and in the Magistral mine,Mexico(Wilson-Corral et al.2011).An economic assessment in Mexico indicated the gross proft was US$14,537/ha after subtracting the cost of producing biomass(US$8,330/ha)(Wilson-Corral et al.2012).In addition to gold recovery,hyperaccumulator plants can be used to extract heavy metals.Balancing the cost of phytoremediation and the economic beneft is an important issue.The Laowanchang mine is an ideal site to carry out phytomining and phytoremediation simultaneously.

    5 Conclusions

    Highly elevated levels of As,Hg,Tl,Sb,and Cd were observed in the mine wastes from a Carlin-type gold mine in southwestern Guizhou,China.The ecological risks all reached the‘‘very high’’level,indicating heavy metal(loid) pollution associated with this gold mine.Hg and As were the major pollutants with relative contributions of 55.9 and 24.2%to RI,respectively.The smelting process of gold ores had signifcant impacts on the enrichment of As,Tl, and Hg in the mine wastes.

    AcknowledgmentsThis study was funded by the West Light Foundation of the Chinese Academy of Sciences,and the Social Development Project of Guizhou Province(2012–3044),the Natural Science Foundation of Guizhou Province(2009–2003),and the NationalNaturalScience Foundation ofChina (21007068 and 41373135).

    Abrahim GMS,Parker RJ(2008)Assessment of heavy metal enrichment factors and the degree of contamination in Marine Sediments from Tamaki Estuary,Auckland,New Zealand[J]. Environ Monit Assess 136:227–238

    Anderson WNC,Brooks RR,Stewart BR,Simcock R(1998) Harvesting a crop of gold in plants[J].Nature 395:553–554

    Anderson WNC,Moreno F,Meech J(2005)A feld demonstration of gold phytoextraction technology[J].Miner Eng 18:385–392

    CGA(2013)China’s gold production exceeded 400 tons and ranked frst in the world for six consecutive years.China Gold Association, website: http://www.cngold.org.cn/newsinfo. aspx?ID=867.Accessed 8 Aug 2013

    Chen L(1999)Geochemistry of macroelements and lateritization of Laowanchang lateritic gold deposits in Qinglong,Guizhou[J]. Guizhou Geol 16:307–314(In Chinese with English abstract)

    Chen Y,Ji H,Zhu X,Huang X,Qiao M(2012)Fraction Distribution and risk assessment of heavy metals in soils around the Gold Mine of Detiangou-Qifengcha,Beijing City,China[J].J Agro-Environ Sci 31:2142–2151(In Chinese with English abstract)

    Feng X,Dai Q,Qiu G,Li G,He L,Wang D(2006)Gold mining related mercury contamination in Tongguan,Shaanxi Province, PR China[J].Appl Geochem 21:1955–1968

    Hakanson L(1980)An ecological risk index for aquatic pollution control:a sediment logical approach[J].Water Res 8:975–1001

    He S(1998)Geochemical background of supergene sediments in Guizhou[J].Guizhou Geol 15:149–156(In Chinese with English abstract)

    Hernandez L,Probst A,Probst JL,Ulrich E(2003)Heavy metal distribution in some French forest soil,evidence for atmospheric contamination[J].Sci Total Environ 312:195–219

    Hu RZ,Su WC,Bi XW,Tu GZ,Hofstra AH(2002)Geology and geochemistry of Carlin-type gold deposits in China[J].Miner Depos 37:378–392

    Lacerda LD,Salomons W(1998)Mercury from gold and silver mining:a chemical time bomb?Springer,Berlin

    Liang N,Yang L,Dai J,Pang X(2011)Heavy metal pollution in surface water of Linglong gold mining area,China[J].Proced Environ Sci 10:914–917

    Qi L,Gre′goire DC(2000)Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry[J].Geostand Geoanal Res 24:51–63

    Qiu X,Wen J,Wu B,Liu M(2012)Research status about bacterial pretreatment method of Carlin-type gold ore[J].Chin J Rare Metals 36:1002–1009(In Chinese with English abstract)

    Ren M(2003)Gold-extracting techniques of granulating and dumpleaching at the Laowanchang gold mine,Qinglong County, Guizhou[J].Guizhou Geol 20:264–269(In Chinese with English abstract)

    SEPAC(State Environmental Protection Administration of China), 1995.Chinese Environmental Quality Standard for Soils(GB 15618-1995)

    Shotyk W,Blaser P,Grunig A,Cheburkin AK(2000)A new approach for quantifying cumulative,anthropogenic,atmospheric lead deposition using peat cores from bogs:Pb in eight Swiss peat bog profles[J].Sci Total Environ 249:281–295

    Smedley PL,Kinniburgh DG(2002)A review of the source, behaviour and distribution of arsenic in natural waters[J].Appl Geochem 17:517–568

    Tretbar DR,Arehart GB,Christensen JN (2000)Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite[J].Geology 28:947–950

    UNEP(2013)Global mercury assessment 2013:sources,emissions, releases and environmental transport.United Nations Environment Programme,Chemicals Branch,Geneva,Switzerland

    Wilson-Corral V,Anderson C,Rodriguez-Lopez M,Arenas-Vargas M,Lopez-Perez J(2011)Phytoextraction of gold and copper from mine tailings with Helianthus annuus L.and Kalanchoe serrata L.Miner Eng 24:1488–1494

    Wilson-Corral V,Anderson WNC,Rodriguez-Lopez M(2012)Gold phytomining.A review of the relevance of this technology to mineral extraction in the 21st century[J].J Environ Manage 111:249–257

    Wu Y,Xu Y,Zhang J,Hu S(2010)Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region,Shaanxi,China[J].Trans Nonferrous Met Soc China 20:688–694

    Xia Y,Su W,Zhang X,Liu J,(2012)Geochemistry and metallogenic model of Carlin-type gold deposits in Southwest Guizhou Province,China,geochemistry-earth’s system processes,Dr. Dionisios Panagiotaras (Ed.), ISBN: 978-953-51-0586-2, InTech,Available from:http://www.intechopen.com/books/geo chemistry-earth-s-system-processes/geochemistry-and-metallo genicmodel-of-carlin-type-gold-deposits-in-southwest-guizhou-pro vince-china

    Xu Y,Li J,Huang R(1999)Study of analysis of estimating the total cyanide in soil[J].Environ Monit China 15:27–29(In Chinese with English abstract)

    Yang Y,Liu S(2003)Source of ore-forming materials in Laowanchang gold ore deposit,Guizhou Province,China[J].Acta Miner Sin 23:364–370(In Chinese with English abstract)

    Yang J,Wang N(2013)Assessment of potential ecological risk of heavy metals in soils from Jia-Pi-Gou Gold Mine Area,China [J].J Agro-Environ Sci 32:595–600(In Chinese with English abstract)

    Yang Y,Liu S,Jin Z(2004)Laterization and its control on gold occurrence in Laowanchang gold deposit,Guizhou Province[J]. Geochimica 33:414–422(In Chinese with English abstract)

    Zhang XC,Spiro B,Halls C,Stanley C,Yang KY (2003) Sedimenthosted disseminated gold deposits in southwest Guizhou,PRC:their geological setting and origin in relation to mineralogical,fuid inclusion,and stable-isotope characteristics [J].Int Geol Rev 45:407–470

    Received:11 January 2015/Revised:25 March 2015/Accepted:4 May 2015/Published online:14 May 2015

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    ? Ping Li

    ping_ligyig@163.com

    1State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry,Chinese Academy of Sciences, Guiyang 550002,China

    2Guizhou Provincial Key Laboratory of Water Pollution Control and Resource Reuse,Guiyang 550081,China

    97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| a级毛片免费高清观看在线播放| 成人无遮挡网站| 美女高潮的动态| 亚洲av中文字字幕乱码综合| 国产成人精品久久久久久| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 国产探花极品一区二区| 日本五十路高清| 国产成人福利小说| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 欧美日韩综合久久久久久| 在线观看一区二区三区| 亚洲精品影视一区二区三区av| 99久国产av精品| 国产伦理片在线播放av一区 | 99久久久亚洲精品蜜臀av| 亚洲人成网站在线播放欧美日韩| 两个人的视频大全免费| 97人妻精品一区二区三区麻豆| av国产免费在线观看| 色哟哟哟哟哟哟| 久久精品91蜜桃| 色哟哟哟哟哟哟| 神马国产精品三级电影在线观看| 91aial.com中文字幕在线观看| 国产真实伦视频高清在线观看| av国产免费在线观看| 色吧在线观看| 亚洲国产欧美人成| 丰满乱子伦码专区| 18禁在线播放成人免费| 国产美女午夜福利| 国产精品人妻久久久久久| 久久久久久九九精品二区国产| 亚洲自偷自拍三级| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 国内揄拍国产精品人妻在线| 亚洲精品亚洲一区二区| 一本久久中文字幕| 在线免费观看的www视频| 麻豆久久精品国产亚洲av| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| 非洲黑人性xxxx精品又粗又长| 天堂av国产一区二区熟女人妻| 亚洲成人久久性| 又粗又硬又长又爽又黄的视频 | 国内久久婷婷六月综合欲色啪| 欧美变态另类bdsm刘玥| 日韩在线高清观看一区二区三区| 天堂av国产一区二区熟女人妻| 联通29元200g的流量卡| 丝袜喷水一区| 欧美一级a爱片免费观看看| 国产在线男女| 久久鲁丝午夜福利片| 国产成人精品久久久久久| 人体艺术视频欧美日本| 网址你懂的国产日韩在线| 全区人妻精品视频| 欧美日韩综合久久久久久| 麻豆久久精品国产亚洲av| 国产一区二区三区av在线 | 欧美色欧美亚洲另类二区| 亚洲av电影不卡..在线观看| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合| 伦精品一区二区三区| .国产精品久久| 日韩人妻高清精品专区| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 99久久精品国产国产毛片| 国产成人a区在线观看| 永久网站在线| 91久久精品国产一区二区三区| 美女 人体艺术 gogo| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 乱人视频在线观看| 男人狂女人下面高潮的视频| 婷婷精品国产亚洲av| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 国产精品野战在线观看| 村上凉子中文字幕在线| 午夜福利在线观看吧| 中文在线观看免费www的网站| 亚洲中文字幕日韩| 亚洲无线在线观看| 国产精品蜜桃在线观看 | 国产精品女同一区二区软件| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 国产精品国产高清国产av| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 欧美日本视频| 五月伊人婷婷丁香| 国产精华一区二区三区| 中国美白少妇内射xxxbb| 国产一区二区三区av在线 | 1000部很黄的大片| 观看美女的网站| 欧美丝袜亚洲另类| h日本视频在线播放| 日日撸夜夜添| 三级毛片av免费| 国产伦理片在线播放av一区 | 青春草国产在线视频 | 日韩强制内射视频| 欧洲精品卡2卡3卡4卡5卡区| 国产免费一级a男人的天堂| 久久精品综合一区二区三区| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 乱人视频在线观看| 亚洲久久久久久中文字幕| 美女脱内裤让男人舔精品视频 | 99久久人妻综合| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 人妻系列 视频| 日本熟妇午夜| 国产男人的电影天堂91| 国产v大片淫在线免费观看| 在线观看66精品国产| 波多野结衣高清作品| 在线免费观看不下载黄p国产| 久久久久久久久久成人| 久久久久久久久久黄片| 成年免费大片在线观看| 国产老妇女一区| 99在线人妻在线中文字幕| 欧美色欧美亚洲另类二区| 国产精品国产高清国产av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播放欧美日韩| 狂野欧美激情性xxxx在线观看| 久久久国产成人精品二区| 三级经典国产精品| 中文精品一卡2卡3卡4更新| 99热6这里只有精品| 岛国毛片在线播放| 国产精品三级大全| 久久久久久久久久久丰满| 亚洲成人久久性| 亚洲av一区综合| 别揉我奶头 嗯啊视频| 日本成人三级电影网站| 乱人视频在线观看| 又爽又黄a免费视频| 12—13女人毛片做爰片一| 久久综合国产亚洲精品| 十八禁国产超污无遮挡网站| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 国内精品久久久久精免费| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 看片在线看免费视频| av免费观看日本| 成人无遮挡网站| 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 美女cb高潮喷水在线观看| 在线国产一区二区在线| 97超视频在线观看视频| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 综合色丁香网| 九九爱精品视频在线观看| 三级经典国产精品| or卡值多少钱| 久久久久久久久久久丰满| 国产精品综合久久久久久久免费| 美女内射精品一级片tv| av在线老鸭窝| 看非洲黑人一级黄片| 国产片特级美女逼逼视频| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 国产黄色小视频在线观看| 老女人水多毛片| av在线观看视频网站免费| 国产精品久久久久久av不卡| 国产伦理片在线播放av一区 | 晚上一个人看的免费电影| 日本黄大片高清| 超碰av人人做人人爽久久| 午夜久久久久精精品| 2022亚洲国产成人精品| 给我免费播放毛片高清在线观看| 伦理电影大哥的女人| 国产av不卡久久| 如何舔出高潮| 12—13女人毛片做爰片一| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| av免费观看日本| 国产淫片久久久久久久久| 亚洲在久久综合| 亚洲国产欧美在线一区| 在线播放国产精品三级| 精品人妻视频免费看| 亚洲四区av| 不卡视频在线观看欧美| 亚洲av成人av| 午夜福利成人在线免费观看| 一级毛片aaaaaa免费看小| 欧美成人一区二区免费高清观看| 久99久视频精品免费| 国产av一区在线观看免费| 免费无遮挡裸体视频| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 亚洲最大成人中文| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 国产麻豆成人av免费视频| 大又大粗又爽又黄少妇毛片口| 人体艺术视频欧美日本| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 晚上一个人看的免费电影| 欧美日韩国产亚洲二区| 国产精品,欧美在线| 色视频www国产| 不卡一级毛片| 97热精品久久久久久| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 秋霞在线观看毛片| 91久久精品电影网| 春色校园在线视频观看| h日本视频在线播放| 九九热线精品视视频播放| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品久久男人天堂| 亚洲精品日韩av片在线观看| 最近的中文字幕免费完整| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| 你懂的网址亚洲精品在线观看 | 极品教师在线视频| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 成人永久免费在线观看视频| 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片| 久久人人爽人人片av| 成年女人看的毛片在线观看| 好男人视频免费观看在线| 欧美高清成人免费视频www| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 1000部很黄的大片| 久久久久九九精品影院| 国产精品1区2区在线观看.| 成人漫画全彩无遮挡| 亚洲在线观看片| 少妇丰满av| 麻豆乱淫一区二区| 麻豆久久精品国产亚洲av| 性插视频无遮挡在线免费观看| 日韩成人伦理影院| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片| ponron亚洲| 一区二区三区免费毛片| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 国内精品久久久久精免费| 在线观看一区二区三区| 婷婷色av中文字幕| 午夜福利在线在线| 51国产日韩欧美| 欧美日韩综合久久久久久| 欧美性感艳星| 国产午夜精品一二区理论片| 国产一区二区在线av高清观看| 国产亚洲av片在线观看秒播厂 | 不卡视频在线观看欧美| 深爱激情五月婷婷| 成人午夜精彩视频在线观看| 五月玫瑰六月丁香| 日本在线视频免费播放| 国产伦精品一区二区三区视频9| 99热全是精品| 久久久久久九九精品二区国产| 美女内射精品一级片tv| 国产精品一区二区在线观看99 | 久久国产乱子免费精品| 久久精品国产亚洲网站| 日本五十路高清| 亚洲国产精品成人久久小说 | 最近2019中文字幕mv第一页| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 18禁在线播放成人免费| 成人永久免费在线观看视频| 日韩强制内射视频| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 国产在线精品亚洲第一网站| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久久久久久| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 久久欧美精品欧美久久欧美| 国产美女午夜福利| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 人妻夜夜爽99麻豆av| 国产蜜桃级精品一区二区三区| 国产日本99.免费观看| 男的添女的下面高潮视频| 免费观看的影片在线观看| 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 嫩草影院精品99| 国产精品野战在线观看| 欧美精品国产亚洲| 男女那种视频在线观看| 长腿黑丝高跟| 免费观看精品视频网站| 男女边吃奶边做爰视频| 成人欧美大片| 国产精品爽爽va在线观看网站| 一级毛片aaaaaa免费看小| 天堂√8在线中文| 亚洲人成网站高清观看| 国产男人的电影天堂91| 免费观看精品视频网站| 床上黄色一级片| 日韩大尺度精品在线看网址| 天堂√8在线中文| 中文字幕久久专区| 波多野结衣高清作品| 日韩欧美国产在线观看| 搡女人真爽免费视频火全软件| 久久精品国产99精品国产亚洲性色| 在线观看av片永久免费下载| 日本一二三区视频观看| 中文亚洲av片在线观看爽| 最后的刺客免费高清国语| av天堂中文字幕网| 美女内射精品一级片tv| 波野结衣二区三区在线| 亚洲高清免费不卡视频| 插逼视频在线观看| 精品久久久久久久末码| 久久久久久久久久久免费av| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 免费搜索国产男女视频| 国产精品.久久久| 日日摸夜夜添夜夜爱| 国产免费男女视频| 观看美女的网站| 尾随美女入室| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 69人妻影院| 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 少妇熟女aⅴ在线视频| 青青草视频在线视频观看| 伦精品一区二区三区| 中国国产av一级| 久久亚洲国产成人精品v| 久久久久久大精品| 国产伦在线观看视频一区| 深爱激情五月婷婷| 内射极品少妇av片p| 我要搜黄色片| h日本视频在线播放| 欧美在线一区亚洲| 看十八女毛片水多多多| 在线观看午夜福利视频| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 欧美日韩一区二区视频在线观看视频在线 | 欧美3d第一页| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 99久国产av精品| 亚洲成人中文字幕在线播放| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 国产日韩欧美在线精品| 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 特级一级黄色大片| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩高清专用| 日产精品乱码卡一卡2卡三| 久久久久性生活片| 亚洲精品自拍成人| 一级av片app| 免费观看a级毛片全部| 极品教师在线视频| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 国产精品电影一区二区三区| a级毛片免费高清观看在线播放| 国产午夜精品论理片| 乱人视频在线观看| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 国产 一区 欧美 日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天天一区二区日本电影三级| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 亚洲内射少妇av| 久久久久久久久中文| 日韩强制内射视频| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人综合色| 女同久久另类99精品国产91| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 亚洲av男天堂| 中文在线观看免费www的网站| 我的女老师完整版在线观看| 精品久久久久久久人妻蜜臀av| 国产视频首页在线观看| 天天一区二区日本电影三级| 亚洲精品国产av成人精品| 不卡一级毛片| 国产黄色视频一区二区在线观看 | 嫩草影院新地址| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 国产一级毛片七仙女欲春2| 少妇人妻精品综合一区二区 | 午夜激情福利司机影院| 村上凉子中文字幕在线| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 亚洲,欧美,日韩| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久亚洲| 尤物成人国产欧美一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲精华国产精华液的使用体验 | 全区人妻精品视频| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 国产成人精品久久久久久| 日本撒尿小便嘘嘘汇集6| 欧美bdsm另类| 国产大屁股一区二区在线视频| АⅤ资源中文在线天堂| 不卡视频在线观看欧美| 午夜免费激情av| 亚洲精品亚洲一区二区| 校园春色视频在线观看| 精品午夜福利在线看| 尾随美女入室| 中国美女看黄片| 国产乱人视频| 中文字幕制服av| 国产精品人妻久久久影院| 午夜免费男女啪啪视频观看| 亚洲av熟女| 色哟哟哟哟哟哟| 国产亚洲欧美98| 久久精品国产亚洲av香蕉五月| 亚洲三级黄色毛片| 午夜亚洲福利在线播放| 国产亚洲精品久久久久久毛片| 少妇人妻精品综合一区二区 | 国产视频内射| 99久久精品热视频| 亚洲av中文字字幕乱码综合| 卡戴珊不雅视频在线播放| 日本黄大片高清| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 看黄色毛片网站| 男女视频在线观看网站免费| 悠悠久久av| 特大巨黑吊av在线直播| 国产激情偷乱视频一区二区| 69av精品久久久久久| 两个人的视频大全免费| 嘟嘟电影网在线观看| 亚洲国产欧洲综合997久久,| 伦精品一区二区三区| 免费观看的影片在线观看| 日产精品乱码卡一卡2卡三| 国产乱人偷精品视频| 97在线视频观看| 大香蕉久久网| 久99久视频精品免费| eeuss影院久久| 成人一区二区视频在线观看| 日韩成人av中文字幕在线观看| 免费观看在线日韩| 嘟嘟电影网在线观看| 黑人高潮一二区| 免费av观看视频| 美女内射精品一级片tv| 22中文网久久字幕| 色尼玛亚洲综合影院| 成年女人永久免费观看视频| 婷婷精品国产亚洲av| 久99久视频精品免费| 久久亚洲精品不卡| 国产色婷婷99| 91在线精品国自产拍蜜月| 不卡一级毛片| 成人亚洲精品av一区二区| 国产av不卡久久| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 久久亚洲精品不卡| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| 国产精品三级大全| 三级男女做爰猛烈吃奶摸视频| 青春草国产在线视频 | 久久精品久久久久久久性| 国产成人91sexporn| 18+在线观看网站| 一本久久中文字幕| 黄片无遮挡物在线观看| 日韩大尺度精品在线看网址| av视频在线观看入口| 天天躁夜夜躁狠狠久久av| 欧洲精品卡2卡3卡4卡5卡区| 我要看日韩黄色一级片| 高清午夜精品一区二区三区 | 久久中文看片网| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 18禁黄网站禁片免费观看直播| 国产成人精品一,二区 | 国产午夜福利久久久久久| 免费看日本二区| 国产av不卡久久| 国产精品1区2区在线观看.| 99热这里只有是精品在线观看| 亚洲精品色激情综合| 久久久久国产网址| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av| 日韩国内少妇激情av| 简卡轻食公司| 久久久久久久久大av| 久久精品国产亚洲av涩爱 | 3wmmmm亚洲av在线观看| 啦啦啦韩国在线观看视频| 欧美激情在线99| 午夜福利在线在线| 最近最新中文字幕大全电影3| 精品免费久久久久久久清纯| 国产高潮美女av| 亚洲图色成人| 在线观看美女被高潮喷水网站| 亚洲人成网站在线播放欧美日韩| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 婷婷精品国产亚洲av| 啦啦啦啦在线视频资源| 长腿黑丝高跟| 一级黄色大片毛片| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 欧美最新免费一区二区三区| 日本黄色片子视频| 国产高清视频在线观看网站| 黄色日韩在线| 人妻系列 视频|